100+ datasets found
  1. D

    Data Cleaning Tools Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Data Cleaning Tools Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/data-cleaning-tools-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Cleaning Tools Market Outlook



    As of 2023, the global market size for data cleaning tools is estimated at $2.5 billion, with projections indicating that it will reach approximately $7.1 billion by 2032, reflecting a robust CAGR of 12.1% during the forecast period. This growth is primarily driven by the increasing importance of data quality in business intelligence and analytics workflows across various industries.



    The growth of the data cleaning tools market can be attributed to several critical factors. Firstly, the exponential increase in data generation across industries necessitates efficient tools to manage data quality. Poor data quality can result in significant financial losses, inefficient business processes, and faulty decision-making. Organizations recognize the value of clean, accurate data in driving business insights and operational efficiency, thereby propelling the adoption of data cleaning tools. Additionally, regulatory requirements and compliance standards also push companies to maintain high data quality standards, further driving market growth.



    Another significant growth factor is the rising adoption of AI and machine learning technologies. These advanced technologies rely heavily on high-quality data to deliver accurate results. Data cleaning tools play a crucial role in preparing datasets for AI and machine learning models, ensuring that the data is free from errors, inconsistencies, and redundancies. This surge in the use of AI and machine learning across various sectors like healthcare, finance, and retail is driving the demand for efficient data cleaning solutions.



    The proliferation of big data analytics is another critical factor contributing to market growth. Big data analytics enables organizations to uncover hidden patterns, correlations, and insights from large datasets. However, the effectiveness of big data analytics is contingent upon the quality of the data being analyzed. Data cleaning tools help in sanitizing large datasets, making them suitable for analysis and thus enhancing the accuracy and reliability of analytics outcomes. This trend is expected to continue, fueling the demand for data cleaning tools.



    In terms of regional growth, North America holds a dominant position in the data cleaning tools market. The region's strong technological infrastructure, coupled with the presence of major market players and a high adoption rate of advanced data management solutions, contributes to its leadership. However, the Asia Pacific region is anticipated to witness the highest growth rate during the forecast period. The rapid digitization of businesses, increasing investments in IT infrastructure, and a growing focus on data-driven decision-making are key factors driving the market in this region.



    As organizations strive to maintain high data quality standards, the role of an Email List Cleaning Service becomes increasingly vital. These services ensure that email databases are free from invalid addresses, duplicates, and outdated information, thereby enhancing the effectiveness of marketing campaigns and communications. By leveraging sophisticated algorithms and validation techniques, email list cleaning services help businesses improve their email deliverability rates and reduce the risk of being flagged as spam. This not only optimizes marketing efforts but also protects the reputation of the sender. As a result, the demand for such services is expected to grow alongside the broader data cleaning tools market, as companies recognize the importance of maintaining clean and accurate contact lists.



    Component Analysis



    The data cleaning tools market can be segmented by component into software and services. The software segment encompasses various tools and platforms designed for data cleaning, while the services segment includes consultancy, implementation, and maintenance services provided by vendors.



    The software segment holds the largest market share and is expected to continue leading during the forecast period. This dominance can be attributed to the increasing adoption of automated data cleaning solutions that offer high efficiency and accuracy. These software solutions are equipped with advanced algorithms and functionalities that can handle large volumes of data, identify errors, and correct them without manual intervention. The rising adoption of cloud-based data cleaning software further bolsters this segment, as it offers scalability and ease of

  2. f

    The mean preservation of data (PD), sensitivity, specificity and convergence...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements (2023). The mean preservation of data (PD), sensitivity, specificity and convergence rate across different rates and types of simulated errors and duplications of uncleaned, de-duplicated and data cleaned with five data cleaning approaches with and without our algorithm (A) for longitudinal growth measurements from CLOSER data. [Dataset]. http://doi.org/10.1371/journal.pone.0228154.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The mean preservation of data (PD), sensitivity, specificity and convergence rate across different rates and types of simulated errors and duplications of uncleaned, de-duplicated and data cleaned with five data cleaning approaches with and without our algorithm (A) for longitudinal growth measurements from CLOSER data.

  3. t

    Data from: Decoding Wayfinding: Analyzing Wayfinding Processes in the...

    • researchdata.tuwien.at
    • b2find.eudat.eu
    html, pdf, zip
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Negar Alinaghi; Ioannis Giannopoulos; Ioannis Giannopoulos; Negar Alinaghi; Negar Alinaghi; Negar Alinaghi (2025). Decoding Wayfinding: Analyzing Wayfinding Processes in the Outdoor Environment [Dataset]. http://doi.org/10.48436/m2ha4-t1v92
    Explore at:
    html, zip, pdfAvailable download formats
    Dataset updated
    Mar 19, 2025
    Dataset provided by
    TU Wien
    Authors
    Negar Alinaghi; Ioannis Giannopoulos; Ioannis Giannopoulos; Negar Alinaghi; Negar Alinaghi; Negar Alinaghi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    How To Cite?

    Alinaghi, N., Giannopoulos, I., Kattenbeck, M., & Raubal, M. (2025). Decoding wayfinding: analyzing wayfinding processes in the outdoor environment. International Journal of Geographical Information Science, 1–31. https://doi.org/10.1080/13658816.2025.2473599

    Link to the paper: https://www.tandfonline.com/doi/full/10.1080/13658816.2025.2473599

    Folder Structure

    The folder named “submission” contains the following:

    1. “pythonProject”: This folder contains all the Python files and subfolders needed for analysis.
    2. ijgis.yml: This file lists all the Python libraries and dependencies required to run the code.

    Setting Up the Environment

    1. Use the ijgis.yml file to create a Python project and environment. Ensure you activate the environment before running the code.
    2. The pythonProject folder contains several .py files and subfolders, each with specific functionality as described below.

    Subfolders

    1. Data_4_IJGIS

    • This folder contains the data used for the results reported in the paper.
    • Note: The data analysis that we explain in this paper already begins with the synchronization and cleaning of the recorded raw data. The published data is already synchronized and cleaned. Both the cleaned files and the merged files with features extracted for them are given in this directory. If you want to perform the segmentation and feature extraction yourself, you should run the respective Python files yourself. If not, you can use the “merged_…csv” files as input for the training.

    2. results_[DateTime] (e.g., results_20240906_15_00_13)

    • This folder will be generated when you run the code and will store the output of each step.
    • The current folder contains results created during code debugging for the submission.
    • When you run the code, a new folder with fresh results will be generated.

    Python Files

    1. helper_functions.py

    • Contains reusable functions used throughout the analysis.
    • Each function includes a description of its purpose and the input parameters required.

    2. create_sanity_plots.py

    • Generates scatter plots like those in Figure 3 of the paper.
    • Although the code has been run for all 309 trials, it can be used to check the sample data provided.
    • Output: A .png file for each column of the raw gaze and IMU recordings, color-coded with logged events.
    • Usage: Run this file to create visualizations similar to Figure 3.

    3. overlapping_sliding_window_loop.py

    • Implements overlapping sliding window segmentation and generates plots like those in Figure 4.
    • Output:
      • Two new subfolders, “Gaze” and “IMU”, will be added to the Data_4_IJGIS folder.
      • Segmented files (default: 2–10 seconds with a 1-second step size) will be saved as .csv files.
      • A visualization of the segments, similar to Figure 4, will be automatically generated.

    4. gaze_features.py & imu_features.py (Note: there has been an update to the IDT function implementation in the gaze_features.py on 19.03.2025.)

    • These files compute features as explained in Tables 1 and 2 of the paper, respectively.
    • They process the segmented recordings generated by the overlapping_sliding_window_loop.py.
    • Usage: Just to know how the features are calculated, you can run this code after the segmentation with the sliding window and run these files to calculate the features from the segmented data.

    5. training_prediction.py

    • This file contains the main machine learning analysis of the paper. This file contains all the code for the training of the model, its evaluation, and its use for the inference of the “monitoring part”. It covers the following steps:
    a. Data Preparation (corresponding to Section 5.1.1 of the paper)
    • Prepares the data according to the research question (RQ) described in the paper. Since this data was collected with several RQs in mind, we remove parts of the data that are not related to the RQ of this paper.
    • A function named plot_labels_comparison(df, save_path, x_label_freq=10, figsize=(15, 5)) in line 116 visualizes the data preparation results. As this visualization is not used in the paper, the line is commented out, but if you want to see visually what has been changed compared to the original data, you can comment out this line.
    b. Training/Validation/Test Split
    • Splits the data for machine learning experiments (an explanation can be found in Section 5.1.1. Preparation of data for training and inference of the paper).
    • Make sure that you follow the instructions in the comments to the code exactly.
    • Output: The split data is saved as .csv files in the results folder.
    c. Machine and Deep Learning Experiments

    This part contains three main code blocks:

    iii. One for the XGboost code with correct hyperparameter tuning:
    Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically test the confidence threshold of

    • MLP Network (Commented Out): This code was used for classification with the MLP network, and the results shown in Table 3 are from this code. If you wish to use this model, please comment out the following blocks accordingly.
    • XGBoost without Hyperparameter Tuning: If you want to run the code but do not want to spend time on the full training with hyperparameter tuning (as was done for the paper), just uncomment this part. This will give you a simple, untuned model with which you can achieve at least some results.
    • XGBoost with Hyperparameter Tuning: If you want to train the model the way we trained it for the analysis reported in the paper, use this block (the plots in Figure 7 are from this block). We ran this block with different feature sets and different segmentation files and created a simple bar chart from the saved results, shown in Figure 6.

    Note: Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically calculated the confidence threshold of the model (explained in the paper in Section 5.2. Part II: Decoding surveillance by sequence analysis) is given in this block in lines 361 to 380.

    d. Inference (Monitoring Part)
    • Final inference is performed using the monitoring data. This step produces a .csv file containing inferred labels.
    • Figure 8 in the paper is generated using this part of the code.

    6. sequence_analysis.py

    • Performs analysis on the inferred data, producing Figures 9 and 10 from the paper.
    • This file reads the inferred data from the previous step and performs sequence analysis as described in Sections 5.2.1 and 5.2.2.

    Licenses

    The data is licensed under CC-BY, the code is licensed under MIT.

  4. i

    Household Expenditure and Income Survey 2008, Economic Research Forum (ERF)...

    • catalog.ihsn.org
    Updated Jan 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (2022). Household Expenditure and Income Survey 2008, Economic Research Forum (ERF) Harmonization Data - Jordan [Dataset]. https://catalog.ihsn.org/index.php/catalog/7661
    Explore at:
    Dataset updated
    Jan 12, 2022
    Dataset authored and provided by
    Department of Statistics
    Time period covered
    2008 - 2009
    Area covered
    Jordan
    Description

    Abstract

    The main objective of the HEIS survey is to obtain detailed data on household expenditure and income, linked to various demographic and socio-economic variables, to enable computation of poverty indices and determine the characteristics of the poor and prepare poverty maps. Therefore, to achieve these goals, the sample had to be representative on the sub-district level. The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality.

    Data collected through the survey helped in achieving the following objectives: 1. Provide data weights that reflect the relative importance of consumer expenditure items used in the preparation of the consumer price index 2. Study the consumer expenditure pattern prevailing in the society and the impact of demograohic and socio-economic variables on those patterns 3. Calculate the average annual income of the household and the individual, and assess the relationship between income and different economic and social factors, such as profession and educational level of the head of the household and other indicators 4. Study the distribution of individuals and households by income and expenditure categories and analyze the factors associated with it 5. Provide the necessary data for the national accounts related to overall consumption and income of the household sector 6. Provide the necessary income data to serve in calculating poverty indices and identifying the poor chracteristics as well as drawing poverty maps 7. Provide the data necessary for the formulation, follow-up and evaluation of economic and social development programs, including those addressed to eradicate poverty

    Geographic coverage

    National

    Analysis unit

    • Household/families
    • Individuals

    Universe

    The survey covered a national sample of households and all individuals permanently residing in surveyed households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The 2008 Household Expenditure and Income Survey sample was designed using two-stage cluster stratified sampling method. In the first stage, the primary sampling units (PSUs), the blocks, were drawn using probability proportionate to the size, through considering the number of households in each block to be the block size. The second stage included drawing the household sample (8 households from each PSU) using the systematic sampling method. Fourth substitute households from each PSU were drawn, using the systematic sampling method, to be used on the first visit to the block in case that any of the main sample households was not visited for any reason.

    To estimate the sample size, the coefficient of variation and design effect in each subdistrict were calculated for the expenditure variable from data of the 2006 Household Expenditure and Income Survey. This results was used to estimate the sample size at sub-district level, provided that the coefficient of variation of the expenditure variable at the sub-district level did not exceed 10%, with a minimum number of clusters that should not be less than 6 at the district level, that is to ensure good clusters representation in the administrative areas to enable drawing poverty pockets.

    It is worth mentioning that the expected non-response in addition to areas where poor families are concentrated in the major cities were taken into consideration in designing the sample. Therefore, a larger sample size was taken from these areas compared to other ones, in order to help in reaching the poverty pockets and covering them.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    List of survey questionnaires: (1) General Form (2) Expenditure on food commodities Form (3) Expenditure on non-food commodities Form

    Cleaning operations

    Raw Data The design and implementation of this survey procedures were: 1. Sample design and selection 2. Design of forms/questionnaires, guidelines to assist in filling out the questionnaires, and preparing instruction manuals 3. Design the tables template to be used for the dissemination of the survey results 4. Preparation of the fieldwork phase including printing forms/questionnaires, instruction manuals, data collection instructions, data checking instructions and codebooks 5. Selection and training of survey staff to collect data and run required data checkings 6. Preparation and implementation of the pretest phase for the survey designed to test and develop forms/questionnaires, instructions and software programs required for data processing and production of survey results 7. Data collection 8. Data checking and coding 9. Data entry 10. Data cleaning using data validation programs 11. Data accuracy and consistency checks 12. Data tabulation and preliminary results 13. Preparation of the final report and dissemination of final results

    Harmonized Data - The Statistical Package for Social Science (SPSS) was used to clean and harmonize the datasets - The harmonization process started with cleaning all raw data files received from the Statistical Office - Cleaned data files were then all merged to produce one data file on the individual level containing all variables subject to harmonization - A country-specific program was generated for each dataset to generate/compute/recode/rename/format/label harmonized variables - A post-harmonization cleaning process was run on the data - Harmonized data was saved on the household as well as the individual level, in SPSS and converted to STATA format

  5. f

    The percentage of gold standard corrections of errors induced into CLOSER...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements (2023). The percentage of gold standard corrections of errors induced into CLOSER data with simulated duplications and 1% errors using the algorithmic data cleaning methods. [Dataset]. http://doi.org/10.1371/journal.pone.0228154.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The percentage of gold standard corrections of errors induced into CLOSER data with simulated duplications and 1% errors using the algorithmic data cleaning methods.

  6. f

    The percentage of alterations made to Dogslife, SAVSNET, Banfield and CLOSER...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements (2023). The percentage of alterations made to Dogslife, SAVSNET, Banfield and CLOSER data with simulated duplications and 1% simulated errors using the NLME-A data cleaning method. [Dataset]. http://doi.org/10.1371/journal.pone.0228154.t007
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The percentage of alterations made to Dogslife, SAVSNET, Banfield and CLOSER data with simulated duplications and 1% simulated errors using the NLME-A data cleaning method.

  7. l

    LSC (Leicester Scientific Corpus)

    • figshare.le.ac.uk
    Updated Apr 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neslihan Suzen (2020). LSC (Leicester Scientific Corpus) [Dataset]. http://doi.org/10.25392/leicester.data.9449639.v2
    Explore at:
    Dataset updated
    Apr 15, 2020
    Dataset provided by
    University of Leicester
    Authors
    Neslihan Suzen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Leicester
    Description

    The LSC (Leicester Scientific Corpus)

    April 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk) Supervised by Prof Alexander Gorban and Dr Evgeny MirkesThe data are extracted from the Web of Science [1]. You may not copy or distribute these data in whole or in part without the written consent of Clarivate Analytics.[Version 2] A further cleaning is applied in Data Processing for LSC Abstracts in Version 1*. Details of cleaning procedure are explained in Step 6.* Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v1.Getting StartedThis text provides the information on the LSC (Leicester Scientific Corpus) and pre-processing steps on abstracts, and describes the structure of files to organise the corpus. This corpus is created to be used in future work on the quantification of the meaning of research texts and make it available for use in Natural Language Processing projects.LSC is a collection of abstracts of articles and proceeding papers published in 2014, and indexed by the Web of Science (WoS) database [1]. The corpus contains only documents in English. Each document in the corpus contains the following parts:1. Authors: The list of authors of the paper2. Title: The title of the paper 3. Abstract: The abstract of the paper 4. Categories: One or more category from the list of categories [2]. Full list of categories is presented in file ‘List_of _Categories.txt’. 5. Research Areas: One or more research area from the list of research areas [3]. Full list of research areas is presented in file ‘List_of_Research_Areas.txt’. 6. Total Times cited: The number of times the paper was cited by other items from all databases within Web of Science platform [4] 7. Times cited in Core Collection: The total number of times the paper was cited by other papers within the WoS Core Collection [4]The corpus was collected in July 2018 online and contains the number of citations from publication date to July 2018. We describe a document as the collection of information (about a paper) listed above. The total number of documents in LSC is 1,673,350.Data ProcessingStep 1: Downloading of the Data Online

    The dataset is collected manually by exporting documents as Tab-delimitated files online. All documents are available online.Step 2: Importing the Dataset to R

    The LSC was collected as TXT files. All documents are extracted to R.Step 3: Cleaning the Data from Documents with Empty Abstract or without CategoryAs our research is based on the analysis of abstracts and categories, all documents with empty abstracts and documents without categories are removed.Step 4: Identification and Correction of Concatenate Words in AbstractsEspecially medicine-related publications use ‘structured abstracts’. Such type of abstracts are divided into sections with distinct headings such as introduction, aim, objective, method, result, conclusion etc. Used tool for extracting abstracts leads concatenate words of section headings with the first word of the section. For instance, we observe words such as ConclusionHigher and ConclusionsRT etc. The detection and identification of such words is done by sampling of medicine-related publications with human intervention. Detected concatenate words are split into two words. For instance, the word ‘ConclusionHigher’ is split into ‘Conclusion’ and ‘Higher’.The section headings in such abstracts are listed below:

    Background Method(s) Design Theoretical Measurement(s) Location Aim(s) Methodology Process Abstract Population Approach Objective(s) Purpose(s) Subject(s) Introduction Implication(s) Patient(s) Procedure(s) Hypothesis Measure(s) Setting(s) Limitation(s) Discussion Conclusion(s) Result(s) Finding(s) Material (s) Rationale(s) Implications for health and nursing policyStep 5: Extracting (Sub-setting) the Data Based on Lengths of AbstractsAfter correction, the lengths of abstracts are calculated. ‘Length’ indicates the total number of words in the text, calculated by the same rule as for Microsoft Word ‘word count’ [5].According to APA style manual [6], an abstract should contain between 150 to 250 words. In LSC, we decided to limit length of abstracts from 30 to 500 words in order to study documents with abstracts of typical length ranges and to avoid the effect of the length to the analysis.

    Step 6: [Version 2] Cleaning Copyright Notices, Permission polices, Journal Names and Conference Names from LSC Abstracts in Version 1Publications can include a footer of copyright notice, permission policy, journal name, licence, author’s right or conference name below the text of abstract by conferences and journals. Used tool for extracting and processing abstracts in WoS database leads to attached such footers to the text. For example, our casual observation yields that copyright notices such as ‘Published by Elsevier ltd.’ is placed in many texts. To avoid abnormal appearances of words in further analysis of words such as bias in frequency calculation, we performed a cleaning procedure on such sentences and phrases in abstracts of LSC version 1. We removed copyright notices, names of conferences, names of journals, authors’ rights, licenses and permission policies identified by sampling of abstracts.Step 7: [Version 2] Re-extracting (Sub-setting) the Data Based on Lengths of AbstractsThe cleaning procedure described in previous step leaded to some abstracts having less than our minimum length criteria (30 words). 474 texts were removed.Step 8: Saving the Dataset into CSV FormatDocuments are saved into 34 CSV files. In CSV files, the information is organised with one record on each line and parts of abstract, title, list of authors, list of categories, list of research areas, and times cited is recorded in fields.To access the LSC for research purposes, please email to ns433@le.ac.uk.References[1]Web of Science. (15 July). Available: https://apps.webofknowledge.com/ [2]WoS Subject Categories. Available: https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html [3]Research Areas in WoS. Available: https://images.webofknowledge.com/images/help/WOS/hp_research_areas_easca.html [4]Times Cited in WoS Core Collection. (15 July). Available: https://support.clarivate.com/ScientificandAcademicResearch/s/article/Web-of-Science-Times-Cited-accessibility-and-variation?language=en_US [5]Word Count. Available: https://support.office.com/en-us/article/show-word-count-3c9e6a11-a04d-43b4-977c-563a0e0d5da3 [6]A. P. Association, Publication manual. American Psychological Association Washington, DC, 1983.

  8. Data clean room strategy drivers in North America 2023

    • statista.com
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Data clean room strategy drivers in North America 2023 [Dataset]. https://www.statista.com/statistics/1362332/data-clean-room-strategy-drivers/
    Explore at:
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    North America
    Description

    During a 2023 survey carried out among marketing leaders predominantly in consumer packaged goods and retail from North America, the most common driver for clean room strategies were in-depth analytics (named by ** percent of respondents), ability to measure campaign results (** percent), and ease of data integration (** percent). In a different survey, ** percent of responding U.S. marketers said they would focus more on data clean rooms in 2023 than they had in 2022.

  9. Analyzed Data for The Impact of COVID-19 on Technical Services Units Survey...

    • figshare.com
    • dataverse.harvard.edu
    • +1more
    Updated May 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elizabeth Szkirpan (2023). Analyzed Data for The Impact of COVID-19 on Technical Services Units Survey Results [Dataset]. http://doi.org/10.6084/m9.figshare.20416104.v1
    Explore at:
    Dataset updated
    May 31, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Elizabeth Szkirpan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These datasets contain cleaned data survey results from the October 2021-January 2022 survey titled "The Impact of COVID-19 on Technical Services Units". This data was gathered from a Qualtrics survey, which was anonymized to prevent Qualtrics from gathering identifiable information from respondents. These specific iterations of data reflect cleaning and standardization so that data can be analyzed using Python. Ultimately, the three files reflect the removal of survey begin/end times, other data auto-recorded by Qualtrics, blank rows, blank responses after question four (the first section of the survey), and non-United States responses. Note that State names for "What state is your library located in?" (Q36) were also standardized beginning in Impact_of_COVID_on_Tech_Services_Clean_3.csv to aid in data analysis. In this step, state abbreviations were spelled out and spelling errors were corrected.

  10. r

    mirrorCheck results for 4 public datasets

    • researchdata.edu.au
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Katherine Scull (2025). mirrorCheck results for 4 public datasets [Dataset]. http://doi.org/10.26180/27289017.V1
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    Monash University
    Authors
    Katherine Scull
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Each zipped folder contains results files from reanalysis of public data in our publication, "mirrorCheck: an R package facilitating informed use of DESeq2’s lfcShrink() function for differential gene expression analysis of clinical samples" (see also the Collection description).

    These files were produced by rendering the Quarto documents provided in the supplementary data with the publication (one per dataset). The Quarto codes for the 3 main analyses (COVID, BRCA and Cell line datasets) performed differential gene expression (DGE) analysis using both DESeq2 with lfcShrink() via our R package mirrorCheck, and also edgeR. Each zipped folder here contains 2 folders, one for each DGE analysis. Since DESeq2 was run on data without prior data cleaning, with prefiltering or after Surrogate Variable Analysis, the 'mirrorCheck output' folders themselves contain 3 sub-folders titled 'DESeq_noclean', 'DESeq_prefilt' and 'DESeq_sva". The COVID dataset also has a folder with results from Gene Set Enrichment Analysis. Finally, the fourth folder contains results from a tutorial/vignette-style supplementary file using the Bioconductor "parathyroidSE" dataset. This analysis only utilised DESeq2, with both data cleaning methods and testing two different design formulae, resulting in 5 sub-folders in the zipped folder.

  11. i

    Household Income and Expenditure 2010 - Tuvalu

    • catalog.ihsn.org
    • dev.ihsn.org
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistics Division (2019). Household Income and Expenditure 2010 - Tuvalu [Dataset]. http://catalog.ihsn.org/catalog/3203
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Central Statistics Division
    Time period covered
    2010
    Area covered
    Tuvalu
    Description

    Abstract

    The main objectives of the survey were: - To obtain weights for the revision of the Consumer Price Index (CPI) for Funafuti; - To provide information on the nature and distribution of household income, expenditure and food consumption patterns; - To provide data on the household sector's contribution to the National Accounts - To provide information on economic activity of men and women to study gender issues - To undertake some poverty analysis

    Geographic coverage

    National, including Funafuti and Outer islands

    Analysis unit

    • Household
    • individual

    Universe

    All the private household are included in the sampling frame. In each household selected, the current resident are surveyed, and people who are usual resident but are currently away (work, health, holydays reasons, or border student for example. If the household had been residing in Tuvalu for less than one year: - but intend to reside more than 12 months => The household is included - do not intend to reside more than 12 months => out of scope

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    It was decided that 33% (one third) sample was sufficient to achieve suitable levels of accuracy for key estimates in the survey. So the sample selection was spread proportionally across all the island except Niulakita as it was considered too small. For selection purposes, each island was treated as a separate stratum and independent samples were selected from each. The strategy used was to list each dwelling on the island by their geographical position and run a systematic skip through the list to achieve the 33% sample. This approach assured that the sample would be spread out across each island as much as possible and thus more representative.

    For details please refer to Table 1.1 of the Report.

    Sampling deviation

    Only the island of Niulakita was not included in the sampling frame, considered too small.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    There were three main survey forms used to collect data for the survey. Each question are writen in English and translated in Tuvaluan on the same version of the questionnaire. The questionnaires were designed based on the 2004 survey questionnaire.

    HOUSEHOLD FORM - composition of the household and demographic profile of each members - dwelling information - dwelling expenditure - transport expenditure - education expenditure - health expenditure - land and property expenditure - household furnishing - home appliances - cultural and social payments - holydays/travel costs - Loans and saving - clothing - other major expenditure items

    INDIVIDUAL FORM - health and education - labor force (individu aged 15 and above) - employment activity and income (individu aged 15 and above): wages and salaries, working own business, agriculture and livestock, fishing, income from handicraft, income from gambling, small scale activies, jobs in the last 12 months, other income, childreen income, tobacco and alcohol use, other activities, and seafarer

    DIARY (one diary per week, on a 2 weeks period, 2 diaries per household were required) - All kind of expenses - Home production - food and drink (eaten by the household, given away, sold) - Goods taken from own business (consumed, given away) - Monetary gift (given away, received, winning from gambling) - Non monetary gift (given away, received, winning from gambling)

    Questionnaire Design Flaws Questionnaire design flaws address any problems with the way questions were worded which will result in an incorrect answer provided by the respondent. Despite every effort to minimize this problem during the design of the respective survey questionnaires and the diaries, problems were still identified during the analysis of the data. Some examples are provided below:

    Gifts, Remittances & Donations Collecting information on the following: - the receipt and provision of gifts - the receipt and provision of remittances - the provision of donations to the church, other communities and family occasions is a very difficult task in a HIES. The extent of these activities in Tuvalu is very high, so every effort should be made to address these activities as best as possible. A key problem lies in identifying the best form (questionnaire or diary) for covering such activities. A general rule of thumb for a HIES is that if the activity occurs on a regular basis, and involves the exchange of small monetary amounts or in-kind gifts, the diary is more appropriate. On the other hand, if the activity is less infrequent, and involves larger sums of money, the questionnaire with a recall approach is preferred. It is not always easy to distinguish between the two for the different activities, and as such, both the diary and questionnaire were used to collect this information. Unfortunately it probably wasn?t made clear enough as to what types of transactions were being collected from the different sources, and as such some transactions might have been missed, and others counted twice. The effects of these problems are hopefully minimal overall.

    Defining Remittances Because people have different interpretations of what constitutes remittances, the questionnaire needs to be very clear as to how this concept is defined in the survey. Unfortunately this wasn?t explained clearly enough so it was difficult to distinguish between a remittance, which should be of a more regular nature, and a one-off monetary gift which was transferred between two households.

    Business Expenses Still Recorded The aim of the survey is to measure "household" expenditure, and as such, any expenditure made by a household for an item or service which was primarily used for a business activity should be excluded. It was not always clear in the questionnaire that this was the case, and as such some business expenses were included. Efforts were made during data cleaning to remove any such business expenses which would impact significantly on survey results.

    Purchased goods given away as a gift When a household makes a gift donation of an item it has purchased, this is recorded in section 5 of the diary. Unfortunately it was difficult to know how to treat these items as it was not clear as to whether this item had been recorded already in section 1 of the diary which covers purchases. The decision was made to exclude all information of gifts given which were considered to be purchases, as these items were assumed to have already been recorded already in section 1. Ideally these items should be treated as a purchased gift given away, which in turn is not household consumption expenditure, but this was not possible.

    Some key items missed in the Questionnaire Although not a big issue, some key expenditure items were omitted from the questionnaire when it would have been best to collect them via this schedule. A key example being electric fans which many households in Tuvalu own.

    Cleaning operations

    Consistency of the data: - each questionnaire was checked by the supervisor during and after the collection - before data entry, all the questionnaire were coded - the CSPRo data entry system included inconsistency checks which allow the NSO staff to point some errors and to correct them with imputation estimation from their own knowledge (no time for double entry), 4 data entry operators. - after data entry, outliers were identified in order to check their consistency.

    All data entry, including editing, edit checks and queries, was done using CSPro (Census Survey Processing System) with additional data editing and cleaning taking place in Excel.

    The staff from the CSD was responsible for undertaking the coding and data entry, with assistance from an additional four temporary staff to help produce results in a more timely manner.

    Although enumeration didn't get completed until mid June, the coding and data entry commenced as soon as forms where available from Funafuti, which was towards the end of March. The coding and data entry was then completed around the middle of July.

    A visit from an SPC consultant then took place to undertake initial cleaning of the data, primarily addressing missing data items and missing schedules. Once the initial data cleaning was undertaken in CSPro, data was transferred to Excel where it was closely scrutinized to check that all responses were sensible. In the cases where unusual values were identified, original forms were consulted for these households and modifications made to the data if required.

    Despite the best efforts being made to clean the data file in preparation for the analysis, no doubt errors will still exist in the data, due to its size and complexity. Having said this, they are not expected to have significant impacts on the survey results.

    Under-Reporting and Incorrect Reporting as a result of Poor Field Work Procedures The most crucial stage of any survey activity, whether it be a population census or a survey such as a HIES is the fieldwork. It is crucial for intense checking to take place in the field before survey forms are returned to the office for data processing. Unfortunately, it became evident during the cleaning of the data that fieldwork wasn?t checked as thoroughly as required, and as such some unexpected values appeared in the questionnaires, as well as unusual results appearing in the diaries. Efforts were made to indentify the main issues which would have the greatest impact on final results, and this information was modified using local knowledge, to a more reasonable answer, when required.

    Data Entry Errors Data entry errors are always expected, but can be kept to a minimum with

  12. COVID-19 Case Surveillance Public Use Data

    • data.cdc.gov
    • opendatalab.com
    • +6more
    application/rdfxml +5
    Updated Jul 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC Data, Analytics and Visualization Task Force (2024). COVID-19 Case Surveillance Public Use Data [Dataset]. https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Public-Use-Data/vbim-akqf
    Explore at:
    application/rdfxml, tsv, csv, json, xml, application/rssxmlAvailable download formats
    Dataset updated
    Jul 9, 2024
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC Data, Analytics and Visualization Task Force
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.

    Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.

    This case surveillance public use dataset has 12 elements for all COVID-19 cases shared with CDC and includes demographics, any exposure history, disease severity indicators and outcomes, presence of any underlying medical conditions and risk behaviors, and no geographic data.

    CDC has three COVID-19 case surveillance datasets:

    The following apply to all three datasets:

    Overview

    The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported voluntarily to CDC.

    For more information: NNDSS Supports the COVID-19 Response | CDC.

    The deidentified data in the “COVID-19 Case Surveillance Public Use Data” include demographic characteristics, any exposure history, disease severity indicators and outcomes, clinical data, laboratory diagnostic test results, and presence of any underlying medical conditions and risk behaviors. All data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf.

    COVID-19 Case Reports

    COVID-19 case reports have been routinely submitted using nationally standardized case reporting forms. On April 5, 2020, CSTE released an Interim Position Statement with national surveillance case definitions for COVID-19 included. Current versions of these case definitions are available here: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2021/.

    All cases reported on or after were requested to be shared by public health departments to CDC using the standardized case definitions for laboratory-confirmed or probable cases. On May 5, 2020, the standardized case reporting form was revised. Case reporting using this new form is ongoing among U.S. states and territories.

    Data are Considered Provisional

    • The COVID-19 case surveillance data are dynamic; case reports can be modified at any time by the jurisdictions sharing COVID-19 data with CDC. CDC may update prior cases shared with CDC based on any updated information from jurisdictions. For instance, as new information is gathered about previously reported cases, health departments provide updated data to CDC. As more information and data become available, analyses might find changes in surveillance data and trends during a previously reported time window. Data may also be shared late with CDC due to the volume of COVID-19 cases.
    • Annual finalized data: To create the final NNDSS data used in the annual tables, CDC works carefully with the reporting jurisdictions to reconcile the data received during the year until each state or territorial epidemiologist confirms that the data from their area are correct.
    • Access Addressing Gaps in Public Health Reporting of Race and Ethnicity for COVID-19, a report from the Council of State and Territorial Epidemiologists, to better understand the challenges in completing race and ethnicity data for COVID-19 and recommendations for improvement.

    Data Limitations

    To learn more about the limitations in using case surveillance data, visit FAQ: COVID-19 Data and Surveillance.

    Data Quality Assurance Procedures

    CDC’s Case Surveillance Section routinely performs data quality assurance procedures (i.e., ongoing corrections and logic checks to address data errors). To date, the following data cleaning steps have been implemented:

    • Questions that have been left unanswered (blank) on the case report form are reclassified to a Missing value, if applicable to the question. For example, in the question “Was the individual hospitalized?” where the possible answer choices include “Yes,” “No,” or “Unknown,” the blank value is recoded to Missing because the case report form did not include a response to the question.
    • Logic checks are performed for date data. If an illogical date has been provided, CDC reviews the data with the reporting jurisdiction. For example, if a symptom onset date in the future is reported to CDC, this value is set to null until the reporting jurisdiction updates the date appropriately.
    • Additional data quality processing to recode free text data is ongoing. Data on symptoms, race and ethnicity, and healthcare worker status have been prioritized.

    Data Suppression

    To prevent release of data that could be used to identify people, data cells are suppressed for low frequency (<5) records and indirect identifiers (e.g., date of first positive specimen). Suppression includes rare combinations of demographic characteristics (sex, age group, race/ethnicity). Suppressed values are re-coded to the NA answer option; records with data suppression are never removed.

    For questions, please contact Ask SRRG (eocevent394@cdc.gov).

    Additional COVID-19 Data

    COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths by state and by county. These

  13. Hive Annotation Job Results - Cleaned and Audited

    • kaggle.com
    Updated Apr 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brendan Kelley (2021). Hive Annotation Job Results - Cleaned and Audited [Dataset]. https://www.kaggle.com/brendankelley/hive-annotation-job-results-cleaned-and-audited/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 28, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Brendan Kelley
    Description

    Context

    This notebook serves to showcase my problem solving ability, knowledge of the data analysis process, proficiency with Excel and its various tools and functions, as well as my strategic mindset and statistical prowess. This project consist of an auditing prompt provided by Hive Data, a raw Excel data set, a cleaned and audited version of the raw Excel data set, and my description of my thought process and knowledge used during completion of the project. The prompt can be found below:

    Hive Data Audit Prompt

    The raw data that accompanies the prompt can be found below:

    Hive Annotation Job Results - Raw Data

    ^ These are the tools I was given to complete my task. The rest of the work is entirely my own.

    To summarize broadly, my task was to audit the dataset and summarize my process and results. Specifically, I was to create a method for identifying which "jobs" - explained in the prompt above - needed to be rerun based on a set of "background facts," or criteria. The description of my extensive thought process and results can be found below in the Content section.

    Content

    Brendan Kelley April 23, 2021

    Hive Data Audit Prompt Results

    This paper explains the auditing process of the “Hive Annotation Job Results” data. It includes the preparation, analysis, visualization, and summary of the data. It is accompanied by the results of the audit in the excel file “Hive Annotation Job Results – Audited”.

    Observation

    The “Hive Annotation Job Results” data comes in the form of a single excel sheet. It contains 7 columns and 5,001 rows, including column headers. The data includes “file”, “object id”, and the pseudonym for five questions that each client was instructed to answer about their respective table: “tabular”, “semantic”, “definition list”, “header row”, and “header column”. The “file” column includes non-unique (that is, there are multiple instances of the same value in the column) numbers separated by a dash. The “object id” column includes non-unique numbers ranging from 5 to 487539. The columns containing the answers to the five questions include Boolean values - TRUE or FALSE – which depend upon the yes/no worker judgement.

    Use of the COUNTIF() function reveals that there are no values other than TRUE or FALSE in any of the five question columns. The VLOOKUP() function reveals that the data does not include any missing values in any of the cells.

    Assumptions

    Based on the clean state of the data and the guidelines of the Hive Data Audit Prompt, the assumption is that duplicate values in the “file” column are acceptable and should not be removed. Similarly, duplicated values in the “object id” column are acceptable and should not be removed. The data is therefore clean and is ready for analysis/auditing.

    Preparation

    The purpose of the audit is to analyze the accuracy of the yes/no worker judgement of each question according to the guidelines of the background facts. The background facts are as follows:

    • A table that is a definition list should automatically be tabular and also semantic • Semantic tables should automatically be tabular • If a table is NOT tabular, then it is definitely not semantic nor a definition list • A tabular table that has a header row OR header column should definitely be semantic

    These background facts serve as instructions for how the answers to the five questions should interact with one another. These facts can be re-written to establish criteria for each question:

    For tabular column: - If the table is a definition list, it is also tabular - If the table is semantic, it is also tabular

    For semantic column: - If the table is a definition list, it is also semantic - If the table is not tabular, it is not semantic - If the table is tabular and has either a header row or a header column...

  14. d

    Tainan City Beach Cleanup Implementation Results Detailed List

    • data.gov.tw
    csv, json
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tainan City Government, Tainan City Beach Cleanup Implementation Results Detailed List [Dataset]. https://data.gov.tw/en/datasets/137782
    Explore at:
    csv, jsonAvailable download formats
    Dataset authored and provided by
    Tainan City Government
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Description

    The data source is the Coastal Cleaning Adoption System of the Environmental Protection Agency of the Executive Yuan (https://ecolife2.epa.gov.tw/Coastal/statistics/SeaClean)

  15. 4

    Field data (interviews and workshop results) Clean Shipping project

    • data.4tu.nl
    zip
    Updated Jun 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Susan van der Veen; Sivaramakrishnan Chandrasekaran (2025). Field data (interviews and workshop results) Clean Shipping project [Dataset]. http://doi.org/10.4121/8cf36981-19be-4e75-b634-f796df3529e7.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 5, 2025
    Dataset provided by
    4TU.ResearchData
    Authors
    Susan van der Veen; Sivaramakrishnan Chandrasekaran
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2021 - 2023
    Area covered
    Spain, Colombia, Namibia
    Dataset funded by
    Dutch Research Council (NWO)
    Description

    Data from field visits in Spain, Colombia, and Namibia (interview transcripts and workshop results) for the Clean Shipping project. The project aimed to design and develop inclusive and sustainable value chains for marine biofuels. We conducted field research in three locations with potential for new bio-based value chains. The cases included olive oil residues in Jaen, Spain, coffee and cocoa residues in the coffee axis in Colombia, and encroacher bush in Namibia. Fieldwork consisted of semi-structured interviews with stakeholders that could play a potential role in the new value chain, to understand the current system, their challenges, their possible roles, as well as opportunities and hurdles for establishing a new value chain. Moreover, more in-depth interviews were conducted with small-scale farmers about their challenges, needs, capabilities, and desires. In addition, multi-stakeholder workshops were organized to discuss ideal scenarios and a roadmap to achieve those scenarios, together with different local stakeholders. Data was collected between 2021 and 2023, the researchers stayed 6 weeks in the field in each location. The data set consists of anonymized English transcripts of the interviews and summaries of the workshop conclusions.

  16. f

    The mean, standard deviation and preservation of data (PD) of five data...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements (2023). The mean, standard deviation and preservation of data (PD) of five data cleaning approaches with and without an algorithm (A) compared to uncleaned longitudinal growth measurements in Dogslife, SAVSNET and Banfield data. [Dataset]. http://doi.org/10.1371/journal.pone.0228154.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The mean, standard deviation and preservation of data (PD) of five data cleaning approaches with and without an algorithm (A) compared to uncleaned longitudinal growth measurements in Dogslife, SAVSNET and Banfield data.

  17. A

    AI and ML Augmented Data Quality Solutions Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Aug 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). AI and ML Augmented Data Quality Solutions Report [Dataset]. https://www.datainsightsmarket.com/reports/ai-and-ml-augmented-data-quality-solutions-527088
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Aug 7, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The market for AI and ML-augmented data quality solutions is experiencing robust growth, driven by the increasing volume and complexity of data across various industries. The expanding adoption of cloud-based solutions, coupled with the rising demand for improved data accuracy and reliability, fuels this expansion. Organizations are increasingly recognizing the limitations of traditional data quality methods in handling big data and are turning to AI and ML-powered tools to automate processes, enhance data cleansing, and improve overall data governance. This shift is particularly pronounced in sectors like finance, healthcare, and e-commerce, where data integrity is paramount. While the initial investment in these technologies can be significant, the long-term benefits, including reduced operational costs, improved decision-making, and enhanced regulatory compliance, outweigh the upfront expenses. We estimate the current market size (2025) to be around $5 billion, projecting a Compound Annual Growth Rate (CAGR) of 20% through 2033. This growth is fueled by the ongoing digital transformation initiatives across industries and the increasing availability of sophisticated, user-friendly AI/ML data quality platforms. Despite the rapid growth, challenges remain. The complexity of integrating these solutions with existing data infrastructure and the need for skilled professionals to manage and interpret the results pose significant hurdles for many organizations. Furthermore, concerns surrounding data privacy and security continue to influence adoption rates. Nevertheless, advancements in AI/ML technology, combined with the growing awareness of the importance of high-quality data for business success, are expected to drive continued market expansion in the coming years. The competitive landscape is dynamic, with established players like IBM and SAP alongside emerging innovative companies like Ataccama and Collibra. This competitive pressure fosters innovation and drives down prices, making AI/ML-augmented data quality solutions accessible to a broader range of organizations.

  18. s

    Drainage Gully Cleaning Programme DCC

    • data.smartdublin.ie
    • gimi9.com
    • +1more
    Updated Oct 14, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). Drainage Gully Cleaning Programme DCC [Dataset]. https://data.smartdublin.ie/dataset/drainage-gully-cleaning-programme
    Explore at:
    Dataset updated
    Oct 14, 2011
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Schedule and Monitor of Gully Cleaning for Dublin City These datasets show the gully cleaning statistics from 2004 to September 14th 2011. It consists attached 6 No. Excel Spreadsheets with the datasets from the Daily Returns section of the Gully Cleaning Application and one dataset from the Gully Repairs section of the gully application. They are divided into the five Dublin City Council administrative areas; Central, North Central, North West, Southeast, South Central. There is also a dataset containing details of all Gully repairs pending (all areas included).The datasets cover all Daily Returns since the gully cleaning programme commenced in 2004. Daily Returns are lists of the work that the gully cleaning crews carry out daily. All gullies on a street are cleaned where possible. A list of Omissions is recorded where some gullies may not have been cleaned due to lack of access or other reasons. Also, the gullies that required repair were noted. The Daily Returns datasets record only the number of gullies requiring repair on a particular street, not the details of the repair. Information in the fields is as follows: .Road name: street name or laneway denoted by nearest house or lamp post etc. If a road name is followed by the letters pl in capital letters than it means that either this road or a section of this road has been placed on the priority list due to a history of flooding or a higher potential of the gully blocking due to location etc. If a road name is followed by a number of zeros in the gullies inspected - gullies cleaned columns etc then it is very probable that this road was travelled during heavy rain as part of our flood zones and there was no flooding noted along this road at the time of travelling. Gullies inspected: number of gullies inspected along road/lane .A road name followed by lower case road names denotes a road that is part of more than one area in our gully cleaning areas and these lower case names denote the starting point and finishing point for the crews working in the particular area i.e. Howth Road All Saints Rd-Fairview denotes that the section of the Howth road between all saints road and Fairview are within the area that the crew have been asked to work in. Gullies cleaned :number of gullies cleaned from total inspected .Gully omissions :number of gullies missed i.e. Unable to put boom or shovel into gully pot due to parked cars / unable to lift grids / hoarding over gullies etc .Gully repairs: number of repairs based on inspections-note not all repairs prevent the gully from being cleaned. Comments box: this box is used to provide any additional information that may be of benefit and it can be noted that results of work carried out by the mini jet is placed in this box.

  19. D

    Data Quality Software and Solutions Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Data Quality Software and Solutions Report [Dataset]. https://www.marketresearchforecast.com/reports/data-quality-software-and-solutions-36352
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 16, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Quality Software and Solutions market is experiencing robust growth, driven by the increasing volume and complexity of data generated by businesses across all sectors. The market's expansion is fueled by a rising demand for accurate, consistent, and reliable data for informed decision-making, improved operational efficiency, and regulatory compliance. Key drivers include the surge in big data adoption, the growing need for data integration and governance, and the increasing prevalence of cloud-based solutions offering scalable and cost-effective data quality management capabilities. Furthermore, the rising adoption of advanced analytics and artificial intelligence (AI) is enhancing data quality capabilities, leading to more sophisticated solutions that can automate data cleansing, validation, and profiling processes. We estimate the 2025 market size to be around $12 billion, growing at a compound annual growth rate (CAGR) of 10% over the forecast period (2025-2033). This growth trajectory is being influenced by the rapid digital transformation across industries, necessitating higher data quality standards. Segmentation reveals a strong preference for cloud-based solutions due to their flexibility and scalability, with large enterprises driving a significant portion of the market demand. However, market growth faces some restraints. High implementation costs associated with data quality software and solutions, particularly for large-scale deployments, can be a barrier to entry for some businesses, especially SMEs. Also, the complexity of integrating these solutions with existing IT infrastructure can present challenges. The lack of skilled professionals proficient in data quality management is another factor impacting market growth. Despite these challenges, the market is expected to maintain a healthy growth trajectory, driven by increasing awareness of the value of high-quality data, coupled with the availability of innovative and user-friendly solutions. The competitive landscape is characterized by established players such as Informatica, IBM, and SAP, along with emerging players offering specialized solutions, resulting in a diverse range of options for businesses. Regional analysis indicates that North America and Europe currently hold significant market shares, but the Asia-Pacific region is projected to witness substantial growth in the coming years due to rapid digitalization and increasing data volumes.

  20. r

    Data for PhD Chapter 3 and manuscript: Cleaner shrimp are true cleaners of...

    • researchdata.edu.au
    Updated Jul 5, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vaughan David; David Brendan Vaughan (2018). Data for PhD Chapter 3 and manuscript: Cleaner shrimp are true cleaners of injured fish [Dataset]. http://doi.org/10.4225/28/5B2C885B32331
    Explore at:
    Dataset updated
    Jul 5, 2018
    Dataset provided by
    James Cook University
    Authors
    Vaughan David; David Brendan Vaughan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Datasets (all) for this work, provided in.csv format for direct import into R. The data collection consists of the following datasets:

    All.data.csv

    This dataset contains the data used for the first behavioural model in PhD chapter 3, and the associated manuscript accepted in Marine Biology entitled: Cleaner shrimp are true cleaners of injured fish [authors: David B Vaughan, Alexandra S Grutter, Hugh W Ferguson, Rhondda Jones, Kate S Hutson]. This dataset informed the initial exploratory mixed effects random intercept model using all cleaning contact locations (fish sides, oral, and ventral) recorded on the fish per day testing the response variable ‘cleaning time’ as a function of the fixed effects ‘day’, ‘cleaning contact locations’, and interaction ‘day x cleaning contact locations’, and ‘fish’ and ‘shrimp’ as random effects.

    All.dataR.14.csv

    This dataset contains the data used for the second to fifth behavioural models model in PhD chapter 3, and the associated manuscript accepted in Marine Biology entitled: Cleaner shrimp are true cleaners of injured fish [authors: David B Vaughan, Alexandra S Grutter, Hugh W Ferguson, Rhondda Jones, Kate S Hutson]. This is a subset of All.data.csv which excludes oral and ventral cleaning contact locations (scenarios 5 and 6). The analysis for All.data.csv was repeated using this analysis initially, and then two alternative approaches were used to model temporal change in cleaning times. In the first, day was treated as a numeric variable, included in the model as either a quadratic or a linear function to test for curvature testing the response variable ‘cleaning time’ as a function of the fixed effects ‘cleaning contact locations’, ‘day’, ‘day2’, and the interactions ‘cleaning contact locations with day’, ‘cleaning contact locations with day2’, and ‘fish’ and ‘shrimp’ as random effects. This analysis was carried out twice, once including all of the data, and once excluding day 0, to determine whether any temporal changes in behaviour extended beyond the initial establishment period of injury. In the second approach, based on the results of the first, the data were re-analysed with day treated as a category having two binary classes, ‘day0’ and ‘>day0’.

    Jolts.data1.csv

    This dataset was used for the analysis of jolting in PhD chapter 3, and the associated manuscript accepted in Marine Biology entitled: Cleaner shrimp are true cleaners of injured fish [authors: David B Vaughan, Alexandra S Grutter, Hugh W Ferguson, Rhondda Jones, Kate S Hutson]. The number of ‘jolts’ were analysed using a random-intercept mixed effects model with ‘fish’ and ‘shrimp’ as random effects, and ‘treatment’ (two levels: Injured_with_shrimp; Uninjured_with_shrimp), and ‘day’ as fixed effects.

    Red.csv

    This dataset was used for the analysis of injury redness (rubor) in PhD chapter 3, and the associated manuscript accepted in Marine Biology entitled: Cleaner shrimp are true cleaners of injured fish [authors: David B Vaughan, Alexandra S Grutter, Hugh W Ferguson, Rhondda Jones, Kate S Hutson]. The analysis examined spectral differences between groups with and without shrimp over the subsequent period to examine whether the presence of shrimp affected the spectral properties of the injury site as the injury healed. For this analysis, ‘day’ (either 4 or 6), ‘shrimp presence’ and the ‘shrimp x day’ interaction were all included as potential explanatory variables.

    Yellow.csv

    As for Red.csv.

    UV1.csv

    This dataset was used for the Nonspecific tissue damage analysis in PhD chapter 3, and the associated manuscript accepted in Marine Biology entitled: Cleaner shrimp are true cleaners of injured fish [authors: David B Vaughan, Alexandra S Grutter, Hugh W Ferguson, Rhondda Jones, Kate S Hutson]. Nonspecific tissue damage area was investigated between two levels of four treatment groups (With shrimp and Without shrimp; Injured fish and Uninjured fish) over time to determine their effects on tissue damage. Mixed effects random-intercept models were employed, with the ‘fish’ as the random effect to allow for photographic sampling on both sides of the same fish. The response variable ‘tissue damage area’ was tested as a function of the fixed effects ‘treatment’, ‘side’, ‘day’ (as a factor). Two levels of fish sides were included in the analyses representing injured and uninjured sides.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dataintelo (2025). Data Cleaning Tools Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/data-cleaning-tools-market

Data Cleaning Tools Market Report | Global Forecast From 2025 To 2033

Explore at:
pptx, pdf, csvAvailable download formats
Dataset updated
Jan 7, 2025
Dataset authored and provided by
Dataintelo
License

https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

Time period covered
2024 - 2032
Area covered
Global
Description

Data Cleaning Tools Market Outlook



As of 2023, the global market size for data cleaning tools is estimated at $2.5 billion, with projections indicating that it will reach approximately $7.1 billion by 2032, reflecting a robust CAGR of 12.1% during the forecast period. This growth is primarily driven by the increasing importance of data quality in business intelligence and analytics workflows across various industries.



The growth of the data cleaning tools market can be attributed to several critical factors. Firstly, the exponential increase in data generation across industries necessitates efficient tools to manage data quality. Poor data quality can result in significant financial losses, inefficient business processes, and faulty decision-making. Organizations recognize the value of clean, accurate data in driving business insights and operational efficiency, thereby propelling the adoption of data cleaning tools. Additionally, regulatory requirements and compliance standards also push companies to maintain high data quality standards, further driving market growth.



Another significant growth factor is the rising adoption of AI and machine learning technologies. These advanced technologies rely heavily on high-quality data to deliver accurate results. Data cleaning tools play a crucial role in preparing datasets for AI and machine learning models, ensuring that the data is free from errors, inconsistencies, and redundancies. This surge in the use of AI and machine learning across various sectors like healthcare, finance, and retail is driving the demand for efficient data cleaning solutions.



The proliferation of big data analytics is another critical factor contributing to market growth. Big data analytics enables organizations to uncover hidden patterns, correlations, and insights from large datasets. However, the effectiveness of big data analytics is contingent upon the quality of the data being analyzed. Data cleaning tools help in sanitizing large datasets, making them suitable for analysis and thus enhancing the accuracy and reliability of analytics outcomes. This trend is expected to continue, fueling the demand for data cleaning tools.



In terms of regional growth, North America holds a dominant position in the data cleaning tools market. The region's strong technological infrastructure, coupled with the presence of major market players and a high adoption rate of advanced data management solutions, contributes to its leadership. However, the Asia Pacific region is anticipated to witness the highest growth rate during the forecast period. The rapid digitization of businesses, increasing investments in IT infrastructure, and a growing focus on data-driven decision-making are key factors driving the market in this region.



As organizations strive to maintain high data quality standards, the role of an Email List Cleaning Service becomes increasingly vital. These services ensure that email databases are free from invalid addresses, duplicates, and outdated information, thereby enhancing the effectiveness of marketing campaigns and communications. By leveraging sophisticated algorithms and validation techniques, email list cleaning services help businesses improve their email deliverability rates and reduce the risk of being flagged as spam. This not only optimizes marketing efforts but also protects the reputation of the sender. As a result, the demand for such services is expected to grow alongside the broader data cleaning tools market, as companies recognize the importance of maintaining clean and accurate contact lists.



Component Analysis



The data cleaning tools market can be segmented by component into software and services. The software segment encompasses various tools and platforms designed for data cleaning, while the services segment includes consultancy, implementation, and maintenance services provided by vendors.



The software segment holds the largest market share and is expected to continue leading during the forecast period. This dominance can be attributed to the increasing adoption of automated data cleaning solutions that offer high efficiency and accuracy. These software solutions are equipped with advanced algorithms and functionalities that can handle large volumes of data, identify errors, and correct them without manual intervention. The rising adoption of cloud-based data cleaning software further bolsters this segment, as it offers scalability and ease of

Search
Clear search
Close search
Google apps
Main menu