100+ datasets found
  1. A Journey through Data Cleaning

    • kaggle.com
    zip
    Updated Mar 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    kenanyafi (2024). A Journey through Data Cleaning [Dataset]. https://www.kaggle.com/datasets/kenanyafi/a-journey-through-data-cleaning
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 22, 2024
    Authors
    kenanyafi
    Description

    Embark on a transformative journey with our Data Cleaning Project, where we meticulously refine and polish raw data into valuable insights. Our project focuses on streamlining data sets, removing inconsistencies, and ensuring accuracy to unlock its full potential.

    Through advanced techniques and rigorous processes, we standardize formats, address missing values, and eliminate duplicates, creating a clean and reliable foundation for analysis. By enhancing data quality, we empower organizations to make informed decisions, drive innovation, and achieve strategic objectives with confidence.

    Join us as we embark on this essential phase of data preparation, paving the way for more accurate and actionable insights that fuel success."

  2. D

    Data Cleaning Tools Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Data Cleaning Tools Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/data-cleaning-tools-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Cleaning Tools Market Outlook



    As of 2023, the global market size for data cleaning tools is estimated at $2.5 billion, with projections indicating that it will reach approximately $7.1 billion by 2032, reflecting a robust CAGR of 12.1% during the forecast period. This growth is primarily driven by the increasing importance of data quality in business intelligence and analytics workflows across various industries.



    The growth of the data cleaning tools market can be attributed to several critical factors. Firstly, the exponential increase in data generation across industries necessitates efficient tools to manage data quality. Poor data quality can result in significant financial losses, inefficient business processes, and faulty decision-making. Organizations recognize the value of clean, accurate data in driving business insights and operational efficiency, thereby propelling the adoption of data cleaning tools. Additionally, regulatory requirements and compliance standards also push companies to maintain high data quality standards, further driving market growth.



    Another significant growth factor is the rising adoption of AI and machine learning technologies. These advanced technologies rely heavily on high-quality data to deliver accurate results. Data cleaning tools play a crucial role in preparing datasets for AI and machine learning models, ensuring that the data is free from errors, inconsistencies, and redundancies. This surge in the use of AI and machine learning across various sectors like healthcare, finance, and retail is driving the demand for efficient data cleaning solutions.



    The proliferation of big data analytics is another critical factor contributing to market growth. Big data analytics enables organizations to uncover hidden patterns, correlations, and insights from large datasets. However, the effectiveness of big data analytics is contingent upon the quality of the data being analyzed. Data cleaning tools help in sanitizing large datasets, making them suitable for analysis and thus enhancing the accuracy and reliability of analytics outcomes. This trend is expected to continue, fueling the demand for data cleaning tools.



    In terms of regional growth, North America holds a dominant position in the data cleaning tools market. The region's strong technological infrastructure, coupled with the presence of major market players and a high adoption rate of advanced data management solutions, contributes to its leadership. However, the Asia Pacific region is anticipated to witness the highest growth rate during the forecast period. The rapid digitization of businesses, increasing investments in IT infrastructure, and a growing focus on data-driven decision-making are key factors driving the market in this region.



    As organizations strive to maintain high data quality standards, the role of an Email List Cleaning Service becomes increasingly vital. These services ensure that email databases are free from invalid addresses, duplicates, and outdated information, thereby enhancing the effectiveness of marketing campaigns and communications. By leveraging sophisticated algorithms and validation techniques, email list cleaning services help businesses improve their email deliverability rates and reduce the risk of being flagged as spam. This not only optimizes marketing efforts but also protects the reputation of the sender. As a result, the demand for such services is expected to grow alongside the broader data cleaning tools market, as companies recognize the importance of maintaining clean and accurate contact lists.



    Component Analysis



    The data cleaning tools market can be segmented by component into software and services. The software segment encompasses various tools and platforms designed for data cleaning, while the services segment includes consultancy, implementation, and maintenance services provided by vendors.



    The software segment holds the largest market share and is expected to continue leading during the forecast period. This dominance can be attributed to the increasing adoption of automated data cleaning solutions that offer high efficiency and accuracy. These software solutions are equipped with advanced algorithms and functionalities that can handle large volumes of data, identify errors, and correct them without manual intervention. The rising adoption of cloud-based data cleaning software further bolsters this segment, as it offers scalability and ease of

  3. Restaurant Sales-Dirty Data for Cleaning Training

    • kaggle.com
    Updated Jan 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmed Mohamed (2025). Restaurant Sales-Dirty Data for Cleaning Training [Dataset]. https://www.kaggle.com/datasets/ahmedmohamed2003/restaurant-sales-dirty-data-for-cleaning-training
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 25, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ahmed Mohamed
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Restaurant Sales Dataset with Dirt Documentation

    Overview

    The Restaurant Sales Dataset with Dirt contains data for 17,534 transactions. The data introduces realistic inconsistencies ("dirt") to simulate real-world scenarios where data may have missing or incomplete information. The dataset includes sales details across multiple categories, such as starters, main dishes, desserts, drinks, and side dishes.

    Dataset Use Cases

    This dataset is suitable for: - Practicing data cleaning tasks, such as handling missing values and deducing missing information. - Conducting exploratory data analysis (EDA) to study restaurant sales patterns. - Feature engineering to create new variables for machine learning tasks.

    Columns Description

    Column NameDescriptionExample Values
    Order IDA unique identifier for each order.ORD_123456
    Customer IDA unique identifier for each customer.CUST_001
    CategoryThe category of the purchased item.Main Dishes, Drinks
    ItemThe name of the purchased item. May contain missing values due to data dirt.Grilled Chicken, None
    PriceThe static price of the item. May contain missing values.15.0, None
    QuantityThe quantity of the purchased item. May contain missing values.1, None
    Order TotalThe total price for the order (Price * Quantity). May contain missing values.45.0, None
    Order DateThe date when the order was placed. Always present.2022-01-15
    Payment MethodThe payment method used for the transaction. May contain missing values due to data dirt.Cash, None

    Key Characteristics

    1. Data Dirtiness:

      • Missing values in key columns (Item, Price, Quantity, Order Total, Payment Method) simulate real-world challenges.
      • At least one of the following conditions is ensured for each record to identify an item:
        • Item is present.
        • Price is present.
        • Both Quantity and Order Total are present.
      • If Price or Quantity is missing, the other is used to deduce the missing value (e.g., Order Total / Quantity).
    2. Menu Categories and Items:

      • Items are divided into five categories:
        • Starters: E.g., Chicken Melt, French Fries.
        • Main Dishes: E.g., Grilled Chicken, Steak.
        • Desserts: E.g., Chocolate Cake, Ice Cream.
        • Drinks: E.g., Coca Cola, Water.
        • Side Dishes: E.g., Mashed Potatoes, Garlic Bread.

    3 Time Range: - Orders span from January 1, 2022, to December 31, 2023.

    Cleaning Suggestions

    1. Handle Missing Values:

      • Fill missing Order Total or Quantity using the formula: Order Total = Price * Quantity.
      • Deduce missing Price from Order Total / Quantity if both are available.
    2. Validate Data Consistency:

      • Ensure that calculated values (Order Total = Price * Quantity) match.
    3. Analyze Missing Patterns:

      • Study the distribution of missing values across categories and payment methods.

    Menu Map with Prices and Categories

    CategoryItemPrice
    StartersChicken Melt8.0
    StartersFrench Fries4.0
    StartersCheese Fries5.0
    StartersSweet Potato Fries5.0
    StartersBeef Chili7.0
    StartersNachos Grande10.0
    Main DishesGrilled Chicken15.0
    Main DishesSteak20.0
    Main DishesPasta Alfredo12.0
    Main DishesSalmon18.0
    Main DishesVegetarian Platter14.0
    DessertsChocolate Cake6.0
    DessertsIce Cream5.0
    DessertsFruit Salad4.0
    DessertsCheesecake7.0
    DessertsBrownie6.0
    DrinksCoca Cola2.5
    DrinksOrange Juice3.0
    Drinks ...
  4. B

    Data Cleaning Sample

    • borealisdata.ca
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong Luo (2023). Data Cleaning Sample [Dataset]. http://doi.org/10.5683/SP3/ZCN177
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    Borealis
    Authors
    Rong Luo
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Sample data for exercises in Further Adventures in Data Cleaning.

  5. Employment Of India CLeaned and Messy Data

    • kaggle.com
    Updated Apr 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SONIA SHINDE (2025). Employment Of India CLeaned and Messy Data [Dataset]. https://www.kaggle.com/datasets/soniaaaaaaaa/employment-of-india-cleaned-and-messy-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 7, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    SONIA SHINDE
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    India
    Description

    This dataset presents a dual-version representation of employment-related data from India, crafted to highlight the importance of data cleaning and transformation in any real-world data science or analytics project.

    🔹 Dataset Composition:

    It includes two parallel datasets: 1. Messy Dataset (Raw) – Represents a typical unprocessed dataset often encountered in data collection from surveys, databases, or manual entries. 2. Cleaned Dataset – This version demonstrates how proper data preprocessing can significantly enhance the quality and usability of data for analytical and visualization purposes.

    Each record captures multiple attributes related to individuals in the Indian job market, including: - Age Group
    - Employment Status (Employed/Unemployed)
    - Monthly Salary (INR)
    - Education Level
    - Industry Sector
    - Years of Experience
    - Location
    - Perceived AI Risk
    - Date of Data Recording

    Transformations & Cleaning Applied:

    The raw dataset underwent comprehensive transformations to convert it into its clean, analysis-ready form: - Missing Values: Identified and handled using either row elimination (where critical data was missing) or imputation techniques. - Duplicate Records: Identified using row comparison and removed to prevent analytical skew. - Inconsistent Formatting: Unified inconsistent naming in columns (like 'monthly_salary_(inr)' → 'Monthly Salary (INR)'), capitalization, and string spacing. - Incorrect Data Types: Converted columns like salary from string/object to float for numerical analysis. - Outliers: Detected and handled based on domain logic and distribution analysis. - Categorization: Converted numeric ages into grouped age categories for comparative analysis. - Standardization: Uniform labels for employment status, industry names, education, and AI risk levels were applied for visualization clarity.

    Purpose & Utility:

    This dataset is ideal for learners and professionals who want to understand: - The impact of messy data on visualization and insights - How transformation steps can dramatically improve data interpretation - Practical examples of preprocessing techniques before feeding into ML models or BI tools

    It's also useful for: - Training ML models with clean inputs
    - Data storytelling with visual clarity
    - Demonstrating reproducibility in data cleaning pipelines

    By examining both the messy and clean datasets, users gain a deeper appreciation for why “garbage in, garbage out” rings true in the world of data science.

  6. o

    Messy data for data cleaning exercise - Dataset - openAFRICA

    • open.africa
    Updated Oct 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Messy data for data cleaning exercise - Dataset - openAFRICA [Dataset]. https://open.africa/dataset/messy-data-for-data-cleaning-exercise
    Explore at:
    Dataset updated
    Oct 6, 2021
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A messy data for demonstrating "how to clean data using spreadsheet". This dataset was intentionally formatted to be messy, for the purpose of demonstration. It was collated from here - https://openafrica.net/dataset/historic-and-projected-rainfall-and-runoff-for-4-lake-victoria-sub-regions

  7. f

    The mean preservation of data (PD), sensitivity, specificity and convergence...

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements (2023). The mean preservation of data (PD), sensitivity, specificity and convergence rate across different rates and types of simulated errors and duplications of uncleaned, de-duplicated and data cleaned with five data cleaning approaches with and without our algorithm (A) for longitudinal growth measurements from CLOSER data. [Dataset]. http://doi.org/10.1371/journal.pone.0228154.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The mean preservation of data (PD), sensitivity, specificity and convergence rate across different rates and types of simulated errors and duplications of uncleaned, de-duplicated and data cleaned with five data cleaning approaches with and without our algorithm (A) for longitudinal growth measurements from CLOSER data.

  8. w

    Dataset of book subjects that contain Data cleaning and exploration with...

    • workwithdata.com
    Updated Nov 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2024). Dataset of book subjects that contain Data cleaning and exploration with machine learning : clean data with machine learning algorithms and techniques [Dataset]. https://www.workwithdata.com/datasets/book-subjects?f=1&fcol0=j0-book&fop0=%3D&fval0=Data+cleaning+and+exploration+with+machine+learning+:+clean+data+with+machine+learning+algorithms+and+techniques&j=1&j0=books
    Explore at:
    Dataset updated
    Nov 7, 2024
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about book subjects. It has 3 rows and is filtered where the books is Data cleaning and exploration with machine learning : clean data with machine learning algorithms and techniques. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.

  9. food data cleaning

    • kaggle.com
    zip
    Updated Apr 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AbdElRahman16 (2024). food data cleaning [Dataset]. https://www.kaggle.com/datasets/abdelrahman16/food-n
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Apr 13, 2024
    Authors
    AbdElRahman16
    Description

    Dataset

    This dataset was created by AbdElRahman16

    Contents

  10. H

    Outlier Boundary SImulation across ML Data Cleaning Techniques

    • dataverse.harvard.edu
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jie Li (2025). Outlier Boundary SImulation across ML Data Cleaning Techniques [Dataset]. http://doi.org/10.7910/DVN/GB3EFB
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Jie Li
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This is a demonstration of the outlier boundary set up across different ML data cleaning techniques.

  11. f

    The mean, standard deviation and preservation of data (PD) of five data...

    • plos.figshare.com
    xls
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements (2023). The mean, standard deviation and preservation of data (PD) of five data cleaning approaches with and without an algorithm (A) compared to uncleaned longitudinal growth measurements in Dogslife, SAVSNET and Banfield data. [Dataset]. http://doi.org/10.1371/journal.pone.0228154.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The mean, standard deviation and preservation of data (PD) of five data cleaning approaches with and without an algorithm (A) compared to uncleaned longitudinal growth measurements in Dogslife, SAVSNET and Banfield data.

  12. Data Cleaning, Translation & Split of the Dataset for the Automatic...

    • zenodo.org
    bin, csv +1
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juliane Köhler; Juliane Köhler (2025). Data Cleaning, Translation & Split of the Dataset for the Automatic Classification of Documents for the Classification System for the Berliner Handreichungen zur Bibliotheks- und Informationswissenschaft [Dataset]. http://doi.org/10.5281/zenodo.6957842
    Explore at:
    text/x-python, csv, binAvailable download formats
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Juliane Köhler; Juliane Köhler
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    • Cleaned_Dataset.csv – The combined CSV files of all scraped documents from DABI, e-LiS, o-bib and Springer.
    • Data_Cleaning.ipynb – The Jupyter Notebook with python code for the analysis and cleaning of the original dataset.
    • ger_train.csv – The German training set as CSV file.
    • ger_validation.csv – The German validation set as CSV file.
    • en_test.csv – The English test set as CSV file.
    • en_train.csv – The English training set as CSV file.
    • en_validation.csv – The English validation set as CSV file.
    • splitting.py – The python code for splitting a dataset into train, test and validation set.
    • DataSetTrans_de.csv – The final German dataset as a CSV file.
    • DataSetTrans_en.csv – The final English dataset as a CSV file.
    • translation.py – The python code for translating the cleaned dataset.
  13. Z

    Cleaned data, cleaning code and analysis code for 'Feedback timing affects...

    • data.niaid.nih.gov
    Updated Aug 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jones, Marc (2024). Cleaned data, cleaning code and analysis code for 'Feedback timing affects L2+ perceptual vowel acquisition' [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_13355023
    Explore at:
    Dataset updated
    Aug 21, 2024
    Dataset authored and provided by
    Jones, Marc
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset uses 4.3.1 and the analysis code requires use of the groundhog package (Simonsohn & Gruson, 2021) to aid reproducibility.

  14. q

    Cleaning Biodiversity Data: A Botanical Example Using Excel or RStudio

    • qubeshub.org
    Updated Jul 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shelly Gaynor (2020). Cleaning Biodiversity Data: A Botanical Example Using Excel or RStudio [Dataset]. http://doi.org/10.25334/DRGD-F069
    Explore at:
    Dataset updated
    Jul 16, 2020
    Dataset provided by
    QUBES
    Authors
    Shelly Gaynor
    Description

    Access and clean an open source herbarium dataset using Excel or RStudio.

  15. h

    gpt4-llm-cleaned-chatml

    • huggingface.co
    Updated Jul 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aleksey Korshuk (2023). gpt4-llm-cleaned-chatml [Dataset]. https://huggingface.co/datasets/AlekseyKorshuk/gpt4-llm-cleaned-chatml
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 26, 2023
    Authors
    Aleksey Korshuk
    Description

    Dataset Card for "gpt4-llm-cleaned-chatml"

    Data preprocessing pipeline: https://github.com/AlekseyKorshuk/chat-data-pipeline

  16. f

    The percentage of gold standard corrections of errors induced into CLOSER...

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements (2023). The percentage of gold standard corrections of errors induced into CLOSER data with simulated duplications and 1% errors using the algorithmic data cleaning methods. [Dataset]. http://doi.org/10.1371/journal.pone.0228154.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The percentage of gold standard corrections of errors induced into CLOSER data with simulated duplications and 1% errors using the algorithmic data cleaning methods.

  17. Coursera Courses Uncleaned Dataset to Practice

    • kaggle.com
    Updated May 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Janak Pariyar (2024). Coursera Courses Uncleaned Dataset to Practice [Dataset]. https://www.kaggle.com/datasets/janakpariyar/coursera-courses-uncleaned-dataset-to-practice/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 2, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Janak Pariyar
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The data set is web scraped from the Coursera website. The data is static. It consists of 7 columns with various unstructured data, which might help you on your learning curve of Data Science and Data Analytics . Feel free to play around . Happy Digging :)

  18. 4

    Data from: Dataset for Evaluation of chemical free cleaning techniques for...

    • data.4tu.nl
    zip
    Updated Sep 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Barbara Vital; Tom Sleutels; Maria Cristina Gagliano; Hubertus V.M. Hamelers; André Martin Baron (2023). Dataset for Evaluation of chemical free cleaning techniques for RED fed with natural waters and stacks with profiled membranes [Dataset]. http://doi.org/10.4121/df21a682-0c87-4a5e-a050-8101ae58f5b0.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 6, 2023
    Dataset provided by
    4TU.ResearchData
    Authors
    Barbara Vital; Tom Sleutels; Maria Cristina Gagliano; Hubertus V.M. Hamelers; André Martin Baron
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Afsluitdijk, the Netherlands
    Dataset funded by
    European Commission
    Description

    Dataset used in the publication "Evaluation of chemical free cleaning techniques for RED fed with natural waters and stacks with profiled membranes". This dataset contains data collected during experiment for cleaning techniques in reverse electrodialysis (RED) using natural waters. For explanation of the experimental setup we refer you to the published paper. It is being made public both to act as supplementary data for publication and in order for other researchers to use this data in their own work.

  19. i

    Household Expenditure and Income Survey 2008, Economic Research Forum (ERF)...

    • catalog.ihsn.org
    Updated Jan 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (2022). Household Expenditure and Income Survey 2008, Economic Research Forum (ERF) Harmonization Data - Jordan [Dataset]. https://catalog.ihsn.org/index.php/catalog/7661
    Explore at:
    Dataset updated
    Jan 12, 2022
    Dataset authored and provided by
    Department of Statistics
    Time period covered
    2008 - 2009
    Area covered
    Jordan
    Description

    Abstract

    The main objective of the HEIS survey is to obtain detailed data on household expenditure and income, linked to various demographic and socio-economic variables, to enable computation of poverty indices and determine the characteristics of the poor and prepare poverty maps. Therefore, to achieve these goals, the sample had to be representative on the sub-district level. The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality.

    Data collected through the survey helped in achieving the following objectives: 1. Provide data weights that reflect the relative importance of consumer expenditure items used in the preparation of the consumer price index 2. Study the consumer expenditure pattern prevailing in the society and the impact of demograohic and socio-economic variables on those patterns 3. Calculate the average annual income of the household and the individual, and assess the relationship between income and different economic and social factors, such as profession and educational level of the head of the household and other indicators 4. Study the distribution of individuals and households by income and expenditure categories and analyze the factors associated with it 5. Provide the necessary data for the national accounts related to overall consumption and income of the household sector 6. Provide the necessary income data to serve in calculating poverty indices and identifying the poor chracteristics as well as drawing poverty maps 7. Provide the data necessary for the formulation, follow-up and evaluation of economic and social development programs, including those addressed to eradicate poverty

    Geographic coverage

    National

    Analysis unit

    • Household/families
    • Individuals

    Universe

    The survey covered a national sample of households and all individuals permanently residing in surveyed households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The 2008 Household Expenditure and Income Survey sample was designed using two-stage cluster stratified sampling method. In the first stage, the primary sampling units (PSUs), the blocks, were drawn using probability proportionate to the size, through considering the number of households in each block to be the block size. The second stage included drawing the household sample (8 households from each PSU) using the systematic sampling method. Fourth substitute households from each PSU were drawn, using the systematic sampling method, to be used on the first visit to the block in case that any of the main sample households was not visited for any reason.

    To estimate the sample size, the coefficient of variation and design effect in each subdistrict were calculated for the expenditure variable from data of the 2006 Household Expenditure and Income Survey. This results was used to estimate the sample size at sub-district level, provided that the coefficient of variation of the expenditure variable at the sub-district level did not exceed 10%, with a minimum number of clusters that should not be less than 6 at the district level, that is to ensure good clusters representation in the administrative areas to enable drawing poverty pockets.

    It is worth mentioning that the expected non-response in addition to areas where poor families are concentrated in the major cities were taken into consideration in designing the sample. Therefore, a larger sample size was taken from these areas compared to other ones, in order to help in reaching the poverty pockets and covering them.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    List of survey questionnaires: (1) General Form (2) Expenditure on food commodities Form (3) Expenditure on non-food commodities Form

    Cleaning operations

    Raw Data The design and implementation of this survey procedures were: 1. Sample design and selection 2. Design of forms/questionnaires, guidelines to assist in filling out the questionnaires, and preparing instruction manuals 3. Design the tables template to be used for the dissemination of the survey results 4. Preparation of the fieldwork phase including printing forms/questionnaires, instruction manuals, data collection instructions, data checking instructions and codebooks 5. Selection and training of survey staff to collect data and run required data checkings 6. Preparation and implementation of the pretest phase for the survey designed to test and develop forms/questionnaires, instructions and software programs required for data processing and production of survey results 7. Data collection 8. Data checking and coding 9. Data entry 10. Data cleaning using data validation programs 11. Data accuracy and consistency checks 12. Data tabulation and preliminary results 13. Preparation of the final report and dissemination of final results

    Harmonized Data - The Statistical Package for Social Science (SPSS) was used to clean and harmonize the datasets - The harmonization process started with cleaning all raw data files received from the Statistical Office - Cleaned data files were then all merged to produce one data file on the individual level containing all variables subject to harmonization - A country-specific program was generated for each dataset to generate/compute/recode/rename/format/label harmonized variables - A post-harmonization cleaning process was run on the data - Harmonized data was saved on the household as well as the individual level, in SPSS and converted to STATA format

  20. Cleaned Data

    • kaggle.com
    Updated Feb 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paul Mansour98 (2023). Cleaned Data [Dataset]. https://www.kaggle.com/datasets/paulmansour98/cleaned-data-feb-15/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 16, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Paul Mansour98
    Description

    Data I had cleaned in excel for my data cleaning project. Includes some pivot tables of averages of data that can be used by stakeholders to determine some insights on the abnb data.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
kenanyafi (2024). A Journey through Data Cleaning [Dataset]. https://www.kaggle.com/datasets/kenanyafi/a-journey-through-data-cleaning
Organization logo

A Journey through Data Cleaning

Streamlining Data for Enhanced Analysis and Decision-Making

Explore at:
zip(0 bytes)Available download formats
Dataset updated
Mar 22, 2024
Authors
kenanyafi
Description

Embark on a transformative journey with our Data Cleaning Project, where we meticulously refine and polish raw data into valuable insights. Our project focuses on streamlining data sets, removing inconsistencies, and ensuring accuracy to unlock its full potential.

Through advanced techniques and rigorous processes, we standardize formats, address missing values, and eliminate duplicates, creating a clean and reliable foundation for analysis. By enhancing data quality, we empower organizations to make informed decisions, drive innovation, and achieve strategic objectives with confidence.

Join us as we embark on this essential phase of data preparation, paving the way for more accurate and actionable insights that fuel success."

Search
Clear search
Close search
Google apps
Main menu