Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset is designed specifically for beginners and intermediate learners to practice data cleaning techniques using Python and Pandas.
It includes 500 rows of simulated employee data with intentional errors such as:
Missing values in Age and Salary
Typos in email addresses (@gamil.com)
Inconsistent city name casing (e.g., lahore, Karachi)
Extra spaces in department names (e.g., " HR ")
✅ Skills You Can Practice:
Detecting and handling missing data
String cleaning and formatting
Removing duplicates
Validating email formats
Standardizing categorical data
You can use this dataset to build your own data cleaning notebook, or use it in interviews, assessments, and tutorials.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset was created by Hussein Al Chami
Released under MIT
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Facebook
TwitterThis dataset is a cleaned and preprocessed version of the original Netflix Movies and TV Shows dataset available on Kaggle. All cleaning was done using Microsoft Excel — no programming involved.
🎯 What’s Included: - Cleaned Excel file (standardized columns, proper date format, removed duplicates/missing values) - A separate "formulas_used.txt" file listing all Excel formulas used during cleaning (e.g., TRIM, CLEAN, DATE, SUBSTITUTE, TEXTJOIN, etc.) - Columns like 'date_added' have been properly formatted into DMY structure - Multi-valued columns like 'listed_in' are split for better analysis - Null values replaced with “Unknown” for clarity - Duration field broken into numeric + unit components
🔍 Dataset Purpose: Ideal for beginners and analysts who want to: - Practice data cleaning in Excel - Explore Netflix content trends - Analyze content by type, country, genre, or date added
📁 Original Dataset Credit: The base version was originally published by Shivam Bansal on Kaggle: https://www.kaggle.com/shivamb/netflix-shows
📌 Bonus: You can find a step-by-step cleaning guide and the same dataset on GitHub as well — along with screenshots and formulas documentation.
Facebook
TwitterThis dataset was created by Mohamed Khaled Idris
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is the cleaned version of a real-world medical dataset that was originally noisy, incomplete, and contained various inconsistencies. The dataset was cleaned through a structured and well-documented data preprocessing pipeline using Python and Pandas. Key steps in the cleaning process included:
The purpose of cleaning this dataset was to prepare it for further exploratory data analysis (EDA), data visualization, and machine learning modeling.
This cleaned dataset is now ready for training predictive models, generating visual insights, or conducting healthcare-related research. It provides a high-quality foundation for anyone interested in medical analytics or data science practice.
Facebook
TwitterCodeParrot 🦜 Dataset Cleaned
What is it?
A dataset of Python files from Github. This is the deduplicated version of the codeparrot.
Processing
The original dataset contains a lot of duplicated and noisy data. Therefore, the dataset was cleaned with the following steps:
Deduplication Remove exact matches
Filtering Average line length < 100 Maximum line length < 1000 Alpha numeric characters fraction > 0.25 Remove auto-generated files (keyword search)
For… See the full description on the dataset page: https://huggingface.co/datasets/codeparrot/codeparrot-clean.
Facebook
TwitterDescription: The NoCORA dataset represents a significant effort to compile and clean a comprehensive set of daily rainfall data for Northern Cameroon (North and Extreme North regions). This dataset, overing more than 1 million observations across 418 rainfall stations on a temporal range going from 1927 to 2022, is instrumental for researchers, meteorologists, and policymakers working in climate research, agricultural planning, and water resource management in the region. It integrates data from diverse sources, including Sodecoton rain funnels, the archive of Robert Morel (IRD), Centrale de Lagdo, the GHCN daily service, and the TAHMO network. The construction of NoCORA involved meticulous processes, including manual assembly of data, extensive data cleaning, and standardization of station names and coordinates, making it a hopefully robust and reliable resource for understanding climatic dynamics in Northern Cameroon. Data Sources: The dataset comprises eight primary rainfall data sources and a comprehensive coordinates dataset. The rainfall data sources include extensive historical and contemporary measurements, while the coordinates dataset was developed using reference data and an inference strategy for variant station names or missing coordinates. Dataset Preparation Methods: The preparation involved manual compilation, integration of machine-readable files, data cleaning with OpenRefine, and finalization using Python/Jupyter Notebook. This process should ensured the accuracy and consistency of the dataset. Discussion: NoCORA, with its extensive data compilation, presents an invaluable resource for climate-related studies in Northern Cameroon. However, users must navigate its complexities, including missing data interpretations, potential biases, and data inconsistencies. The dataset's comprehensive nature and historical span require careful handling and validation in research applications. Access to Dataset: The NoCORA dataset, while a comprehensive resource for climatological and meteorological research in Northern Cameroon, is subject to specific access conditions due to its compilation from various partner sources. The original data sources vary in their openness and accessibility, and not all partners have confirmed the open-access status of their data. As such, to ensure compliance with these varying conditions, access to the NoCORA dataset is granted on a request basis. Interested researchers and users are encouraged to contact us for permission to access the dataset. This process allows us to uphold the data sharing agreements with our partners while facilitating research and analysis within the scientific community. Authors Contributions:
Data treatment: Victor Hugo Nenwala, Carmel Foulna Tcheobe, Jérémy Lavarenne. Documentation: Jérémy Lavarenne. Funding: This project was funded by the DESIRA INNOVACC project. Changelog:
v1.0.2 : corrected interversion in column names in the coordinates dataset v1.0.1 : dataset specification file has been updated with complementary information regarding station locations v1.0.0 : initial submission
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Copies of Anaconda 3 Jupyter Notebooks and Python script for holistic and clustered analysis of "The Impact of COVID-19 on Technical Services Units" survey results. Data was analyzed holistically using cleaned and standardized survey results and by library type clusters. To streamline data analysis in certain locations, an off-shoot CSV file was created so data could be standardized without compromising the integrity of the parent clean file. Three Jupyter Notebooks/Python scripts are available in relation to this project: COVID_Impact_TechnicalServices_HolisticAnalysis (a holistic analysis of all survey data) and COVID_Impact_TechnicalServices_LibraryTypeAnalysis (a clustered analysis of impact by library type, clustered files available as part of the Dataverse for this project).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Part of the dissertation Pitch of Voiced Speech in the Short-Time Fourier Transform: Algorithms, Ground Truths, and Evaluation Methods.© 2020, Bastian Bechtold. All rights reserved. Estimating the fundamental frequency of speech remains an active area of research, with varied applications in speech recognition, speaker identification, and speech compression. A vast number of algorithms for estimatimating this quantity have been proposed over the years, and a number of speech and noise corpora have been developed for evaluating their performance. The present dataset contains estimated fundamental frequency tracks of 25 algorithms, six speech corpora, two noise corpora, at nine signal-to-noise ratios between -20 and 20 dB SNR, as well as an additional evaluation of synthetic harmonic tone complexes in white noise.The dataset also contains pre-calculated performance measures both novel and traditional, in reference to each speech corpus’ ground truth, the algorithms’ own clean-speech estimate, and our own consensus truth. It can thus serve as the basis for a comparison study, or to replicate existing studies from a larger dataset, or as a reference for developing new fundamental frequency estimation algorithms. All source code and data is available to download, and entirely reproducible, albeit requiring about one year of processor-time.Included Code and Data
ground truth data.zip is a JBOF dataset of fundamental frequency estimates and ground truths of all speech files in the following corpora:
CMU-ARCTIC (consensus truth) [1]FDA (corpus truth and consensus truth) [2]KEELE (corpus truth and consensus truth) [3]MOCHA-TIMIT (consensus truth) [4]PTDB-TUG (corpus truth and consensus truth) [5]TIMIT (consensus truth) [6]
noisy speech data.zip is a JBOF datasets of fundamental frequency estimates of speech files mixed with noise from the following corpora:NOISEX [7]QUT-NOISE [8]
synthetic speech data.zip is a JBOF dataset of fundamental frequency estimates of synthetic harmonic tone complexes in white noise.noisy_speech.pkl and synthetic_speech.pkl are pickled Pandas dataframes of performance metrics derived from the above data for the following list of fundamental frequency estimation algorithms:AUTOC [9]AMDF [10]BANA [11]CEP [12]CREPE [13]DIO [14]DNN [15]KALDI [16]MAPSMBSC [17]NLS [18]PEFAC [19]PRAAT [20]RAPT [21]SACC [22]SAFE [23]SHR [24]SIFT [25]SRH [26]STRAIGHT [27]SWIPE [28]YAAPT [29]YIN [30]
noisy speech evaluation.py and synthetic speech evaluation.py are Python programs to calculate the above Pandas dataframes from the above JBOF datasets. They calculate the following performance measures:Gross Pitch Error (GPE), the percentage of pitches where the estimated pitch deviates from the true pitch by more than 20%.Fine Pitch Error (FPE), the mean error of grossly correct estimates.High/Low Octave Pitch Error (OPE), the percentage pitches that are GPEs and happens to be at an integer multiple of the true pitch.Gross Remaining Error (GRE), the percentage of pitches that are GPEs but not OPEs.Fine Remaining Bias (FRB), the median error of GREs.True Positive Rate (TPR), the percentage of true positive voicing estimates.False Positive Rate (FPR), the percentage of false positive voicing estimates.False Negative Rate (FNR), the percentage of false negative voicing estimates.F₁, the harmonic mean of precision and recall of the voicing decision.
Pipfile is a pipenv-compatible pipfile for installing all prerequisites necessary for running the above Python programs.
The Python programs take about an hour to compute on a fast 2019 computer, and require at least 32 Gb of memory.References:
John Kominek and Alan W Black. CMU ARCTIC database for speech synthesis, 2003.Paul C Bagshaw, Steven Hiller, and Mervyn A Jack. Enhanced Pitch Tracking and the Processing of F0 Contours for Computer Aided Intonation Teaching. In EUROSPEECH, 1993.F Plante, Georg F Meyer, and William A Ainsworth. A Pitch Extraction Reference Database. In Fourth European Conference on Speech Communication and Technology, pages 837–840, Madrid, Spain, 1995.Alan Wrench. MOCHA MultiCHannel Articulatory database: English, November 1999.Gregor Pirker, Michael Wohlmayr, Stefan Petrik, and Franz Pernkopf. A Pitch Tracking Corpus with Evaluation on Multipitch Tracking Scenario. page 4, 2011.John S. Garofolo, Lori F. Lamel, William M. Fisher, Jonathan G. Fiscus, David S. Pallett, Nancy L. Dahlgren, and Victor Zue. TIMIT Acoustic-Phonetic Continuous Speech Corpus, 1993.Andrew Varga and Herman J.M. Steeneken. Assessment for automatic speech recognition: II. NOISEX-92: A database and an experiment to study the effect of additive noise on speech recog- nition systems. Speech Communication, 12(3):247–251, July 1993.David B. Dean, Sridha Sridharan, Robert J. Vogt, and Michael W. Mason. The QUT-NOISE-TIMIT corpus for the evaluation of voice activity detection algorithms. Proceedings of Interspeech 2010, 2010.Man Mohan Sondhi. New methods of pitch extraction. Audio and Electroacoustics, IEEE Transactions on, 16(2):262—266, 1968.Myron J. Ross, Harry L. Shaffer, Asaf Cohen, Richard Freudberg, and Harold J. Manley. Average magnitude difference function pitch extractor. Acoustics, Speech and Signal Processing, IEEE Transactions on, 22(5):353—362, 1974.Na Yang, He Ba, Weiyang Cai, Ilker Demirkol, and Wendi Heinzelman. BaNa: A Noise Resilient Fundamental Frequency Detection Algorithm for Speech and Music. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12):1833–1848, December 2014.Michael Noll. Cepstrum Pitch Determination. The Journal of the Acoustical Society of America, 41(2):293–309, 1967.Jong Wook Kim, Justin Salamon, Peter Li, and Juan Pablo Bello. CREPE: A Convolutional Representation for Pitch Estimation. arXiv:1802.06182 [cs, eess, stat], February 2018. arXiv: 1802.06182.Masanori Morise, Fumiya Yokomori, and Kenji Ozawa. WORLD: A Vocoder-Based High-Quality Speech Synthesis System for Real-Time Applications. IEICE Transactions on Information and Systems, E99.D(7):1877–1884, 2016.Kun Han and DeLiang Wang. Neural Network Based Pitch Tracking in Very Noisy Speech. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12):2158–2168, Decem- ber 2014.Pegah Ghahremani, Bagher BabaAli, Daniel Povey, Korbinian Riedhammer, Jan Trmal, and Sanjeev Khudanpur. A pitch extraction algorithm tuned for automatic speech recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, pages 2494–2498. IEEE, 2014.Lee Ngee Tan and Abeer Alwan. Multi-band summary correlogram-based pitch detection for noisy speech. Speech Communication, 55(7-8):841–856, September 2013.Jesper Kjær Nielsen, Tobias Lindstrøm Jensen, Jesper Rindom Jensen, Mads Græsbøll Christensen, and Søren Holdt Jensen. Fast fundamental frequency estimation: Making a statistically efficient estimator computationally efficient. Signal Processing, 135:188–197, June 2017.Sira Gonzalez and Mike Brookes. PEFAC - A Pitch Estimation Algorithm Robust to High Levels of Noise. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(2):518—530, February 2014.Paul Boersma. Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise ratio of a sampled sound. In Proceedings of the institute of phonetic sciences, volume 17, page 97—110. Amsterdam, 1993.David Talkin. A robust algorithm for pitch tracking (RAPT). Speech coding and synthesis, 495:518, 1995.Byung Suk Lee and Daniel PW Ellis. Noise robust pitch tracking by subband autocorrelation classification. In Interspeech, pages 707–710, 2012.Wei Chu and Abeer Alwan. SAFE: a statistical algorithm for F0 estimation for both clean and noisy speech. In INTERSPEECH, pages 2590–2593, 2010.Xuejing Sun. Pitch determination and voice quality analysis using subharmonic-to-harmonic ratio. In Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International Conference on, volume 1, page I—333. IEEE, 2002.Markel. The SIFT algorithm for fundamental frequency estimation. IEEE Transactions on Audio and Electroacoustics, 20(5):367—377, December 1972.Thomas Drugman and Abeer Alwan. Joint Robust Voicing Detection and Pitch Estimation Based on Residual Harmonics. In Interspeech, page 1973—1976, 2011.Hideki Kawahara, Masanori Morise, Toru Takahashi, Ryuichi Nisimura, Toshio Irino, and Hideki Banno. TANDEM-STRAIGHT: A temporally stable power spectral representation for periodic signals and applications to interference-free spectrum, F0, and aperiodicity estimation. In Acous- tics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, pages 3933–3936. IEEE, 2008.Arturo Camacho. SWIPE: A sawtooth waveform inspired pitch estimator for speech and music. PhD thesis, University of Florida, 2007.Kavita Kasi and Stephen A. Zahorian. Yet Another Algorithm for Pitch Tracking. In IEEE International Conference on Acoustics Speech and Signal Processing, pages I–361–I–364, Orlando, FL, USA, May 2002. IEEE.Alain de Cheveigné and Hideki Kawahara. YIN, a fundamental frequency estimator for speech and music. The Journal of the Acoustical Society of America, 111(4):1917, 2002.
Facebook
TwitterThis dataset helps you to increase the data-cleaning process using the pure python pandas library.
Facebook
TwitterAttribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
This dataset is the supporting data for the paper Underneath Social Media Texts: Sentiment Responses to Public Health Emergency During 2022 COVID-19 Pandemic in China.This dataset is mainly used to analyze the data of weibo text and perform sentiment analysis. The data were obtained from Weibo, and the texts were crawled using a Python tool: Weibo crawler tool. The data contains time, text content, user address, etc. Subsequently, Cleaned weibo data was obtained after cleaning operation in Excel. According to the improved Chinese sentiment lexicon, the sentiment analysis tool was used to analyze the text for sentiment analysis, to derive the main sentiment and sentiment scores, and the result file is Sentiment analysis results. Finally, ADF and KPSS analysis tools were used to analyze the stability of sentiment scores in different cities.The weibo text and sentiment analysis results data in the dataset are in .xlsx format, and the rest of the tools are Python code.Crawled data is limited by time, specific search terms and other restrictions, different operation time and terms may lead to differences in the data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This S&M-HSTPM2d5 dataset contains the high spatial and temporal resolution of the particulates (PM2.5) measures with the corresponding timestamp and GPS location of mobile and static devices in the three Chinese cities: Foshan, Cangzhou, and Tianjin. Different numbers of static and mobile devices were set up in each city. The sampling rate was set up as one minute in Cangzhou, and three seconds in Foshan and Tianjin. For the specific detail of the setup, please refer to the Device_Setup_Description.txt file in this repository and the data descriptor paper.
After the data collection process, the data cleaning process was performed to remove and adjust the abnormal and drifting data. The script of the data cleaning algorithm is provided in this repository. The data cleaning algorithm only adjusts or removes individual data points. The removal of the entire device's data was done after the data cleaning algorithm with empirical judgment and graphic visualization. For specific detail of the data cleaning process, please refer to the script (Data_cleaning_algorithm.ipynb) in this repository and the data descriptor paper.
The dataset in this repository is the processed version. The raw dataset and removed devices are not included in this repository.
The data is stored as a CSV file. Each CSV file which is named by the device ID represents the data that was collected by the corresponding device. Each CSV file has three types of data: timestamp as the China Standard Time (GMT+8), geographic location as latitude and longitude, and PM2.5 concentration with the unit of microgram per cubic meter. The CSV files are stored in either Static or Mobile folder which represents the devices' type. The Static and Mobile folder are stored in the corresponding city's folder.
To access the dataset, any programming language that can access CSV files is appropriate. Users can also open the CSV file directly. The get_dataset.ipynb file in this repository also provides an option of accessing the dataset. To successfully execute ipynb file, Jupyter Notebook with Python 3.0 is required. The following python library is also required:
get_dataset.ipynb: 1. os library 2. pandas library
Data_cleaning_algorithm.ipynb: 1. os library 2. pandas library 3. datetime library 4. math library
The instruction of installing the libraries above can be found online. After installing the Jupyter Notebook with Python 3.0 and the required libraries, users can try to open the ipynb file with Jupyter Notebook and follow the instruction inside the file.
For questions or suggestions please e-mail Xinlei Chen
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
What is Pandas?
Pandas is a Python library used for working with data sets.
It has functions for analyzing, cleaning, exploring, and manipulating data.
The name "Pandas" has a reference to both "Panel Data", and "Python Data Analysis" and was created by Wes McKinney in 2008.
Why Use Pandas?
Pandas allows us to analyze big data and make conclusions based on statistical theories.
Pandas can clean messy data sets, and make them readable and relevant.
Relevant data is very important in data science.
What Can Pandas Do?
Pandas gives you answers about the data. Like:
Is there a correlation between two or more columns?
What is average value?
Max value?
Min value?
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
GovReport Summarization - 8192 tokens
ccdv/govreport-summarization with the changes of: data cleaned with the clean-text python package total tokens for each column computed and added in new columns according to the long-t5 tokenizer (done after cleaning)
train info
RangeIndex: 8200 entries, 0 to 8199 Data columns (total 4 columns): # Column Non-Null Count Dtype
0 report 8200 non-null… See the full description on the dataset page: https://huggingface.co/datasets/pszemraj/govreport-summarization-8192.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General Information
Hyperreal Talk (Polish clear web message board) messages data.
Haitao Shi (The University of Edinburgh, UK); Leszek Świeca (Kazimierz Wielki University in Bydgoszcz, Poland).
The dataset is part of the research supported by the Polish National Science Centre (Narodowe Centrum Nauki) grant 2021/43/B/HS6/00710.
Project title: “Rhizomatic networks, circulation of meanings and contents, and offline contexts of online drug trade” (2022-2025; PLN 956 620; funding institution: Polish National Science Centre [NCN], call: OPUS 22; Principal Investigator: Piotr Siuda [Kazimierz Wielki University in Bydgoszcz, Poland]).
Data Collection Context
Polish clear web message board called Hyperreal Talk (https://hyperreal.info/talk/).
This dataset was developed within the abovementioned project. The project delves into internet dynamics within disruptive activities, specifically focusing on the online drug trade in Poland. It aims to (1) examine the utilization of the open internet, including social media, in the drug trade; (2) delineate the role of darknet environments in narcotics distribution; and (3) uncover the intricate flow of drug trade-related content and its meanings between the open web and the darknet, and how these meanings are shaped within the so-called drug subculture.
The Hyperreal Talk forum emerges as a pivotal online space on the Polish internet, serving as a hub for discussions and the exchange of knowledge and experiences concerning drug use. It plays a crucial role in investigating the narratives and discourses that shape the drug subculture and the broader societal perceptions of drug consumption. The dataset has been instrumental in conducting analyses pertinent to the earlier project goals.
The dataset was compiled using the Scrapy framework, a web crawling and scraping library for Python. This tool facilitated systematic content extraction from the targeted message board.
The data was collected in two periods, i.e., in September 2023 and November 2023.
Data Content
The dataset comprises all messages posted on the Polish-language Hyperreal Talk message board from its inception until November 2023. These messages include the initial posts that start each thread and the subsequent posts (replies) within those threads. The dataset is organized into two directories: “hyperreal” and “hyperreal_hidden.” The “hyperreal” directory contains accessible posts without needing to log in to Hyperreal Talk, while the “hyperreal_hidden” directory holds posts that can only be viewed by logged-in users. For each directory, a .txt file has been prepared detailing the structure of the message board folders from which the posts were extracted. The dataset includes 6,248,842 posts.
The data has been cleaned and processed using regular expressions in Python. Additionally, all personal information was removed through regular expressions. The data has been hashed to exclude all identifiers related to instant messaging apps and email addresses. Furthermore, all usernames appearing in messages have been eliminated.
The dataset consists of the following files:
Zipped .txt files (hyperreal.zip) containing messages that are visible without logging into Hyperreal Talk. These files are organized into individual directories that mirror the folder structure found on the Hyperreal Talk message board.
Zipped .txt files (hyperreal_hidden.zip) containing messages that are visible only after logging into Hyperreal Talk. Similar to the first type, these files are organized into directories corresponding to the website’s folder structure.
A .csv file that lists all the messages, including file names and the content of each post.
Accessibility and Usage
The data can be accessed without any restrictions.
Attached are .txt files detailing the tree of folders for “hyperreal.zip” and “hyperreal_hidden.zip.”
Documentation on the Python regular expressions used for scraping, cleaning, processing, and anonymizing the data can be found on GitHub at the following URLs:
https://github.com/LeszekSwieca/Project_2021-43-B-HS6-00710
https://github.com/HaitaoShi/Scrapy_hyperreal"
Ethical Considerations
A set of data handling policies aimed at ensuring safety and ethics has been outlined in the following paper:
Harviainen, J.T., Haasio, A., Ruokolainen, T., Hassan, L., Siuda, P., Hamari, J. (2021). Information Protection in Dark Web Drug Markets Research [in:] Proceedings of the 54th Hawaii International Conference on System Sciences, HICSS 2021, Grand Hyatt Kauai, Hawaii, USA, 4-8 January 2021, Maui, Hawaii, (ed.) Tung X. Bui, Honolulu, HI, pp. 4673-4680.
The primary safeguard was the early-stage hashing of usernames and identifiers from the messages, utilizing automated systems for irreversible hashing. Recognizing that scraping and automatic name removal might not catch all identifiers, the data underwent manual review to ensure compliance with research ethics and thorough anonymization.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cleaned dataset for the Pharos application 2023-2024 data collection period (May 2023-March 2024). This dataset includes the full recurring network measurement (RNM), landmark (LM) datasets, as well as the county geographies used for the study catchment area. Also included in this dataset are a text document containing the necessary requirements, as well as python script to clean and visualize the collected data replicating the methods used in our published analysis.
Facebook
TwitterAttribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically
This study systematically collected user comments related to the topic "Apollo Go" on the Douyin platform using Python-based automated web scraping technology. By developing efficient scraping scripts, a large volume of user interaction data was automatically gathered. After rigorous data cleaning and preprocessing, a dataset containing 5,985 valid comments was constructed.During the data cleaning process, all personally identifiable information was anonymized to ensure compliance and data security. Sensitive fields such as usernames and geographic locations were removed. The final dataset retains the following two fields:Time: Records the exact timestamp when each comment was posted, formatted as "2024/7/13 20:42:55", accurate to the second, facilitating subsequent time-series analysis.Comment: Contains the original user-generated text, preserved in its raw form, suitable for natural language processing tasks such as sentiment analysis and topic modeling.This dataset is well-structured and authentic, making it suitable for various applications including social media public opinion analysis, public sentiment monitoring, and research on topic dissemination pathways.
Facebook
TwitterThis dataset contains 55,000 entries of synthetic customer transactions, generated using Python's Faker library. The goal behind creating this dataset was to provide a resource for learners like myself to explore, analyze, and apply various data analysis techniques in a context that closely mimics real-world data.
About the Dataset: - CID (Customer ID): A unique identifier for each customer. - TID (Transaction ID): A unique identifier for each transaction. - Gender: The gender of the customer, categorized as Male or Female. - Age Group: Age group of the customer, divided into several ranges. - Purchase Date: The timestamp of when the transaction took place. - Product Category: The category of the product purchased, such as Electronics, Apparel, etc. - Discount Availed: Indicates whether the customer availed any discount (Yes/No). - Discount Name: Name of the discount applied (e.g., FESTIVE50). - Discount Amount (INR): The amount of discount availed by the customer. - Gross Amount: The total amount before applying any discount. - Net Amount: The final amount after applying the discount. - Purchase Method: The payment method used (e.g., Credit Card, Debit Card, etc.). - Location: The city where the purchase took place.
Use Cases: 1. Exploratory Data Analysis (EDA): This dataset is ideal for conducting EDA, allowing users to practice techniques such as summary statistics, visualizations, and identifying patterns within the data. 2. Data Preprocessing and Cleaning: Learners can work on handling missing data, encoding categorical variables, and normalizing numerical values to prepare the dataset for analysis. 3. Data Visualization: Use tools like Python’s Matplotlib, Seaborn, or Power BI to visualize purchasing trends, customer demographics, or the impact of discounts on purchase amounts. 4. Machine Learning Applications: After applying feature engineering, this dataset is suitable for supervised learning models, such as predicting whether a customer will avail a discount or forecasting purchase amounts based on the input features.
This dataset provides an excellent sandbox for honing skills in data analysis, machine learning, and visualization in a structured but flexible manner.
This is not a real dataset. This dataset was generated using Python's Faker library for the sole purpose of learning
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This folder contains the full set of code and data for the CompuCrawl database. The database contains the archived websites of publicly traded North American firms listed in the Compustat database between 1996 and 2020\u2014representing 11,277 firms with 86,303 firm/year observations and 1,617,675 webpages in the final cleaned and selected set.The files are ordered by moment of use in the work flow. For example, the first file in the list is the input file for code files 01 and 02, which create and update the two tracking files "scrapedURLs.csv" and "URLs_1_deeper.csv" and which write HTML files to its folder. "HTML.zip" is the resultant folder, converted to .zip for ease of sharing. Code file 03 then reads this .zip file and is therefore below it in the ordering.The full set of files, in order of use, is as follows:Compustat_2021.xlsx: The input file containing the URLs to be scraped and their date range.01 Collect frontpages.py: Python script scraping the front pages of the list of URLs and generating a list of URLs one page deeper in the domains.URLs_1_deeper.csv: List of URLs one page deeper on the main domains.02 Collect further pages.py: Python script scraping the list of URLs one page deeper in the domains.scrapedURLs.csv: Tracking file containing all URLs that were accessed and their scraping status.HTML.zip: Archived version of the set of individual HTML files.03 Convert HTML to plaintext.py: Python script converting the individual HTML pages to plaintext.TXT_uncleaned.zip: Archived version of the converted yet uncleaned plaintext files.input_categorization_allpages.csv: Input file for classification of pages using GPT according to their HTML title and URL.04 GPT application.py: Python script using OpenAI\u2019s API to classify selected pages according to their HTML title and URL.categorization_applied.csv: Output file containing classification of selected pages.exclusion_list.xlsx: File containing three sheets: 'gvkeys' containing the GVKEYs of duplicate observations (that need to be excluded), 'pages' containing page IDs for pages that should be removed, and 'sentences' containing (sub-)sentences to be removed.05 Clean and select.py: Python script applying data selection and cleaning (including selection based on page category), with setting and decisions described at the top of the script. This script also combined individual pages into one combined observation per GVKEY/year.metadata.csv: Metadata containing information on all processed HTML pages, including those not selected.TXT_cleaned.zip: Archived version of the selected and cleaned plaintext page files. This file serves as input for the word embeddings application.TXT_combined.zip: Archived version of the combined plaintext files at the GVKEY/year level. This file serves as input for the data description using topic modeling.06 Topic model.R: R script that loads up the combined text data from the folder stored in "TXT_combined.zip", applies further cleaning, and estimates a 125-topic model.TM_125.RData: RData file containing the results of the 125-topic model.loadings125.csv: CSV file containing the loadings for all 125 topics for all GVKEY/year observations that were included in the topic model.125_topprob.xlsx: Overview of top-loading terms for the 125 topic model.07 Word2Vec train and align.py: Python script that loads the plaintext files in the "TXT_cleaned.zip" archive to train a series of Word2Vec models and subsequently align them in order to compare word embeddings across time periods.Word2Vec_models.zip: Archived version of the saved Word2Vec models, both unaligned and aligned.08 Word2Vec work with aligned models.py: Python script which loads the trained Word2Vec models to trace the development of the embeddings for the terms \u201csustainability\u201d and \u201cprofitability\u201d over time.99 Scrape further levels down.py: Python script that can be used to generate a list of unscraped URLs from the pages that themselves were one level deeper than the front page.URLs_2_deeper.csv: CSV file containing unscraped URLs from the pages that themselves were one level deeper than the front page.For those only interested in downloading the final database of texts, the files "HTML.zip", "TXT_uncleaned.zip", "TXT_cleaned.zip", and "TXT_combined.zip" contain the full set of HTML pages, the processed but uncleaned texts, the selected and cleaned texts, and combined and cleaned texts at the GVKEY/year level, respectively.The following webpage contains answers to frequently asked questions: https://haans-mertens.github.io/faq/. More information on the database and the underlying project can be found here: https://haans-mertens.github.io/ and the following article: \u201cThe Internet Never Forgets: A Four-Step Scraping Tutorial, Codebase, and Database for Longitudinal Organizational Website Data\u201d, by Richard F.J. Haans and Marc J. Mertens in Organizational Research Methods. The full paper can be accessed here.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset is designed specifically for beginners and intermediate learners to practice data cleaning techniques using Python and Pandas.
It includes 500 rows of simulated employee data with intentional errors such as:
Missing values in Age and Salary
Typos in email addresses (@gamil.com)
Inconsistent city name casing (e.g., lahore, Karachi)
Extra spaces in department names (e.g., " HR ")
✅ Skills You Can Practice:
Detecting and handling missing data
String cleaning and formatting
Removing duplicates
Validating email formats
Standardizing categorical data
You can use this dataset to build your own data cleaning notebook, or use it in interviews, assessments, and tutorials.