67 datasets found
  1. Restaurant Sales-Dirty Data for Cleaning Training

    • kaggle.com
    Updated Jan 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmed Mohamed (2025). Restaurant Sales-Dirty Data for Cleaning Training [Dataset]. https://www.kaggle.com/datasets/ahmedmohamed2003/restaurant-sales-dirty-data-for-cleaning-training
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 25, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ahmed Mohamed
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Restaurant Sales Dataset with Dirt Documentation

    Overview

    The Restaurant Sales Dataset with Dirt contains data for 17,534 transactions. The data introduces realistic inconsistencies ("dirt") to simulate real-world scenarios where data may have missing or incomplete information. The dataset includes sales details across multiple categories, such as starters, main dishes, desserts, drinks, and side dishes.

    Dataset Use Cases

    This dataset is suitable for: - Practicing data cleaning tasks, such as handling missing values and deducing missing information. - Conducting exploratory data analysis (EDA) to study restaurant sales patterns. - Feature engineering to create new variables for machine learning tasks.

    Columns Description

    Column NameDescriptionExample Values
    Order IDA unique identifier for each order.ORD_123456
    Customer IDA unique identifier for each customer.CUST_001
    CategoryThe category of the purchased item.Main Dishes, Drinks
    ItemThe name of the purchased item. May contain missing values due to data dirt.Grilled Chicken, None
    PriceThe static price of the item. May contain missing values.15.0, None
    QuantityThe quantity of the purchased item. May contain missing values.1, None
    Order TotalThe total price for the order (Price * Quantity). May contain missing values.45.0, None
    Order DateThe date when the order was placed. Always present.2022-01-15
    Payment MethodThe payment method used for the transaction. May contain missing values due to data dirt.Cash, None

    Key Characteristics

    1. Data Dirtiness:

      • Missing values in key columns (Item, Price, Quantity, Order Total, Payment Method) simulate real-world challenges.
      • At least one of the following conditions is ensured for each record to identify an item:
        • Item is present.
        • Price is present.
        • Both Quantity and Order Total are present.
      • If Price or Quantity is missing, the other is used to deduce the missing value (e.g., Order Total / Quantity).
    2. Menu Categories and Items:

      • Items are divided into five categories:
        • Starters: E.g., Chicken Melt, French Fries.
        • Main Dishes: E.g., Grilled Chicken, Steak.
        • Desserts: E.g., Chocolate Cake, Ice Cream.
        • Drinks: E.g., Coca Cola, Water.
        • Side Dishes: E.g., Mashed Potatoes, Garlic Bread.

    3 Time Range: - Orders span from January 1, 2022, to December 31, 2023.

    Cleaning Suggestions

    1. Handle Missing Values:

      • Fill missing Order Total or Quantity using the formula: Order Total = Price * Quantity.
      • Deduce missing Price from Order Total / Quantity if both are available.
    2. Validate Data Consistency:

      • Ensure that calculated values (Order Total = Price * Quantity) match.
    3. Analyze Missing Patterns:

      • Study the distribution of missing values across categories and payment methods.

    Menu Map with Prices and Categories

    CategoryItemPrice
    StartersChicken Melt8.0
    StartersFrench Fries4.0
    StartersCheese Fries5.0
    StartersSweet Potato Fries5.0
    StartersBeef Chili7.0
    StartersNachos Grande10.0
    Main DishesGrilled Chicken15.0
    Main DishesSteak20.0
    Main DishesPasta Alfredo12.0
    Main DishesSalmon18.0
    Main DishesVegetarian Platter14.0
    DessertsChocolate Cake6.0
    DessertsIce Cream5.0
    DessertsFruit Salad4.0
    DessertsCheesecake7.0
    DessertsBrownie6.0
    DrinksCoca Cola2.5
    DrinksOrange Juice3.0
    Drinks ...
  2. Z

    Data Cleaning, Translation & Split of the Dataset for the Automatic...

    • data.niaid.nih.gov
    Updated Aug 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Köhler, Juliane (2022). Data Cleaning, Translation & Split of the Dataset for the Automatic Classification of Documents for the Classification System for the Berliner Handreichungen zur Bibliotheks- und Informationswissenschaft [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6957841
    Explore at:
    Dataset updated
    Aug 8, 2022
    Dataset authored and provided by
    Köhler, Juliane
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cleaned_Dataset.csv – The combined CSV files of all scraped documents from DABI, e-LiS, o-bib and Springer.

    Data_Cleaning.ipynb – The Jupyter Notebook with python code for the analysis and cleaning of the original dataset.

    ger_train.csv – The German training set as CSV file.

    ger_validation.csv – The German validation set as CSV file.

    en_test.csv – The English test set as CSV file.

    en_train.csv – The English training set as CSV file.

    en_validation.csv – The English validation set as CSV file.

    splitting.py – The python code for splitting a dataset into train, test and validation set.

    DataSetTrans_de.csv – The final German dataset as a CSV file.

    DataSetTrans_en.csv – The final English dataset as a CSV file.

    translation.py – The python code for translating the cleaned dataset.

  3. Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, Japan), South America (Brazil), and Middle East and Africa (UAE) [Dataset]. https://www.technavio.com/report/data-science-platform-market-industry-analysis
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global, United States
    Description

    Snapshot img

    Data Science Platform Market Size 2025-2029

    The data science platform market size is forecast to increase by USD 763.9 million, at a CAGR of 40.2% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing integration of Artificial Intelligence (AI) and Machine Learning (ML) technologies. This fusion enables organizations to derive deeper insights from their data, fueling business innovation and decision-making. Another trend shaping the market is the emergence of containerization and microservices in data science platforms. This approach offers enhanced flexibility, scalability, and efficiency, making it an attractive choice for businesses seeking to streamline their data science operations. However, the market also faces challenges. Data privacy and security remain critical concerns, with the increasing volume and complexity of data posing significant risks. Ensuring robust data security and privacy measures is essential for companies to maintain customer trust and comply with regulatory requirements. Additionally, managing the complexity of data science platforms and ensuring seamless integration with existing systems can be a daunting task, requiring significant investment in resources and expertise. Companies must navigate these challenges effectively to capitalize on the market's opportunities and stay competitive in the rapidly evolving data landscape.

    What will be the Size of the Data Science Platform Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the increasing demand for advanced analytics and artificial intelligence solutions across various sectors. Real-time analytics and classification models are at the forefront of this evolution, with APIs integrations enabling seamless implementation. Deep learning and model deployment are crucial components, powering applications such as fraud detection and customer segmentation. Data science platforms provide essential tools for data cleaning and data transformation, ensuring data integrity for big data analytics. Feature engineering and data visualization facilitate model training and evaluation, while data security and data governance ensure data privacy and compliance. Machine learning algorithms, including regression models and clustering models, are integral to predictive modeling and anomaly detection. Statistical analysis and time series analysis provide valuable insights, while ETL processes streamline data integration. Cloud computing enables scalability and cost savings, while risk management and algorithm selection optimize model performance. Natural language processing and sentiment analysis offer new opportunities for data storytelling and computer vision. Supply chain optimization and recommendation engines are among the latest applications of data science platforms, demonstrating their versatility and continuous value proposition. Data mining and data warehousing provide the foundation for these advanced analytics capabilities.

    How is this Data Science Platform Industry segmented?

    The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. DeploymentOn-premisesCloudComponentPlatformServicesEnd-userBFSIRetail and e-commerceManufacturingMedia and entertainmentOthersSectorLarge enterprisesSMEsApplicationData PreparationData VisualizationMachine LearningPredictive AnalyticsData GovernanceOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyUKMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW)

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.In the dynamic the market, businesses increasingly adopt solutions to gain real-time insights from their data, enabling them to make informed decisions. Classification models and deep learning algorithms are integral parts of these platforms, providing capabilities for fraud detection, customer segmentation, and predictive modeling. API integrations facilitate seamless data exchange between systems, while data security measures ensure the protection of valuable business information. Big data analytics and feature engineering are essential for deriving meaningful insights from vast datasets. Data transformation, data mining, and statistical analysis are crucial processes in data preparation and discovery. Machine learning models, including regression and clustering, are employed for model training and evaluation. Time series analysis and natural language processing are valuable tools for understanding trends and customer sen

  4. Z

    Training and Testing Data for AP-SVM

    • data.niaid.nih.gov
    • zenodo.org
    Updated Nov 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    León, Esteban (2024). Training and Testing Data for AP-SVM [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_13693789
    Explore at:
    Dataset updated
    Nov 26, 2024
    Dataset authored and provided by
    León, Esteban
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The files in here contain training and testing data for the AP-SVM data cleaning model, including datasets curated for leakage and sacrifice studies. Raw and digital signal processed files are included

  5. h

    clean-train-data

    • huggingface.co
    Updated Apr 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alberto García (2023). clean-train-data [Dataset]. https://huggingface.co/datasets/GarciaLnk/clean-train-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 6, 2023
    Authors
    Alberto García
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    GarciaLnk/clean-train-data dataset hosted on Hugging Face and contributed by the HF Datasets community

  6. Data Wrangling Market Size, Share, Growth, Forecast, By Component...

    • verifiedmarketresearch.com
    Updated Jun 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2025). Data Wrangling Market Size, Share, Growth, Forecast, By Component (Solutions, Services), By Deployment Mode (On-premises, Cloud-based), By End-user Industry (Banking, Financial Services, and Insurance (BFSI), Healthcare & Life Sciences, Retail & E-commerce, IT & Telecom, Government & Public Sector, Manufacturing) [Dataset]. https://www.verifiedmarketresearch.com/product/data-wrangling-market/
    Explore at:
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Global
    Description

    Data Wrangling Market size was valued at USD 1.99 Billion in 2024 and is projected to reach USD 4.07 Billion by 2032, growing at a CAGR of 9.4% during the forecast period 2026-2032.• Big Data Analytics Growth: Organizations are generating massive volumes of unstructured and semi-structured data from diverse sources including social media, IoT devices, and digital transactions. Data wrangling tools become essential for cleaning, transforming, and preparing this complex data for meaningful analytics and business intelligence applications.• Machine Learning and AI Adoption: The rapid expansion of artificial intelligence and machine learning initiatives requires high-quality, properly formatted training datasets. Data wrangling solutions enable data scientists to efficiently prepare, clean, and structure raw data for model training, driving sustained market demand across AI-focused organizations.

  7. o

    Data from: Cleaning Data with Open Refine

    • explore.openaire.eu
    Updated Jan 1, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr Richard Berry; Dr Luc Small; Dr Jeff Christiansen (2016). Cleaning Data with Open Refine [Dataset]. http://doi.org/10.5281/zenodo.6423839
    Explore at:
    Dataset updated
    Jan 1, 2016
    Authors
    Dr Richard Berry; Dr Luc Small; Dr Jeff Christiansen
    Description

    About this course Do you have messy data from multiple inconsistent sources, or open-responses to questionnaires? Do you want to improve the quality of your data by refining it and using the power of the internet? Open Refine is the perfect partner to Excel. It is a powerful, free tool for exploring, normalising and cleaning datasets, and extending data by accessing the internet through APIs. In this course we’ll work through the various features of Refine, including importing data, faceting, clustering, and calling remote APIs, by working on a fictional but plausible humanities research project. Learning Outcomes Download, install and run Open Refine Import data from csv, text or online sources and create projects Navigate data using the Open Refine interface Explore data by using facets Clean data using clustering Parse data using GREL syntax Extend data using Application Programming Interfaces (APIs) Export project for use in other applications Prerequisites The course has no prerequisites. Licence Copyright © 2021 Intersect Australia Ltd. All rights reserved.

  8. t

    Data from: Decoding Wayfinding: Analyzing Wayfinding Processes in the...

    • researchdata.tuwien.at
    html, pdf, zip
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Negar Alinaghi; Ioannis Giannopoulos; Ioannis Giannopoulos; Negar Alinaghi; Negar Alinaghi; Negar Alinaghi (2025). Decoding Wayfinding: Analyzing Wayfinding Processes in the Outdoor Environment [Dataset]. http://doi.org/10.48436/m2ha4-t1v92
    Explore at:
    html, zip, pdfAvailable download formats
    Dataset updated
    Mar 19, 2025
    Dataset provided by
    TU Wien
    Authors
    Negar Alinaghi; Ioannis Giannopoulos; Ioannis Giannopoulos; Negar Alinaghi; Negar Alinaghi; Negar Alinaghi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    How To Cite?

    Alinaghi, N., Giannopoulos, I., Kattenbeck, M., & Raubal, M. (2025). Decoding wayfinding: analyzing wayfinding processes in the outdoor environment. International Journal of Geographical Information Science, 1–31. https://doi.org/10.1080/13658816.2025.2473599

    Link to the paper: https://www.tandfonline.com/doi/full/10.1080/13658816.2025.2473599

    Folder Structure

    The folder named “submission” contains the following:

    1. “pythonProject”: This folder contains all the Python files and subfolders needed for analysis.
    2. ijgis.yml: This file lists all the Python libraries and dependencies required to run the code.

    Setting Up the Environment

    1. Use the ijgis.yml file to create a Python project and environment. Ensure you activate the environment before running the code.
    2. The pythonProject folder contains several .py files and subfolders, each with specific functionality as described below.

    Subfolders

    1. Data_4_IJGIS

    • This folder contains the data used for the results reported in the paper.
    • Note: The data analysis that we explain in this paper already begins with the synchronization and cleaning of the recorded raw data. The published data is already synchronized and cleaned. Both the cleaned files and the merged files with features extracted for them are given in this directory. If you want to perform the segmentation and feature extraction yourself, you should run the respective Python files yourself. If not, you can use the “merged_…csv” files as input for the training.

    2. results_[DateTime] (e.g., results_20240906_15_00_13)

    • This folder will be generated when you run the code and will store the output of each step.
    • The current folder contains results created during code debugging for the submission.
    • When you run the code, a new folder with fresh results will be generated.

    Python Files

    1. helper_functions.py

    • Contains reusable functions used throughout the analysis.
    • Each function includes a description of its purpose and the input parameters required.

    2. create_sanity_plots.py

    • Generates scatter plots like those in Figure 3 of the paper.
    • Although the code has been run for all 309 trials, it can be used to check the sample data provided.
    • Output: A .png file for each column of the raw gaze and IMU recordings, color-coded with logged events.
    • Usage: Run this file to create visualizations similar to Figure 3.

    3. overlapping_sliding_window_loop.py

    • Implements overlapping sliding window segmentation and generates plots like those in Figure 4.
    • Output:
      • Two new subfolders, “Gaze” and “IMU”, will be added to the Data_4_IJGIS folder.
      • Segmented files (default: 2–10 seconds with a 1-second step size) will be saved as .csv files.
      • A visualization of the segments, similar to Figure 4, will be automatically generated.

    4. gaze_features.py & imu_features.py (Note: there has been an update to the IDT function implementation in the gaze_features.py on 19.03.2025.)

    • These files compute features as explained in Tables 1 and 2 of the paper, respectively.
    • They process the segmented recordings generated by the overlapping_sliding_window_loop.py.
    • Usage: Just to know how the features are calculated, you can run this code after the segmentation with the sliding window and run these files to calculate the features from the segmented data.

    5. training_prediction.py

    • This file contains the main machine learning analysis of the paper. This file contains all the code for the training of the model, its evaluation, and its use for the inference of the “monitoring part”. It covers the following steps:
    a. Data Preparation (corresponding to Section 5.1.1 of the paper)
    • Prepares the data according to the research question (RQ) described in the paper. Since this data was collected with several RQs in mind, we remove parts of the data that are not related to the RQ of this paper.
    • A function named plot_labels_comparison(df, save_path, x_label_freq=10, figsize=(15, 5)) in line 116 visualizes the data preparation results. As this visualization is not used in the paper, the line is commented out, but if you want to see visually what has been changed compared to the original data, you can comment out this line.
    b. Training/Validation/Test Split
    • Splits the data for machine learning experiments (an explanation can be found in Section 5.1.1. Preparation of data for training and inference of the paper).
    • Make sure that you follow the instructions in the comments to the code exactly.
    • Output: The split data is saved as .csv files in the results folder.
    c. Machine and Deep Learning Experiments

    This part contains three main code blocks:

    iii. One for the XGboost code with correct hyperparameter tuning:
    Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically test the confidence threshold of

    • MLP Network (Commented Out): This code was used for classification with the MLP network, and the results shown in Table 3 are from this code. If you wish to use this model, please comment out the following blocks accordingly.
    • XGBoost without Hyperparameter Tuning: If you want to run the code but do not want to spend time on the full training with hyperparameter tuning (as was done for the paper), just uncomment this part. This will give you a simple, untuned model with which you can achieve at least some results.
    • XGBoost with Hyperparameter Tuning: If you want to train the model the way we trained it for the analysis reported in the paper, use this block (the plots in Figure 7 are from this block). We ran this block with different feature sets and different segmentation files and created a simple bar chart from the saved results, shown in Figure 6.

    Note: Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically calculated the confidence threshold of the model (explained in the paper in Section 5.2. Part II: Decoding surveillance by sequence analysis) is given in this block in lines 361 to 380.

    d. Inference (Monitoring Part)
    • Final inference is performed using the monitoring data. This step produces a .csv file containing inferred labels.
    • Figure 8 in the paper is generated using this part of the code.

    6. sequence_analysis.py

    • Performs analysis on the inferred data, producing Figures 9 and 10 from the paper.
    • This file reads the inferred data from the previous step and performs sequence analysis as described in Sections 5.2.1 and 5.2.2.

    Licenses

    The data is licensed under CC-BY, the code is licensed under MIT.

  9. Data Cleansing Tools Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Data Cleansing Tools Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-data-cleansing-tools-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Cleansing Tools Market Outlook



    The global data cleansing tools market size was valued at approximately USD 1.5 billion in 2023 and is projected to reach USD 4.2 billion by 2032, growing at a CAGR of 12.1% from 2024 to 2032. One of the primary growth factors driving the market is the increasing need for high-quality data in various business operations and decision-making processes.



    The surge in big data and the subsequent increased reliance on data analytics are significant factors propelling the growth of the data cleansing tools market. Organizations increasingly recognize the value of high-quality data in driving strategic initiatives, customer relationship management, and operational efficiency. The proliferation of data generated across different sectors such as healthcare, finance, retail, and telecommunications necessitates the adoption of tools that can clean, standardize, and enrich data to ensure its reliability and accuracy.



    Furthermore, the rising adoption of Machine Learning (ML) and Artificial Intelligence (AI) technologies has underscored the importance of clean data. These technologies rely heavily on large datasets to provide accurate and reliable insights. Any errors or inconsistencies in data can lead to erroneous outcomes, making data cleansing tools indispensable. Additionally, regulatory and compliance requirements across various industries necessitate the maintenance of clean and accurate data, further driving the market for data cleansing tools.



    The growing trend of digital transformation across industries is another critical growth factor. As businesses increasingly transition from traditional methods to digital platforms, the volume of data generated has skyrocketed. However, this data often comes from disparate sources and in various formats, leading to inconsistencies and errors. Data cleansing tools are essential in such scenarios to integrate data from multiple sources and ensure its quality, thus enabling organizations to derive actionable insights and maintain a competitive edge.



    In the context of ensuring data reliability and accuracy, Data Quality Software and Solutions play a pivotal role. These solutions are designed to address the challenges associated with managing large volumes of data from diverse sources. By implementing robust data quality frameworks, organizations can enhance their data governance strategies, ensuring that data is not only clean but also consistent and compliant with industry standards. This is particularly crucial in sectors where data-driven decision-making is integral to business success, such as finance and healthcare. The integration of advanced data quality solutions helps businesses mitigate risks associated with poor data quality, thereby enhancing operational efficiency and strategic planning.



    Regionally, North America is expected to hold the largest market share due to the early adoption of advanced technologies, robust IT infrastructure, and the presence of key market players. Europe is also anticipated to witness substantial growth due to stringent data protection regulations and the increasing adoption of data-driven decision-making processes. Meanwhile, the Asia Pacific region is projected to experience the highest growth rate, driven by the rapid digitalization of emerging economies, the expansion of the IT and telecommunications sector, and increasing investments in data management solutions.



    Component Analysis



    The data cleansing tools market is segmented into software and services based on components. The software segment is anticipated to dominate the market due to its extensive use in automating the data cleansing process. The software solutions are designed to identify, rectify, and remove errors in data sets, ensuring data accuracy and consistency. They offer various functionalities such as data profiling, validation, enrichment, and standardization, which are critical in maintaining high data quality. The high demand for these functionalities across various industries is driving the growth of the software segment.



    On the other hand, the services segment, which includes professional services and managed services, is also expected to witness significant growth. Professional services such as consulting, implementation, and training are crucial for organizations to effectively deploy and utilize data cleansing tools. As businesses increasingly realize the importance of clean data, the demand for expert

  10. D

    Data Cleansing Tools Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Cleansing Tools Report [Dataset]. https://www.datainsightsmarket.com/reports/data-cleansing-tools-1398134
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    May 4, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The data cleansing tools market is experiencing robust growth, driven by the escalating volume and complexity of data across various sectors. The increasing need for accurate and reliable data for decision-making, coupled with stringent data privacy regulations (like GDPR and CCPA), fuels demand for sophisticated data cleansing solutions. Businesses, regardless of size, are recognizing the critical role of data quality in enhancing operational efficiency, improving customer experiences, and gaining a competitive edge. The market is segmented by application (agencies, large enterprises, SMEs, personal use), deployment type (cloud, SaaS, web, installed, API integration), and geography, reflecting the diverse needs and technological preferences of users. While the cloud and SaaS models are witnessing rapid adoption due to scalability and cost-effectiveness, on-premise solutions remain relevant for organizations with stringent security requirements. The historical period (2019-2024) showed substantial growth, and this trajectory is projected to continue throughout the forecast period (2025-2033). Specific growth rates will depend on technological advancements, economic conditions, and regulatory changes. Competition is fierce, with established players like IBM, SAS, and SAP alongside innovative startups continuously improving their offerings. The market's future depends on factors such as the evolution of AI and machine learning capabilities within data cleansing tools, the increasing demand for automated solutions, and the ongoing need to address emerging data privacy challenges. The projected Compound Annual Growth Rate (CAGR) suggests a healthy expansion of the market. While precise figures are not provided, a realistic estimate based on industry trends places the market size at approximately $15 billion in 2025. This is based on a combination of existing market reports and understanding of the growth of related fields (such as data analytics and business intelligence). This substantial market value is further segmented across the specified geographic regions. North America and Europe currently dominate, but the Asia-Pacific region is expected to exhibit significant growth potential driven by increasing digitalization and adoption of data-driven strategies. The restraints on market growth largely involve challenges related to data integration complexity, cost of implementation for smaller businesses, and the skills gap in data management expertise. However, these are being countered by the emergence of user-friendly tools and increased investment in data literacy training.

  11. o

    HellaSwag: Commonsense NLI

    • opendatabay.com
    .undefined
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datasimple (2025). HellaSwag: Commonsense NLI [Dataset]. https://www.opendatabay.com/data/ai-ml/abcd24c8-a1a1-4724-83b2-ea07314b8d13
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Datasimple
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Data Science and Analytics
    Description

    The HellaSwag dataset is a comprehensive and highly valuable resource for assessing a machine's sentence completion abilities based on commonsense natural language inference (NLI). It was introduced in a paper published at ACL2019 as an important contribution to the field. This dataset allows researchers and machine learning practitioners to train, validate, and evaluate models designed to understand and predict plausible sentence completions using common sense knowledge.

    The dataset consists of three main files: train.csv, validation.csv, and test.csv. The train.csv file serves as the training data, facilitating the learning process for machine learning models by exposing them to various contexts, corresponding activity labels, multiple candidate sentence completions (endings), splits of the dataset (such as train, dev, or test), as well as split types like random or balanced.

    Similarly, the validation.csv file contains data specifically reserved for validating the performance of models on completing sentences based on commonsense knowledge. This helps researchers assess how well their models generalize and make accurate predictions in real-world scenarios.

    On the other hand, the test.csv file enables thorough evaluation of machines' ability to complete sentences with relevant common sense information. By utilizing this test data, researchers can accurately measure their model's effectiveness in generating appropriate sentence endings given specific contexts and activity labels.

    Each row in these datasets includes essential features such as index numbers indicating specific data points. The context sentences (ctx_a and ctx_b) provide necessary background information for comprehending each task while also aiding machines in generating suitable sentence completions. Additionally, every row includes activity labels offering insights into different activities or events described within each context.

    To further ensure diversity within the datasets' distribution and enhance their readiness for diverse application scenarios like generalization testing or fairness evaluation during model development stages; splits according to train/dev/test are included along with split types such as random or balanced distribution-type splitting techniques.

    In summary, the HellaSwag dataset presents a valuable resource for researchers and practitioners in the field of commonsense NLI. By leveraging this dataset, one can train and evaluate machine learning models that excel at generating plausible sentence completions based on common sense knowledge

    Research Ideas Language Modeling: The HellaSwag dataset can be used to train language models to better understand common sense knowledge and improve sentence completion tasks. Common Sense Reasoning: Researchers can use this dataset to study and develop algorithms that can reason and make inferences based on common sense knowledge. Evaluating Machine Performance: The dataset can be used to evaluate the performance of machine learning models in completing sentences based on common sense, helping researchers and developers understand the limitations of current NLI systems

    License

    CC0

    Original Data Source: HellaSwag: Commonsense NLI

  12. d

    Automaton AI Data labeling services

    • datarade.ai
    Updated Mar 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Automaton AI (2021). Automaton AI Data labeling services [Dataset]. https://datarade.ai/data-products/data-labeling-services-automaton-ai
    Explore at:
    .json, .xml, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Mar 20, 2021
    Dataset authored and provided by
    Automaton AI
    Area covered
    Nepal, Australia, Myanmar, Costa Rica, Western Sahara, Moldova (Republic of), Guinea-Bissau, Djibouti, Kyrgyzstan, China
    Description

    Being an Image labeling expert, we have immense experience in various types of data annotation services. We Annotate data quickly and effectively with our patented Automated Data Labelling tool along with our in-house, full-time, and highly trained annotators.

    We can label the data with the following features:

    1. Image classification
    2. Object detection
    3. Semantic segmentation
    4. Image tagging
    5. Text annotation
    6. Point cloud annotation
    7. Key-Point annotation
    8. Custom user-defined labeling

    Data Services we provide:

    1. Data collection & sourcing
    2. Data cleaning
    3. Data mining
    4. Data labeling
    5. Data management​

    We have an AI-enabled training data platform "ADVIT", the most advanced Deep Learning (DL) platform to create, manage high-quality training data and DL models all in one place.

  13. k

    Coinbase's Climb: Can it Maintain Momentum? (COIN) (Forecast)

    • kappasignal.com
    Updated May 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Coinbase's Climb: Can it Maintain Momentum? (COIN) (Forecast) [Dataset]. https://www.kappasignal.com/2024/05/coinbases-climb-can-it-maintain.html
    Explore at:
    Dataset updated
    May 11, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Coinbase's Climb: Can it Maintain Momentum? (COIN)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  14. Data from: CCTV Surveillance Dataset

    • kaggle.com
    Updated Sep 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rexayyyy (2022). CCTV Surveillance Dataset [Dataset]. https://www.kaggle.com/datasets/rexayyyy/cctv-surveillance-dataset/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 12, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Rexayyyy
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    4 Classes 1. ESF (Explosives, Smoke and Fire) 2. Accident 3. Weapon 4. Fighting Pre-Processing Auto-Orient: Applied Resize: Stretch to 416x416 Augmentation applied 90° Rotate: Clockwise, Counter-Clockwise, Upside Down Exposure: Between -32% and +32% Mosaic: Applied Bounding Box: 90° Rotate: Clockwise, Counter-Clockwise, Upside Down Annotated in YOLO format

  15. g

    Video tutorial on data literacy​ training | gimi9.com

    • gimi9.com
    Updated Mar 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Video tutorial on data literacy​ training | gimi9.com [Dataset]. https://gimi9.com/dataset/mekong_video-tutorial-on-data-literacy-training
    Explore at:
    Dataset updated
    Mar 23, 2025
    Description

    This video series presents 11 lessons and introduction to data literacy organized by the Open Development Cambodia Organization (ODC) to provide video tutorials on data literacy and the use of data in data storytelling. There are 12 videos which illustrate following sessions: * Introduction to the data literacy course * Lesson 1: Understanding data * Lesson 2: Explore data tables and data products * Lesson 3: Advanced Google Search * Lesson 4: Navigating data portals and validating data * Lesson 5: Common data format * Lesson 6: Data standard * Lesson 7: Data cleaning with Google Sheets * Lesson 8: Basic statistic * Lesson 9: Basic Data analysis using Google Sheets * Lesson 10: Data visualization * Lesson 11: Data Visualization with Flourish

  16. d

    Training data from: Machine learning predicts which rivers, streams, and...

    • datadryad.org
    • data.niaid.nih.gov
    zip
    Updated Dec 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Simon Greenhill; Hannah Druckenmiller; Sherrie Wang; David Keiser; Manuela Girotto; Jason Moore; Nobuhiro Yamaguchi; Alberto Todeschini; Joseph Shapiro (2023). Training data from: Machine learning predicts which rivers, streams, and wetlands the Clean Water Act regulates [Dataset]. http://doi.org/10.5061/dryad.m63xsj47s
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 12, 2023
    Dataset provided by
    Dryad
    Authors
    Simon Greenhill; Hannah Druckenmiller; Sherrie Wang; David Keiser; Manuela Girotto; Jason Moore; Nobuhiro Yamaguchi; Alberto Todeschini; Joseph Shapiro
    Time period covered
    2023
    Description

    This dataset contains data used to train the models.

  17. Household Survey on Information and Communications Technology– 2019 - West...

    • pcbs.gov.ps
    Updated Mar 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2020). Household Survey on Information and Communications Technology– 2019 - West Bank and Gaza [Dataset]. https://www.pcbs.gov.ps/PCBS-Metadata-en-v5.2/index.php/catalog/489
    Explore at:
    Dataset updated
    Mar 16, 2020
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttp://pcbs.gov.ps/
    Time period covered
    2019
    Area covered
    Gaza, Gaza Strip, West Bank
    Description

    Abstract

    The Palestinian society's access to information and communication technology tools is one of the main inputs to achieve social development and economic change to the status of Palestinian society; on the basis of its impact on the revolution of information and communications technology that has become a feature of this era. Therefore, and within the scope of the efforts exerted by the Palestinian Central Bureau of Statistics in providing official Palestinian statistics on various areas of life for the Palestinian community, PCBS implemented the household survey for information and communications technology for the year 2019. The main objective of this report is to present the trends of accessing and using information and communication technology by households and individuals in Palestine, and enriching the information and communications technology database with indicators that meet national needs and are in line with international recommendations.

    Geographic coverage

    Palestine, West Bank, Gaza strip

    Analysis unit

    Household, Individual

    Universe

    All Palestinian households and individuals (10 years and above) whose usual place of residence in 2019 was in the state of Palestine.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sampling Frame The sampling frame consists of master sample which were enumerated in the 2017 census. Each enumeration area consists of buildings and housing units with an average of about 150 households. These enumeration areas are used as primary sampling units (PSUs) in the first stage of the sampling selection.

    Sample size The estimated sample size is 8,040 households.

    Sample Design The sample is three stages stratified cluster (pps) sample. The design comprised three stages: Stage (1): Selection a stratified sample of 536 enumeration areas with (pps) method. Stage (2): Selection a stratified random sample of 15 households from each enumeration area selected in the first stage. Stage (3): Selection one person of the (10 years and above) age group in a random method by using KISH TABLES.

    Sample Strata The population was divided by: 1- Governorate (16 governorates, where Jerusalem was considered as two statistical areas) 2- Type of Locality (urban, rural, refugee camps).

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Questionnaire The survey questionnaire consists of identification data, quality controls and three main sections: Section I: Data on household members that include identification fields, the characteristics of household members (demographic and social) such as the relationship of individuals to the head of household, sex, date of birth and age.

    Section II: Household data include information regarding computer processing, access to the Internet, and possession of various media and computer equipment. This section includes information on topics related to the use of computer and Internet, as well as supervision by households of their children (5-17 years old) while using the computer and Internet, and protective measures taken by the household in the home.

    Section III: Data on Individuals (10 years and over) about computer use, access to the Internet and possession of a mobile phone.

    Cleaning operations

    Programming Consistency Check The data collection program was designed in accordance with the questionnaire's design and its skips. The program was examined more than once before the conducting of the training course by the project management where the notes and modifications were reflected on the program by the Data Processing Department after ensuring that it was free of errors before going to the field.

    Using PC-tablet devices reduced data processing stages, and fieldworkers collected data and sent it directly to server, and project management withdraw the data at any time.

    In order to work in parallel with Jerusalem (J1), a data entry program was developed using the same technology and using the same database used for PC-tablet devices.

    Data Cleaning After the completion of data entry and audit phase, data is cleaned by conducting internal tests for the outlier answers and comprehensive audit rules through using SPSS program to extract and modify errors and discrepancies to prepare clean and accurate data ready for tabulation and publishing.

    Tabulation After finalizing checking and cleaning data from any errors. Tables extracted according to prepared list of tables.

    Response rate

    The response rate in the West Bank reached 77.6% while in the Gaza Strip it reached 92.7%.

    Sampling error estimates

    Sampling Errors Data of this survey affected by sampling errors due to use of the sample and not a complete enumeration. Therefore, certain differences are expected in comparison with the real values obtained through censuses. Variance were calculated for the most important indicators, There is no problem to disseminate results at the national level and at the level of the West Bank and Gaza Strip.

    Non-Sampling Errors Non-Sampling errors are possible at all stages of the project, during data collection or processing. These are referred to non-response errors, response errors, interviewing errors and data entry errors. To avoid errors and reduce their effects, strenuous efforts were made to train the field workers intensively. They were trained on how to carry out the interview, what to discuss and what to avoid, as well as practical and theoretical training during the training course.

    The implementation of the survey encountered non-response where the case (household was not present at home) during the fieldwork visit become the high percentage of the non response cases. The total non-response rate reached 17.5%. The refusal percentage reached 2.9% which is relatively low percentage compared to the household surveys conducted by PCBS, and the reason is the questionnaire survey is clear.

  18. o

    QA4MRE (Reading Comprehension Q&A)

    • opendatabay.com
    .undefined
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datasimple (2025). QA4MRE (Reading Comprehension Q&A) [Dataset]. https://www.opendatabay.com/data/ai-ml/e20ba707-f7d5-4e77-b2da-e90a67e77b9d
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Datasimple
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Healthcare Providers & Services Utilization
    Description

    The QA4MRE dataset offers a magnificent collection of passages with connected questions and answers, providing researchers with a defining set of data to work from. With its wide range, this has been the go-to source for many research projects like the CLEF 2011, 2012 and 2013 Shared Tasks - where training datasets are available for the main track as well as documents ready to be used in two pilot studies related to Alzheimer's disease and entrance exams. This expansive dataset can allow you to unleash your creativity in ways you never thought possible - uncovering new possibilities and exciting findings as it serves as an abundant source of information. No matter which field you come from or what kind of insights you’re looking for, this powerhouse dataset will have something special waiting just around the corner

    More Datasets For more datasets, click here.

    Featured Notebooks 🚨 Your notebook can be here! 🚨! How to use the dataset How to Use the QA4MRE Dataset for Your Research The QA4MRE (Question Answering and Reading Comprehension) dataset is a great resource for researchers who want to use comprehensive datasets to explore creative approaches and solutions. This powerful dataset provides several versions of training and development data in the form of passages with accompanying questions and answers. Additionally, there are gold standard documents included that can be used in two different pilot studies related to Alzheimer’s disease as well as entrance exams. The following is a guide on how to make the most out of this valuable data set:

    Analyze Data Structures - Once you've downloaded all necessary materials, it’s time for analyzing what structure each file follows in order access its contents accordingly; knowing which column helps refine your searching process as some files go beyond just providing questions & answers such as providing topic names associated with passage text relevant processing question asking comprehension testing etc.. The table below serves as basic overview each column provided in both train & dev variants found within this datasets:

    Column NameDescriptionDatatype
    Topic nameName of topic passage representsString

    Refine Data Searching Process - Lastly if plan develop an automated system/algorithm uncover precise contents from manipulated articles/passages then refining already established search process involving

    Research Ideas Creating an automated question answering system that is capable of engaging in conversations with a user. This could be used as a teaching assistant to help students study for exams and other tests or as a virtual assistant for customer service. Developing a summarization tool dedicated specifically to the QA4MRE dataset, which can extract key information from each passage and output concise summaries with confidence scores indicating the likelihood of the summary being accurate compared to the original text. Utilizing natural language processing techniques to analyze questions related to Alzheimer’s disease and creating machine learning models that accurately predict patient responses when asked various sets of questions about their condition, thus aiding in diagnosing Alzheimer's Disease early on in its development stages

    License

    CC0

    Original Data Source: QA4MRE (Reading Comprehension Q&A)

  19. D

    Data Labeling Market Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Labeling Market Report [Dataset]. https://www.datainsightsmarket.com/reports/data-labeling-market-20383
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 8, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The data labeling market is experiencing robust growth, projected to reach $3.84 billion in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 28.13% from 2025 to 2033. This expansion is fueled by the increasing demand for high-quality training data across various sectors, including healthcare, automotive, and finance, which heavily rely on machine learning and artificial intelligence (AI). The surge in AI adoption, particularly in areas like autonomous vehicles, medical image analysis, and fraud detection, necessitates vast quantities of accurately labeled data. The market is segmented by sourcing type (in-house vs. outsourced), data type (text, image, audio), labeling method (manual, automatic, semi-supervised), and end-user industry. Outsourcing is expected to dominate the sourcing segment due to cost-effectiveness and access to specialized expertise. Similarly, image data labeling is likely to hold a significant share, given the visual nature of many AI applications. The shift towards automation and semi-supervised techniques aims to improve efficiency and reduce labeling costs, though manual labeling will remain crucial for tasks requiring high accuracy and nuanced understanding. Geographical distribution shows strong potential across North America and Europe, with Asia-Pacific emerging as a key growth region driven by increasing technological advancements and digital transformation. Competition in the data labeling market is intense, with a mix of established players like Amazon Mechanical Turk and Appen, alongside emerging specialized companies. The market's future trajectory will likely be shaped by advancements in automation technologies, the development of more efficient labeling techniques, and the increasing need for specialized data labeling services catering to niche applications. Companies are focusing on improving the accuracy and speed of data labeling through innovations in AI-powered tools and techniques. Furthermore, the rise of synthetic data generation offers a promising avenue for supplementing real-world data, potentially addressing data scarcity challenges and reducing labeling costs in certain applications. This will, however, require careful attention to ensure that the synthetic data generated is representative of real-world data to maintain model accuracy. This comprehensive report provides an in-depth analysis of the global data labeling market, offering invaluable insights for businesses, investors, and researchers. The study period covers 2019-2033, with 2025 as the base and estimated year, and a forecast period of 2025-2033. We delve into market size, segmentation, growth drivers, challenges, and emerging trends, examining the impact of technological advancements and regulatory changes on this rapidly evolving sector. The market is projected to reach multi-billion dollar valuations by 2033, fueled by the increasing demand for high-quality data to train sophisticated machine learning models. Recent developments include: September 2024: The National Geospatial-Intelligence Agency (NGA) is poised to invest heavily in artificial intelligence, earmarking up to USD 700 million for data labeling services over the next five years. This initiative aims to enhance NGA's machine-learning capabilities, particularly in analyzing satellite imagery and other geospatial data. The agency has opted for a multi-vendor indefinite-delivery/indefinite-quantity (IDIQ) contract, emphasizing the importance of annotating raw data be it images or videos—to render it understandable for machine learning models. For instance, when dealing with satellite imagery, the focus could be on labeling distinct entities such as buildings, roads, or patches of vegetation.October 2023: Refuel.ai unveiled a new platform, Refuel Cloud, and a specialized large language model (LLM) for data labeling. Refuel Cloud harnesses advanced LLMs, including its proprietary model, to automate data cleaning, labeling, and enrichment at scale, catering to diverse industry use cases. Recognizing that clean data underpins modern AI and data-centric software, Refuel Cloud addresses the historical challenge of human labor bottlenecks in data production. With Refuel Cloud, enterprises can swiftly generate the expansive, precise datasets they require in mere minutes, a task that traditionally spanned weeks.. Key drivers for this market are: Rising Penetration of Connected Cars and Advances in Autonomous Driving Technology, Advances in Big Data Analytics based on AI and ML. Potential restraints include: Rising Penetration of Connected Cars and Advances in Autonomous Driving Technology, Advances in Big Data Analytics based on AI and ML. Notable trends are: Healthcare is Expected to Witness Remarkable Growth.

  20. o

    QASPER: NLP Questions and Evidence

    • opendatabay.com
    .undefined
    Updated Jun 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datasimple (2025). QASPER: NLP Questions and Evidence [Dataset]. https://www.opendatabay.com/data/ai-ml/c030902d-7b02-48a2-b32f-8f7140dd1de7
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jun 22, 2025
    Dataset authored and provided by
    Datasimple
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Data Science and Analytics
    Description

    QASPER: NLP Questions and Evidence Discovering Answers with Expertise By Huggingface Hub [source]

    About this dataset QASPER is an incredible collection of over 5,000 questions and answers on a vast range of Natural Language Processing (NLP) papers -- all crowdsourced from experienced NLP practitioners. Each question in the dataset is written based only on the titles and abstracts of the corresponding paper, providing an insight into how the experts understood and parsed various materials. The answers to each query have been expertly enriched by evidence taken directly from the full text of each paper. Moreover, QASPER comes with carefully crafted fields that contain relevant information including ‘qas’ – questions and answers; ‘evidence’ – evidence provided for answering questions; title; abstract; figures_and_tables, and full_text. All this adds up to create a remarkable dataset for researchers looking to gain insights into how practitioners interpret NLP topics while providing effective validation when it comes to finding clear-cut solutions to problems encountered in existing literature

    More Datasets For more datasets, click here.

    Featured Notebooks 🚨 Your notebook can be here! 🚨! How to use the dataset This guide will provide instructions on how to use the QASPER dataset of Natural Language Processing (NLP) questions and evidence. The QASPER dataset contains 5,049 questions over 1,585 papers that has been crowdsourced by NLP practitioners. To get the most out of this dataset we will show you how to access the questions and evidence, as well as provide tips for getting started.

    Step 1: Accessing the Dataset To access the data you can download it from Kaggle's website or through a code version control system like Github. Once downloaded, you will find five files in .csv format; two test data sets (test.csv and validation.csv), two train data sets (train-v2-0_lessons_only_.csv and trainv2-0_unsplit.csv) as well as one figure data set (figures_and_tables_.json). Each .csv file contains different datasets with columns representing titles, abstracts, full texts and Q&A fields with evidence for each paper mentioned in each row of each file respectively

    **Step 2: Analyzing Your Data Sets ** Now would be a good time to explore your datasets using basic descriptive statistics or more advanced predictive analytics such as logistic regression or naive bayes models depending on what kind of analysis you would like to undertake with this dataset You can start simple by summarizing some basic crosstabs between any two variables comprise your dataset; titles abstracts etc.). As an example try correlating title lengths with certain number of words in their corresponding abstracts then check if there is anything worth investigating further

    **Step 3: Define Your Research Questions & Perform Further Analysis ** Once satisfied with your initial exploration it is time to dig deeper into the underlying QR relationship among different variables comprising your main documents One way would be using text mining technologies such as topic modeling machine learning techniques or even automated processes that may help summarize any underlying patterns Yet another approach could involve filtering terms that are relevant per specific research hypothesis then process such terms via web crawlers search engines document similarity algorithms etc

    Finally once all relevant parameters are defined analyzed performed searched it would make sense to draw preliminary connsusison linking them back together before conducting replicable tests ensuring reproducible results

    Research Ideas Developing AI models to automatically generate questions and answers from paper titles and abstracts. Enhancing machine learning algorithms by combining the answers with the evidence provided in the dataset to find relationships between papers. Creating online forums for NLP practitioners that uses questions from this dataset to spark discussion within the community

    License

    CC0

    Original Data Source: QASPER: NLP Questions and Evidence

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Ahmed Mohamed (2025). Restaurant Sales-Dirty Data for Cleaning Training [Dataset]. https://www.kaggle.com/datasets/ahmedmohamed2003/restaurant-sales-dirty-data-for-cleaning-training
Organization logo

Restaurant Sales-Dirty Data for Cleaning Training

Welcome to All Scientist Restaurant

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jan 25, 2025
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Ahmed Mohamed
License

Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically

Description

Restaurant Sales Dataset with Dirt Documentation

Overview

The Restaurant Sales Dataset with Dirt contains data for 17,534 transactions. The data introduces realistic inconsistencies ("dirt") to simulate real-world scenarios where data may have missing or incomplete information. The dataset includes sales details across multiple categories, such as starters, main dishes, desserts, drinks, and side dishes.

Dataset Use Cases

This dataset is suitable for: - Practicing data cleaning tasks, such as handling missing values and deducing missing information. - Conducting exploratory data analysis (EDA) to study restaurant sales patterns. - Feature engineering to create new variables for machine learning tasks.

Columns Description

Column NameDescriptionExample Values
Order IDA unique identifier for each order.ORD_123456
Customer IDA unique identifier for each customer.CUST_001
CategoryThe category of the purchased item.Main Dishes, Drinks
ItemThe name of the purchased item. May contain missing values due to data dirt.Grilled Chicken, None
PriceThe static price of the item. May contain missing values.15.0, None
QuantityThe quantity of the purchased item. May contain missing values.1, None
Order TotalThe total price for the order (Price * Quantity). May contain missing values.45.0, None
Order DateThe date when the order was placed. Always present.2022-01-15
Payment MethodThe payment method used for the transaction. May contain missing values due to data dirt.Cash, None

Key Characteristics

  1. Data Dirtiness:

    • Missing values in key columns (Item, Price, Quantity, Order Total, Payment Method) simulate real-world challenges.
    • At least one of the following conditions is ensured for each record to identify an item:
      • Item is present.
      • Price is present.
      • Both Quantity and Order Total are present.
    • If Price or Quantity is missing, the other is used to deduce the missing value (e.g., Order Total / Quantity).
  2. Menu Categories and Items:

    • Items are divided into five categories:
      • Starters: E.g., Chicken Melt, French Fries.
      • Main Dishes: E.g., Grilled Chicken, Steak.
      • Desserts: E.g., Chocolate Cake, Ice Cream.
      • Drinks: E.g., Coca Cola, Water.
      • Side Dishes: E.g., Mashed Potatoes, Garlic Bread.

3 Time Range: - Orders span from January 1, 2022, to December 31, 2023.

Cleaning Suggestions

  1. Handle Missing Values:

    • Fill missing Order Total or Quantity using the formula: Order Total = Price * Quantity.
    • Deduce missing Price from Order Total / Quantity if both are available.
  2. Validate Data Consistency:

    • Ensure that calculated values (Order Total = Price * Quantity) match.
  3. Analyze Missing Patterns:

    • Study the distribution of missing values across categories and payment methods.

Menu Map with Prices and Categories

CategoryItemPrice
StartersChicken Melt8.0
StartersFrench Fries4.0
StartersCheese Fries5.0
StartersSweet Potato Fries5.0
StartersBeef Chili7.0
StartersNachos Grande10.0
Main DishesGrilled Chicken15.0
Main DishesSteak20.0
Main DishesPasta Alfredo12.0
Main DishesSalmon18.0
Main DishesVegetarian Platter14.0
DessertsChocolate Cake6.0
DessertsIce Cream5.0
DessertsFruit Salad4.0
DessertsCheesecake7.0
DessertsBrownie6.0
DrinksCoca Cola2.5
DrinksOrange Juice3.0
Drinks ...
Search
Clear search
Close search
Google apps
Main menu