Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
What is Pandas?
Pandas is a Python library used for working with data sets.
It has functions for analyzing, cleaning, exploring, and manipulating data.
The name "Pandas" has a reference to both "Panel Data", and "Python Data Analysis" and was created by Wes McKinney in 2008.
Why Use Pandas?
Pandas allows us to analyze big data and make conclusions based on statistical theories.
Pandas can clean messy data sets, and make them readable and relevant.
Relevant data is very important in data science.
What Can Pandas Do?
Pandas gives you answers about the data. Like:
Is there a correlation between two or more columns?
What is average value?
Max value?
Min value?
Facebook
TwitterThis dataset helps you to increase the data-cleaning process using the pure python pandas library.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset is designed specifically for beginners and intermediate learners to practice data cleaning techniques using Python and Pandas.
It includes 500 rows of simulated employee data with intentional errors such as:
Missing values in Age and Salary
Typos in email addresses (@gamil.com)
Inconsistent city name casing (e.g., lahore, Karachi)
Extra spaces in department names (e.g., " HR ")
✅ Skills You Can Practice:
Detecting and handling missing data
String cleaning and formatting
Removing duplicates
Validating email formats
Standardizing categorical data
You can use this dataset to build your own data cleaning notebook, or use it in interviews, assessments, and tutorials.
Facebook
TwitterThis dataset was created by Muhammad Altaf Khan
Facebook
TwitterData analysis enthusiast diving into the world of Pandas. Making mistakes and learning every step of the way. Come join me on my journey!
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Part of the dissertation Pitch of Voiced Speech in the Short-Time Fourier Transform: Algorithms, Ground Truths, and Evaluation Methods.© 2020, Bastian Bechtold. All rights reserved. Estimating the fundamental frequency of speech remains an active area of research, with varied applications in speech recognition, speaker identification, and speech compression. A vast number of algorithms for estimatimating this quantity have been proposed over the years, and a number of speech and noise corpora have been developed for evaluating their performance. The present dataset contains estimated fundamental frequency tracks of 25 algorithms, six speech corpora, two noise corpora, at nine signal-to-noise ratios between -20 and 20 dB SNR, as well as an additional evaluation of synthetic harmonic tone complexes in white noise.The dataset also contains pre-calculated performance measures both novel and traditional, in reference to each speech corpus’ ground truth, the algorithms’ own clean-speech estimate, and our own consensus truth. It can thus serve as the basis for a comparison study, or to replicate existing studies from a larger dataset, or as a reference for developing new fundamental frequency estimation algorithms. All source code and data is available to download, and entirely reproducible, albeit requiring about one year of processor-time.Included Code and Data
ground truth data.zip is a JBOF dataset of fundamental frequency estimates and ground truths of all speech files in the following corpora:
CMU-ARCTIC (consensus truth) [1]FDA (corpus truth and consensus truth) [2]KEELE (corpus truth and consensus truth) [3]MOCHA-TIMIT (consensus truth) [4]PTDB-TUG (corpus truth and consensus truth) [5]TIMIT (consensus truth) [6]
noisy speech data.zip is a JBOF datasets of fundamental frequency estimates of speech files mixed with noise from the following corpora:NOISEX [7]QUT-NOISE [8]
synthetic speech data.zip is a JBOF dataset of fundamental frequency estimates of synthetic harmonic tone complexes in white noise.noisy_speech.pkl and synthetic_speech.pkl are pickled Pandas dataframes of performance metrics derived from the above data for the following list of fundamental frequency estimation algorithms:AUTOC [9]AMDF [10]BANA [11]CEP [12]CREPE [13]DIO [14]DNN [15]KALDI [16]MAPSMBSC [17]NLS [18]PEFAC [19]PRAAT [20]RAPT [21]SACC [22]SAFE [23]SHR [24]SIFT [25]SRH [26]STRAIGHT [27]SWIPE [28]YAAPT [29]YIN [30]
noisy speech evaluation.py and synthetic speech evaluation.py are Python programs to calculate the above Pandas dataframes from the above JBOF datasets. They calculate the following performance measures:Gross Pitch Error (GPE), the percentage of pitches where the estimated pitch deviates from the true pitch by more than 20%.Fine Pitch Error (FPE), the mean error of grossly correct estimates.High/Low Octave Pitch Error (OPE), the percentage pitches that are GPEs and happens to be at an integer multiple of the true pitch.Gross Remaining Error (GRE), the percentage of pitches that are GPEs but not OPEs.Fine Remaining Bias (FRB), the median error of GREs.True Positive Rate (TPR), the percentage of true positive voicing estimates.False Positive Rate (FPR), the percentage of false positive voicing estimates.False Negative Rate (FNR), the percentage of false negative voicing estimates.F₁, the harmonic mean of precision and recall of the voicing decision.
Pipfile is a pipenv-compatible pipfile for installing all prerequisites necessary for running the above Python programs.
The Python programs take about an hour to compute on a fast 2019 computer, and require at least 32 Gb of memory.References:
John Kominek and Alan W Black. CMU ARCTIC database for speech synthesis, 2003.Paul C Bagshaw, Steven Hiller, and Mervyn A Jack. Enhanced Pitch Tracking and the Processing of F0 Contours for Computer Aided Intonation Teaching. In EUROSPEECH, 1993.F Plante, Georg F Meyer, and William A Ainsworth. A Pitch Extraction Reference Database. In Fourth European Conference on Speech Communication and Technology, pages 837–840, Madrid, Spain, 1995.Alan Wrench. MOCHA MultiCHannel Articulatory database: English, November 1999.Gregor Pirker, Michael Wohlmayr, Stefan Petrik, and Franz Pernkopf. A Pitch Tracking Corpus with Evaluation on Multipitch Tracking Scenario. page 4, 2011.John S. Garofolo, Lori F. Lamel, William M. Fisher, Jonathan G. Fiscus, David S. Pallett, Nancy L. Dahlgren, and Victor Zue. TIMIT Acoustic-Phonetic Continuous Speech Corpus, 1993.Andrew Varga and Herman J.M. Steeneken. Assessment for automatic speech recognition: II. NOISEX-92: A database and an experiment to study the effect of additive noise on speech recog- nition systems. Speech Communication, 12(3):247–251, July 1993.David B. Dean, Sridha Sridharan, Robert J. Vogt, and Michael W. Mason. The QUT-NOISE-TIMIT corpus for the evaluation of voice activity detection algorithms. Proceedings of Interspeech 2010, 2010.Man Mohan Sondhi. New methods of pitch extraction. Audio and Electroacoustics, IEEE Transactions on, 16(2):262—266, 1968.Myron J. Ross, Harry L. Shaffer, Asaf Cohen, Richard Freudberg, and Harold J. Manley. Average magnitude difference function pitch extractor. Acoustics, Speech and Signal Processing, IEEE Transactions on, 22(5):353—362, 1974.Na Yang, He Ba, Weiyang Cai, Ilker Demirkol, and Wendi Heinzelman. BaNa: A Noise Resilient Fundamental Frequency Detection Algorithm for Speech and Music. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12):1833–1848, December 2014.Michael Noll. Cepstrum Pitch Determination. The Journal of the Acoustical Society of America, 41(2):293–309, 1967.Jong Wook Kim, Justin Salamon, Peter Li, and Juan Pablo Bello. CREPE: A Convolutional Representation for Pitch Estimation. arXiv:1802.06182 [cs, eess, stat], February 2018. arXiv: 1802.06182.Masanori Morise, Fumiya Yokomori, and Kenji Ozawa. WORLD: A Vocoder-Based High-Quality Speech Synthesis System for Real-Time Applications. IEICE Transactions on Information and Systems, E99.D(7):1877–1884, 2016.Kun Han and DeLiang Wang. Neural Network Based Pitch Tracking in Very Noisy Speech. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12):2158–2168, Decem- ber 2014.Pegah Ghahremani, Bagher BabaAli, Daniel Povey, Korbinian Riedhammer, Jan Trmal, and Sanjeev Khudanpur. A pitch extraction algorithm tuned for automatic speech recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, pages 2494–2498. IEEE, 2014.Lee Ngee Tan and Abeer Alwan. Multi-band summary correlogram-based pitch detection for noisy speech. Speech Communication, 55(7-8):841–856, September 2013.Jesper Kjær Nielsen, Tobias Lindstrøm Jensen, Jesper Rindom Jensen, Mads Græsbøll Christensen, and Søren Holdt Jensen. Fast fundamental frequency estimation: Making a statistically efficient estimator computationally efficient. Signal Processing, 135:188–197, June 2017.Sira Gonzalez and Mike Brookes. PEFAC - A Pitch Estimation Algorithm Robust to High Levels of Noise. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(2):518—530, February 2014.Paul Boersma. Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise ratio of a sampled sound. In Proceedings of the institute of phonetic sciences, volume 17, page 97—110. Amsterdam, 1993.David Talkin. A robust algorithm for pitch tracking (RAPT). Speech coding and synthesis, 495:518, 1995.Byung Suk Lee and Daniel PW Ellis. Noise robust pitch tracking by subband autocorrelation classification. In Interspeech, pages 707–710, 2012.Wei Chu and Abeer Alwan. SAFE: a statistical algorithm for F0 estimation for both clean and noisy speech. In INTERSPEECH, pages 2590–2593, 2010.Xuejing Sun. Pitch determination and voice quality analysis using subharmonic-to-harmonic ratio. In Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International Conference on, volume 1, page I—333. IEEE, 2002.Markel. The SIFT algorithm for fundamental frequency estimation. IEEE Transactions on Audio and Electroacoustics, 20(5):367—377, December 1972.Thomas Drugman and Abeer Alwan. Joint Robust Voicing Detection and Pitch Estimation Based on Residual Harmonics. In Interspeech, page 1973—1976, 2011.Hideki Kawahara, Masanori Morise, Toru Takahashi, Ryuichi Nisimura, Toshio Irino, and Hideki Banno. TANDEM-STRAIGHT: A temporally stable power spectral representation for periodic signals and applications to interference-free spectrum, F0, and aperiodicity estimation. In Acous- tics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, pages 3933–3936. IEEE, 2008.Arturo Camacho. SWIPE: A sawtooth waveform inspired pitch estimator for speech and music. PhD thesis, University of Florida, 2007.Kavita Kasi and Stephen A. Zahorian. Yet Another Algorithm for Pitch Tracking. In IEEE International Conference on Acoustics Speech and Signal Processing, pages I–361–I–364, Orlando, FL, USA, May 2002. IEEE.Alain de Cheveigné and Hideki Kawahara. YIN, a fundamental frequency estimator for speech and music. The Journal of the Acoustical Society of America, 111(4):1917, 2002.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Reddit is a social news, content rating and discussion website. It's one of the most popular sites on the internet. Reddit has 52 million daily active users and approximately 430 million users who use it once a month. Reddit has different subreddits and here We'll use the r/AskScience Subreddit.
The dataset is extracted from the subreddit /r/AskScience from Reddit. The data was collected between 01-01-2016 and 20-05-2022. It contains 612,668 Datapoints and 25 Columns. The database contains a number of information about the questions asked on the subreddit, the description of the submission, the flair of the question, NSFW or SFW status, the year of the submission, and more. The data is extracted using python and Pushshift's API. A little bit of cleaning is done using NumPy and pandas as well. (see the descriptions of individual columns below).
The dataset contains the following columns and descriptions: author - Redditor Name author_fullname - Redditor Full name contest_mode - Contest mode [implement obscured scores and randomized sorting]. created_utc - Time the submission was created, represented in Unix Time. domain - Domain of submission. edited - If the post is edited or not. full_link - Link of the post on the subreddit. id - ID of the submission. is_self - Whether or not the submission is a self post (text-only). link_flair_css_class - CSS Class used to identify the flair. link_flair_text - Flair on the post or The link flair’s text content. locked - Whether or not the submission has been locked. num_comments - The number of comments on the submission. over_18 - Whether or not the submission has been marked as NSFW. permalink - A permalink for the submission. retrieved_on - time ingested. score - The number of upvotes for the submission. description - Description of the Submission. spoiler - Whether or not the submission has been marked as a spoiler. stickied - Whether or not the submission is stickied. thumbnail - Thumbnail of Submission. question - Question Asked in the Submission. url - The URL the submission links to, or the permalink if a self post. year - Year of the Submission. banned - Banned by the moderator or not.
This dataset can be used for Flair Prediction, NSFW Classification, and different Text Mining/NLP tasks. Exploratory Data Analysis can also be done to get the insights and see the trend and patterns over the years.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Data cleaning / Files for practical learning
Randomly generated data
Data source
The data is randomly generated and not from an external source. The data do not represent parameters.
The data in the files have been stored in a structure that allows the use of basic tools created for data cleaning, e.g. 'fillna', 'dropna' functions from the pandas module. Additional information can be found in the file descriptions.
License
CC0: Public Domain
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This project focuses on data mapping, integration, and analysis to support the development and enhancement of six UNCDF operational applications: OrgTraveler, Comms Central, Internal Support Hub, Partnership 360, SmartHR, and TimeTrack. These apps streamline workflows for travel claims, internal support, partnership management, and time tracking within UNCDF.Key Features and Tools:Data Mapping for Salesforce CRM Migration: Structured and mapped data flows to ensure compatibility and seamless migration to Salesforce CRM.Python for Data Cleaning and Transformation: Utilized pandas, numpy, and APIs to clean, preprocess, and transform raw datasets into standardized formats.Power BI Dashboards: Designed interactive dashboards to visualize workflows and monitor performance metrics for decision-making.Collaboration Across Platforms: Integrated Google Collab for code collaboration and Microsoft Excel for data validation and analysis.
Facebook
TwitterCooperation involves the challenge of jointly selecting one from multiple goals while maintaining the team’s joint commitment to it. We test joint commitment in a multi-player hunting game, combining psychophysics and computational modeling. Joint commitment is modeled through an "Imagined We" (IW) approach, where each agent uses Bayesian inference to infer the intention of “We”, an imagined supraindividual agent controlling all agents as its body parts. This is compared against a Reward Sharing (RS) model, which frames cooperation through reward sharing via multi-agent reinforcement learning (MARL). Both humans and IW, but not RS, maintained high performance by jointly committing to a single prey, regardless of prey quantity or speed. Human observers rated all hunters in both human and IW teams as making high contributions to the catch, regardless of their proximity to the prey, suggesting that high-quality hunting stemmed from sophisticated cooperation rather than individual strategie...
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Species loss is highly scale-dependent, following the species-area relationship. We analysed spatio-temporal patterns of species’ extirpation on a multitaxonomic level using Berlin, the capital city of Germany. Berlin is one of the largest cities in Europe and has experienced a strong urbanisation trend since the late 19th century. We expected species’ extirpation to be exceptionally high due to the long history of urbanisation. Analysing regional Red Lists of Threatened Plants, Animals, and Fungi of Berlin (covering 9498 species), we found that 16 % of species were extirpated, a rate 5.9 times higher than at the German scale, and 47.1 times higher than at the European scale. Species’ extirpation in Berlin is comparable to that of another German city with a similarly broad taxonomic coverage, but much higher than in regional areas with less human impact. The documentation of species’ extirpation started in the 18th century and is well documented for the 19th and 20th centuries. We found an average annual extirpation of 3.6 species in the 19th century, 9.6 species in the 20th century, and the same number of extirpated species as in the 19th century were documented in the 21th century, despite the much shorter time period. Our results showed that species’ extirpation is higher at small than on large spatial scales, and might be negatively influenced by urbanisation, with different effects on different taxonomic groups and habitats. Over time, we found that species’ extirpation is highest during periods of high human alterations and is negatively affected by the number of people living in the city. But, there is still a lack of data to decouple the size of the area and the human impact of urbanisation. However, cities might be suitable systems for studying species’ extirpation processes due to their small scale and human impact. Methods Data extraction: To determine the proportion of extirpated species for Germany, we manually summarised the numbers of species classified in category 0 ‘extinct or extirpated’ and calculated the percentage in relation to the total number of species listed in the Red Lists of Threatened Species for Germany, taken from the website of the Red List Centre of Germany (Rote Liste Zentrum, 2024a). For Berlin, we used the 37 current Red Lists of Threatened Plants, Animals, and Fungi from the city-state of Berlin, covering the years from 2004 to 2023, taken from the official capital city portal of the Berlin Senate Department for Mobility, Transport, Climate Protection and Environment (SenMVKU, 2024a; see overview of Berlin Red Lists used in Table 1). We extracted all species that are listed as extinct/extirpated, i.e. classified in category 0, and additionally, if available, the date of the last record of the species in Berlin. The Red List of macrofungi of the order Boletales by Schmidt (2017) was not included in our study, as this Red List has only been compiled once in the frame of a pilot project and therefore lacks the category 0 ‘extinct or extirpated’. We used Python, version 3.7.9 (Van Rossum and Drake, 2009), the Python libraries Pandas (McKinney et al., 2010), and Camelot-py, version 0.11.0 (Vinayak Meta, 2023) in Jupyter Lab, version 4.0.6 (Project Jupyter, 2016) notebooks. In the first step, we created a metadata table of the Red Lists of Berlin to keep track of the extraction process, maintain the source reference links, and store summarised data from each Red List pdf file. At the extraction of each file, a data row was added to the metadata table which was updated throughout the rest of the process. In the second step, we identified the page range for extraction for each extracted Red List file. The extraction mechanism for each Red List file depended on the printed table layout. We extracted tables with lined rows with the Lattice parsing method (Camelot-py, 2024a), and tables with alternating-coloured rows with the Stream method (Camelot-py, 2024b). For proofing the consistency of extraction, we used the Camelot-py accuracy report along with the Pandas data frame shape property (Pandas, 2024). After initial data cleaning for consistent column counts and missing data, we filtered the data for species in category 0 only. We collated data frames together and exported them as a CSV file. In a further step, we proofread whether the filtered data was tallied with the summary tables, given in each Red List. Finally, we cleaned each Red List table to contain the species, the current hazard level (category 0), the date of the species’ last detection in Berlin, and the reference (codes and data available at: Github, 2023). When no date of last detection was given for a species, we contacted the authors of the respective Red Lists and/or used former Red Lists to find information on species’ last detections (Burger et al., 1998; Saure et al., 1998; 1999; Braasch et al., 2000; Saure, 2000). Determination of the recording time windows of the Berlin Red Lists We determined the time windows, the Berlin Red Lists look back on, from their methodologies. If the information was missing in the current Red Lists, we consulted the previous version (see all detailed time windows of the earliest assessments with references in Table B2 in Appendix B). Data classification: For the analyses of the percentage of species in the different hazard levels, we used the German Red List categories as described in detail by Saure and Schwarz (2005) and Ludwig et al. (2009). These are: Prewarning list, endangered (category 3), highly endangered (category 2), threatened by extinction or extirpation (category 1), and extinct or extirpated (category 0). To determine the number of indigenous unthreatened species in each Red List, we subtracted the number of species in the five categories and the number of non-indigenous species (neobiota) from the total number of species in each Red List. For further analyses, we pooled the taxonomic groups of the 37 Red Lists into more broadly defined taxonomic groups: Plants, lichens, fungi, algae, mammals, birds, amphibians, reptiles, fish and lampreys, molluscs, and arthropods (see categorisation in Table 1). We categorised slime fungi (Myxomycetes including Ceratiomyxomycetes) as ‘fungi’, even though they are more closely related to animals because slime fungi are traditionally studied by mycologists (Schmidt and Täglich, 2023). We classified ‘lichens’ in a separate category, rather than in ‘fungi’, as they are a symbiotic community of fungi and algae (Krause et al., 2017). For analyses of the percentage of extirpated species of each pooled taxonomic group, we set the number of extirpated species in relation to the sum of the number of unthreatened species, species in the prewarning list, and species in the categories one to three. We further categorised the extirpated species according to the habitats in which they occurred. We therefore categorised terrestrial species as ‘terrestrial’ and aquatic species as ‘aquatic’. Amphibians and dragonflies have life stages in both, terrestrial and aquatic habitats, and were categorised as ‘terrestrial/aquatic’. We also categorised plants and mosses as ‘terrestrial/aquatic’ if they depend on wetlands (see all habitat categories for each species in Table C1 in Appendix C). The available data considering the species’ last detection in Berlin ranked from a specific year, over a period of time up to a century. If a year of last detection was given with the auxiliary ‘around’ or ‘circa’, we used for further analyses the given year for temporal classification. If a year of last detection was given with the auxiliary ‘before’ or ‘after’, we assumed that the nearest year of last detection was given and categorised the species in the respective century. In this case, we used the species for temporal analyses by centuries only, not across years. If only a timeframe was given as the date of last detection, we used the respective species for temporal analyses between centuries, only. We further classified all of the extirpated species in centuries, in which species were lastly detected: 17th century (1601-1700); 18th century (1701-1800); 19th century (1801-1900); 20th century (1901-2000); 21th century (2001-now) (see all data on species’ last detection in Table C1 in Appendix C). For analyses of the effects of the number of inhabitants on species’ extirpation in Berlin, we used species that went extirpated between the years 1920 and 2012, because of Berlin’s was expanded to ‘Groß-Berlin’ in 1920 (Buesch and Haus, 1987), roughly corresponding to the cities’ current area. Therefore, we included the number of Berlin’s inhabitants for every year a species was last detected (Statistische Jahrbücher der Stadt Berlin, 1920, 1924-1998, 2000; see all data on the number of inhabitants for each year of species’ last detection in Table C1 in Appendix C). Materials and Methods from Keinath et al. (2024): 'High levels of species’ extirpation in an urban environment – A case study from Berlin, Germany, covering 1700-2023'.
Facebook
TwitterThis dataset presents annual counts of threatened species from 2004 to 2023 across the top 25 countries most affected by biodiversity loss. Access Full Dataset I Hug Trees – Data Analytics Data is categorized into three groups—Vertebrates, Invertebrates, and Plants and compiled from UNdata and IUCN Red List sources. It includes country names, years, species counts, and biodiversity groupings, and is intended for use in research, education, and public awareness around global conservation priorities. Processing Summary Data Cleaning: Removed duplicates, corrected inconsistencies, and excluded continent-level entries. Categorization: Grouped species data into three broad classes. Ranking: Selected top 25 countries per category, per year, for visual clarity. Output: Generated three structured CSV files (one per group) using Python’s Pandas library. Data Structure File Format: CSV (.csv) Columns: Country – Country name Year – From 2004 to 2023 Value – Number of threatened species Group – Vertebrates, Invertebrates, or Plants Scope and Limitations Focus: National-level trends; no sub-national or habitat-specific granularity Last Updated: April 2025 Future Enhancements: May include finer taxonomic resolution and updated threat metrics Intended Uses Educational tools and biodiversity curriculum support Conservation awareness campaigns and visual storytelling Policy dashboards and SDG 15 (Life on Land) tracking Research into biodiversity trends and hotspot identification Tools & Technologies Python (Pandas): Data filtering, aggregation, and file creation Chart.js: Rendering of interactive bar charts HTML iFrames: Seamless embedding on the I Hug Trees website
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The auction dataset is a really small data set ( 19 items) which is being created for the sole purpose of learning pandas library.
The auction data set contains 5 columns :
1. Item :Gives the description of what items are being sold. 2. Bidding Price : Gives the price at which the item will start being sold at. 3. Selling Price : The selling price tells us at which amount the item was sold. 4. Calls :Calls indicate the number of times the items value was raised or decreased by the customer. 5. Bought By : Gives us the idea which customer bought the item.
Note: There are missing values, which we will try to fill. And yes some values might not make sense once we make those imputations, but this notebook is for the sole purpose of learning.
Facebook
TwitterDescription
This dataset is used to check criticon prompts/responses while testing, it contains instructions/responses from mt_bench_eval, as extracted from: https://github.com/kaistAI/prometheus/blob/main/evaluation/benchmark/data/mt_bench_eval.json The dataset has been obtained cleaning the data with: import re import pandas as pd from datasets import Dataset
df = pd.read_json("mt_bench_eval.json", lines=True)
ds = Dataset.from_pandas(df, preserve_index=False)… See the full description on the dataset page: https://huggingface.co/datasets/distilabel-internal-testing/mt-bench-eval-critique.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains aggregated and sub-metered power consumption data from a two-person apartment in Germany. Data was collected from March 5 to September 4, 2025, spanning 6 months. It includes an aggregate reading from a main smart meter and individual readings from 40 smart plugs, smart relays, and smart power meters monitoring various appliances.
The dataset can be downloaded here: https://doi.org/10.5281/zenodo.17159850
As it contains longer off periods with zeros, the CSV file is nicely compressible.
To extract it use: xz -d DARCK.csv.xz.
The compression leads to a 97% smaller file size (From 4GB to 90.9MB).
To use the dataset in python, you can, e.g., load the csv file into a pandas dataframe.
pythonimport pandas as pd
df = pd.read_csv("DARCK.csv", parse_dates=["time"])
The main meter was monitored using an infrared reading head magnetically attached to the infrared interface of the meter. An ESP8266 flashed with Tasmota decodes the binary datagrams and forwards the Watt readings to the MQTT broker. Individual appliances were monitored using a combination of Shelly Plugs (for outlets), Shelly 1PM (for wired-in devices like ceiling lights), and Shelly PM Mini (for each of the three phases of the oven). All devices reported to a central InfluxDB database via Home Assistant running in docker on a Dell OptiPlex 3020M.
DARCK.csv)The dataset is provided as a single comma-separated value (CSV) file.
Column Name |
Data Type |
Unit |
Description |
time | datetime | - | Timestamp for the reading in YYYY-MM-DD HH:MM:SS |
main | float | Watt | Total aggregate power consumption for the apartment, measured at the main electrical panel. |
[appliance_name] | float | Watt | Power consumption of an individual appliance (e.g., lightbathroom, fridge, sherlockpc). See Section 8 for a full list. |
| Aggregate Columns | |||
aggr_chargers | float | Watt | The sum of sherlockcharger, sherlocklaptop, watsoncharger, watsonlaptop, watsonipadcharger, kitchencharger. |
aggr_stoveplates | float | Watt | The sum of stoveplatel1 and stoveplatel2. |
aggr_lights | float | Watt | The sum of lightbathroom, lighthallway, lightsherlock, lightkitchen, lightlivingroom, lightwatson, lightstoreroom, fcob, sherlockalarmclocklight, sherlockfloorlamphue, sherlockledstrip, livingfloorlamphue, sherlockglobe, watsonfloorlamp, watsondesklamp and watsonledmap. |
| Analysis Columns | |||
inaccuracy | float | Watt | As no electrical device bypasses a power meter, the true inaccuracy can be assessed. It is the absolute error between the sum of individual measurements and the mains reading. A 30W offset is applied to the sum since the measurement devices themselves draw power which is otherwise unaccounted for. |
The final dataset was generated from two raw data sources (meter.csv and shellies.csv) using a comprehensive postprocessing pipeline.
main) PostprocessingThe aggregate power data required several cleaning steps to ensure accuracy.
shellies) PostprocessingThe Shelly devices are not prone to the same burst issue as the ESP8266 is. They push a new reading at every change in power drawn. If no power change is observed or the one observed is too small (less than a few Watt), the reading is pushed once a minute, together with a heartbeat. When a device turns on or off, intermediate power values are published, which leads to sub-second values that need to be handled.
.resample('1s').last().ffill(). time index.NaN values (e.g., from before a device was installed) were filled with 0.0, assuming zero consumption.During analysis, two significant unmetered load events were identified and manually corrected to improve the accuracy of the aggregate reading. The error column (inaccuracy) was recalculated after these corrections.
The following table lists the column names with an explanation where needed. As Watson moved at the beginning of June, some metering plugs changed their appliance.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Vrbo is a synthetic dataset designed to simulate real-world, messy data scenarios for pandas-based data cleaning and analysis practice.
Though the data is artificial, it mimics common patterns seen in business datasets, including:
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Our research obtained real-time information on nucleic acid testing sites through this project website (https://hsdyjc.newhealth.com.cn/wh5/#/). We collected nucleic acid test site status information 24 hours a day for 7 days from 24 October 2022 to 30 October 2022, with no Chinese holidays, to avoid the impact of holidays on the busyness of the tests. We have published the source data collected and the results of the analysis to facilitate further exploration by researchers interested in what we are studying. Each test site has a very large number of real-time statuses, and we filtered out a few pieces of information needed for the study objectives to be retained. This research has designed a specific process to deal with complex data structures, including the following steps: 1. Data collection. Data is logged hourly using the Python program's request library for nucleic acid test site data; 2. Logging the data. After obtaining the accessed data, the data is presented in json format and we save the required information in csv format; 3. Cleaning the data. We use the pandas library to filter the data and keep the ones that have data distribution within 24 hours; 4. Processing the data. The status of the data represents the busy status of the nucleic acid testing sites, where 1 represents rest (closed), 2 represents open (queue less than 15 minutes), 3 represents busy (queue 15-30 minutes) and 4 represents congested (queue greater than 30 minutes). The pandas library was used to filter the percentage of statuses 3 and 4 in the 24 hour period to represent the percentage of busy nucleic acid detection sites.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is the cleaned version of a real-world medical dataset that was originally noisy, incomplete, and contained various inconsistencies. The dataset was cleaned through a structured and well-documented data preprocessing pipeline using Python and Pandas. Key steps in the cleaning process included:
The purpose of cleaning this dataset was to prepare it for further exploratory data analysis (EDA), data visualization, and machine learning modeling.
This cleaned dataset is now ready for training predictive models, generating visual insights, or conducting healthcare-related research. It provides a high-quality foundation for anyone interested in medical analytics or data science practice.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This project focuses on analyzing the S&P 500 companies using data analysis tools like Python (Pandas), SQL, and Power BI. The goal is to extract insights related to sectors, industries, locations, and more, and visualize them using dashboards.
Included Files:
sp500_cleaned.csv – Cleaned dataset used for analysis
sp500_analysis.ipynb – Jupyter Notebook (Python + SQL code)
dashboard_screenshot.png – Screenshot of Power BI dashboard
README.md – Summary of the project and key takeaways
This project demonstrates practical data cleaning, querying, and visualization skills.
Facebook
TwitterThis dataset was created by Shruthi T R
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
What is Pandas?
Pandas is a Python library used for working with data sets.
It has functions for analyzing, cleaning, exploring, and manipulating data.
The name "Pandas" has a reference to both "Panel Data", and "Python Data Analysis" and was created by Wes McKinney in 2008.
Why Use Pandas?
Pandas allows us to analyze big data and make conclusions based on statistical theories.
Pandas can clean messy data sets, and make them readable and relevant.
Relevant data is very important in data science.
What Can Pandas Do?
Pandas gives you answers about the data. Like:
Is there a correlation between two or more columns?
What is average value?
Max value?
Min value?