92 datasets found
  1. d

    B2B Data Cleansing Services - Verified Records - Updated Every 30 Days

    • datarade.ai
    Updated Jan 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thomson Data (2022). B2B Data Cleansing Services - Verified Records - Updated Every 30 Days [Dataset]. https://datarade.ai/data-products/thomson-data-hr-data-reach-hr-professionals-across-the-world-thomson-data
    Explore at:
    .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Jan 8, 2022
    Dataset authored and provided by
    Thomson Data
    Area covered
    Eritrea, Zimbabwe, Panama, Andorra, Denmark, Palau, Micronesia (Federated States of), Bulgaria, Czech Republic, Finland
    Description

    At Thomson Data, we help businesses clean up and manage messy B2B databases to ensure they are up-to-date, correct, and detailed. We believe your sales development representatives and marketing representatives should focus on building meaningful relationships with prospects, not scrubbing through bad data.

    Here are the key steps involved in our B2B data cleansing process:

    1. Data Auditing: We begin with a thorough audit of the database to identify errors, gaps, and inconsistencies, which majorly revolve around identifying outdated, incomplete, and duplicate information.

    2. Data Standardization: Ensuring consistency in the data records is one of our prime services; it includes standardizing job titles, addresses, and company names. It ensures that they can be easily shared and used by different teams.

    3. Data Deduplication: Another way we improve efficiency is by removing all duplicate records. Data deduplication is important in a large B2B dataset as multiple records from the same company may exist in the database.

    4. Data Enrichment: After the first three steps, we enrich your data, fill in the missing details, and then enhance the database with up-to-date records. This is the step that ensures the database is valuable, providing insights that are actionable and complete.

    What are the Key Benefits of Keeping the Data Clean with Thomson Data’s B2B Data Cleansing Service? Once you understand the benefits of our data cleansing service, it will entice you to optimize your data management practices, and it will additionally help you stay competitive in today’s data-driven market.

    Here are some advantages of maintaining a clean database with Thomson Data:

    1. Better ROI for your Sales and Marketing Campaigns: Our clean data will magnify your precise targeting, enabling you to strategize for effective campaigns, increased conversion rate, and ROI.

    2. Compliant with Data Regulations:
      The B2B data cleansing services we provide are compliant to global data norms.

    3. Streamline Operations: Your efforts are directed in the right channel when your data is clean and accurate, as your team doesn’t have to spend their valuable time fixing errors.

    To summarize, we would again bring your attention to how accurate data is essential for driving sales and marketing in a B2B environment. It enhances your business prowess in the avenues of decision-making and customer relationships. Therefore, it is better to have a proactive approach toward B2B data cleansing service and outsource our offerings to stay competitive by unlocking the full potential of your data.

    Send us a request and we will be happy to assist you.

  2. Data Cleansing Software Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Data Cleansing Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-data-cleansing-software-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Cleansing Software Market Outlook



    The global data cleansing software market size was valued at approximately USD 1.5 billion in 2023 and is projected to reach around USD 4.2 billion by 2032, exhibiting a compound annual growth rate (CAGR) of 12.5% during the forecast period. This substantial growth can be attributed to the increasing importance of maintaining clean and reliable data for business intelligence and analytics, which are driving the adoption of data cleansing solutions across various industries.



    The proliferation of big data and the growing emphasis on data-driven decision-making are significant growth factors for the data cleansing software market. As organizations collect vast amounts of data from multiple sources, ensuring that this data is accurate, consistent, and complete becomes critical for deriving actionable insights. Data cleansing software helps organizations eliminate inaccuracies, inconsistencies, and redundancies, thereby enhancing the quality of their data and improving overall operational efficiency. Additionally, the rising adoption of advanced analytics and artificial intelligence (AI) technologies further fuels the demand for data cleansing software, as clean data is essential for the accuracy and reliability of these technologies.



    Another key driver of market growth is the increasing regulatory pressure for data compliance and governance. Governments and regulatory bodies across the globe are implementing stringent data protection regulations, such as the General Data Protection Regulation (GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the United States. These regulations mandate organizations to ensure the accuracy and security of the personal data they handle. Data cleansing software assists organizations in complying with these regulations by identifying and rectifying inaccuracies in their data repositories, thus minimizing the risk of non-compliance and hefty penalties.



    The growing trend of digital transformation across various industries also contributes to the expanding data cleansing software market. As businesses transition to digital platforms, they generate and accumulate enormous volumes of data. To derive meaningful insights and maintain a competitive edge, it is imperative for organizations to maintain high-quality data. Data cleansing software plays a pivotal role in this process by enabling organizations to streamline their data management practices and ensure the integrity of their data. Furthermore, the increasing adoption of cloud-based solutions provides additional impetus to the market, as cloud platforms facilitate seamless integration and scalability of data cleansing tools.



    Regionally, North America holds a dominant position in the data cleansing software market, driven by the presence of numerous technology giants and the rapid adoption of advanced data management solutions. The region is expected to continue its dominance during the forecast period, supported by the strong emphasis on data quality and compliance. Europe is also a significant market, with countries like Germany, the UK, and France showing substantial demand for data cleansing solutions. The Asia Pacific region is poised for significant growth, fueled by the increasing digitalization of businesses and the rising awareness of data quality's importance. Emerging economies in Latin America and the Middle East & Africa are also expected to witness steady growth, driven by the growing adoption of data-driven technologies.



    The role of Data Quality Tools cannot be overstated in the context of data cleansing software. These tools are integral in ensuring that the data being processed is not only clean but also of high quality, which is crucial for accurate analytics and decision-making. Data Quality Tools help in profiling, monitoring, and cleansing data, thereby ensuring that organizations can trust their data for strategic decisions. As organizations increasingly rely on data-driven insights, the demand for robust Data Quality Tools is expected to rise. These tools offer functionalities such as data validation, standardization, and enrichment, which are essential for maintaining the integrity of data across various platforms and applications. The integration of these tools with data cleansing software enhances the overall data management capabilities of organizations, enabling them to achieve greater operational efficiency and compliance with data regulations.



    Component Analysis



    The data cle

  3. D

    Data Cleansing Software Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Data Cleansing Software Report [Dataset]. https://www.archivemarketresearch.com/reports/data-cleansing-software-44630
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Feb 23, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The data cleansing software market is expanding rapidly, with a market size of XXX million in 2023 and a projected CAGR of XX% from 2023 to 2033. This growth is driven by the increasing need for accurate and reliable data in various industries, including healthcare, finance, and retail. Key market trends include the growing adoption of cloud-based solutions, the increasing use of artificial intelligence (AI) and machine learning (ML) to automate the data cleansing process, and the increasing demand for data governance and compliance. The market is segmented by deployment type (cloud-based vs. on-premise) and application (large enterprises vs. SMEs vs. government agencies). Major players in the market include IBM, SAS Institute Inc, SAP SE, Trifacta, OpenRefine, Data Ladder, Analytics Canvas (nModal Solutions Inc.), Mo-Data, Prospecta, WinPure Ltd, Symphonic Source Inc, MuleSoft, MapR Technologies, V12 Data, and Informatica. This report provides a comprehensive overview of the global data cleansing software market, with a focus on market concentration, product insights, regional insights, trends, driving forces, challenges and restraints, growth catalysts, leading players, and significant developments.

  4. A Journey through Data Cleaning

    • kaggle.com
    zip
    Updated Mar 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    kenanyafi (2024). A Journey through Data Cleaning [Dataset]. https://www.kaggle.com/datasets/kenanyafi/a-journey-through-data-cleaning
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 22, 2024
    Authors
    kenanyafi
    Description

    Embark on a transformative journey with our Data Cleaning Project, where we meticulously refine and polish raw data into valuable insights. Our project focuses on streamlining data sets, removing inconsistencies, and ensuring accuracy to unlock its full potential.

    Through advanced techniques and rigorous processes, we standardize formats, address missing values, and eliminate duplicates, creating a clean and reliable foundation for analysis. By enhancing data quality, we empower organizations to make informed decisions, drive innovation, and achieve strategic objectives with confidence.

    Join us as we embark on this essential phase of data preparation, paving the way for more accurate and actionable insights that fuel success."

  5. Data Cleansing Tools Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Data Cleansing Tools Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-data-cleansing-tools-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Cleansing Tools Market Outlook



    The global data cleansing tools market size was valued at approximately USD 1.5 billion in 2023 and is projected to reach USD 4.2 billion by 2032, growing at a CAGR of 12.1% from 2024 to 2032. One of the primary growth factors driving the market is the increasing need for high-quality data in various business operations and decision-making processes.



    The surge in big data and the subsequent increased reliance on data analytics are significant factors propelling the growth of the data cleansing tools market. Organizations increasingly recognize the value of high-quality data in driving strategic initiatives, customer relationship management, and operational efficiency. The proliferation of data generated across different sectors such as healthcare, finance, retail, and telecommunications necessitates the adoption of tools that can clean, standardize, and enrich data to ensure its reliability and accuracy.



    Furthermore, the rising adoption of Machine Learning (ML) and Artificial Intelligence (AI) technologies has underscored the importance of clean data. These technologies rely heavily on large datasets to provide accurate and reliable insights. Any errors or inconsistencies in data can lead to erroneous outcomes, making data cleansing tools indispensable. Additionally, regulatory and compliance requirements across various industries necessitate the maintenance of clean and accurate data, further driving the market for data cleansing tools.



    The growing trend of digital transformation across industries is another critical growth factor. As businesses increasingly transition from traditional methods to digital platforms, the volume of data generated has skyrocketed. However, this data often comes from disparate sources and in various formats, leading to inconsistencies and errors. Data cleansing tools are essential in such scenarios to integrate data from multiple sources and ensure its quality, thus enabling organizations to derive actionable insights and maintain a competitive edge.



    In the context of ensuring data reliability and accuracy, Data Quality Software and Solutions play a pivotal role. These solutions are designed to address the challenges associated with managing large volumes of data from diverse sources. By implementing robust data quality frameworks, organizations can enhance their data governance strategies, ensuring that data is not only clean but also consistent and compliant with industry standards. This is particularly crucial in sectors where data-driven decision-making is integral to business success, such as finance and healthcare. The integration of advanced data quality solutions helps businesses mitigate risks associated with poor data quality, thereby enhancing operational efficiency and strategic planning.



    Regionally, North America is expected to hold the largest market share due to the early adoption of advanced technologies, robust IT infrastructure, and the presence of key market players. Europe is also anticipated to witness substantial growth due to stringent data protection regulations and the increasing adoption of data-driven decision-making processes. Meanwhile, the Asia Pacific region is projected to experience the highest growth rate, driven by the rapid digitalization of emerging economies, the expansion of the IT and telecommunications sector, and increasing investments in data management solutions.



    Component Analysis



    The data cleansing tools market is segmented into software and services based on components. The software segment is anticipated to dominate the market due to its extensive use in automating the data cleansing process. The software solutions are designed to identify, rectify, and remove errors in data sets, ensuring data accuracy and consistency. They offer various functionalities such as data profiling, validation, enrichment, and standardization, which are critical in maintaining high data quality. The high demand for these functionalities across various industries is driving the growth of the software segment.



    On the other hand, the services segment, which includes professional services and managed services, is also expected to witness significant growth. Professional services such as consulting, implementation, and training are crucial for organizations to effectively deploy and utilize data cleansing tools. As businesses increasingly realize the importance of clean data, the demand for expert

  6. B

    Data Cleaning Sample

    • borealisdata.ca
    • dataone.org
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong Luo (2023). Data Cleaning Sample [Dataset]. http://doi.org/10.5683/SP3/ZCN177
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    Borealis
    Authors
    Rong Luo
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Sample data for exercises in Further Adventures in Data Cleaning.

  7. Olist Cleaned files for MYSQL Data Base

    • kaggle.com
    Updated Aug 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhanu prasad Chouki (2024). Olist Cleaned files for MYSQL Data Base [Dataset]. https://www.kaggle.com/datasets/bhanuprasadchouki/olist-cleaned-files
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 4, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Bhanu prasad Chouki
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset Description: Clean and Ready for Relational Database Import This dataset is a comprehensive collection of well-structured and meticulously cleaned data, meticulously prepared for seamless integration into a relational database. The dataset has undergone thorough data cleansing procedures to ensure that it is free from inconsistencies, missing values, and duplicate records. This guarantees a smooth and efficient data analysis experience for users, without the need for additional preprocessing steps.

  8. d

    Enviro-Champs Formshare Data Cleaning Tool

    • search.dataone.org
    Updated Sep 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Udhav Maharaj (2024). Enviro-Champs Formshare Data Cleaning Tool [Dataset]. http://doi.org/10.7910/DVN/EA5MOI
    Explore at:
    Dataset updated
    Sep 24, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Udhav Maharaj
    Time period covered
    Jan 1, 2023 - Jan 1, 2024
    Description

    A data cleaning tool customised for cleaning and sorting the data generated during the Enviro-Champs pilot study as they are downloaded from Formshare, the platform capturing data sent from a customised ODK Collect form collection app. The dataset inclues the latest data from the pilot study as at 14 May 2024.

  9. o

    Data Cleaning with OpenRefine

    • explore.openaire.eu
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hao Ye (2020). Data Cleaning with OpenRefine [Dataset]. http://doi.org/10.5281/zenodo.6863001
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Hao Ye
    Description

    OpenRefine (formerly Google Refine) is a powerful free and open source tool for data cleaning, enabling you to correct errors in the data, and make sure that the values and formatting are consistent. In addition, OpenRefine records your processing steps, enabling you to apply the same cleaning procedure to other data, and enhancing the reproducibility of your analysis. This workshop will teach you to use OpenRefine to clean and format data and automatically track any changes that you make.

  10. h

    Data to Impact on various cleaning procedures on p-GaN surfaces

    • rodare.hzdr.de
    Updated Feb 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Schaber, Jana; Xiang, Rong; Arnold, André; Ryzhov, Anton; Teichert, Jochen; Murcek, Petr; Zwartek, Paul; Ma, Shuai; Michel, Peter (2023). Data to Impact on various cleaning procedures on p-GaN surfaces [Dataset]. http://doi.org/10.14278/rodare.2168
    Explore at:
    Dataset updated
    Feb 23, 2023
    Authors
    Schaber, Jana; Xiang, Rong; Arnold, André; Ryzhov, Anton; Teichert, Jochen; Murcek, Petr; Zwartek, Paul; Ma, Shuai; Michel, Peter
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This folder "XPS data" contains original and evaluated XPS data (.vms) on a p-GaN sample which was treated at various temperatures and underwent Ar+ irradiation.

    Furthermore, the folder "REM Images" contains REM images (.tif) and EDX data (.xlsx) on the used excessively treated sample.

    All images that are published in the main manuscript are collected as .tif files in the folder "images".

  11. i

    Household Expenditure and Income Survey 2010, Economic Research Forum (ERF)...

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Hashemite Kingdom of Jordan Department of Statistics (DOS) (2019). Household Expenditure and Income Survey 2010, Economic Research Forum (ERF) Harmonization Data - Jordan [Dataset]. https://catalog.ihsn.org/index.php/catalog/7662
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    The Hashemite Kingdom of Jordan Department of Statistics (DOS)
    Time period covered
    2010 - 2011
    Area covered
    Jordan
    Description

    Abstract

    The main objective of the HEIS survey is to obtain detailed data on household expenditure and income, linked to various demographic and socio-economic variables, to enable computation of poverty indices and determine the characteristics of the poor and prepare poverty maps. Therefore, to achieve these goals, the sample had to be representative on the sub-district level. The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality.

    Data collected through the survey helped in achieving the following objectives: 1. Provide data weights that reflect the relative importance of consumer expenditure items used in the preparation of the consumer price index 2. Study the consumer expenditure pattern prevailing in the society and the impact of demographic and socio-economic variables on those patterns 3. Calculate the average annual income of the household and the individual, and assess the relationship between income and different economic and social factors, such as profession and educational level of the head of the household and other indicators 4. Study the distribution of individuals and households by income and expenditure categories and analyze the factors associated with it 5. Provide the necessary data for the national accounts related to overall consumption and income of the household sector 6. Provide the necessary income data to serve in calculating poverty indices and identifying the poor characteristics as well as drawing poverty maps 7. Provide the data necessary for the formulation, follow-up and evaluation of economic and social development programs, including those addressed to eradicate poverty

    Geographic coverage

    National

    Analysis unit

    • Households
    • Individuals

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The Household Expenditure and Income survey sample for 2010, was designed to serve the basic objectives of the survey through providing a relatively large sample in each sub-district to enable drawing a poverty map in Jordan. The General Census of Population and Housing in 2004 provided a detailed framework for housing and households for different administrative levels in the country. Jordan is administratively divided into 12 governorates, each governorate is composed of a number of districts, each district (Liwa) includes one or more sub-district (Qada). In each sub-district, there are a number of communities (cities and villages). Each community was divided into a number of blocks. Where in each block, the number of houses ranged between 60 and 100 houses. Nomads, persons living in collective dwellings such as hotels, hospitals and prison were excluded from the survey framework.

    A two stage stratified cluster sampling technique was used. In the first stage, a cluster sample proportional to the size was uniformly selected, where the number of households in each cluster was considered the weight of the cluster. At the second stage, a sample of 8 households was selected from each cluster, in addition to another 4 households selected as a backup for the basic sample, using a systematic sampling technique. Those 4 households were sampled to be used during the first visit to the block in case the visit to the original household selected is not possible for any reason. For the purposes of this survey, each sub-district was considered a separate stratum to ensure the possibility of producing results on the sub-district level. In this respect, the survey framework adopted that provided by the General Census of Population and Housing Census in dividing the sample strata. To estimate the sample size, the coefficient of variation and the design effect of the expenditure variable provided in the Household Expenditure and Income Survey for the year 2008 was calculated for each sub-district. These results were used to estimate the sample size on the sub-district level so that the coefficient of variation for the expenditure variable in each sub-district is less than 10%, at a minimum, of the number of clusters in the same sub-district (6 clusters). This is to ensure adequate presentation of clusters in different administrative areas to enable drawing an indicative poverty map.

    It should be noted that in addition to the standard non response rate assumed, higher rates were expected in areas where poor households are concentrated in major cities. Therefore, those were taken into consideration during the sampling design phase, and a higher number of households were selected from those areas, aiming at well covering all regions where poverty spreads.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    • General form
    • Expenditure on food commodities form
    • Expenditure on non-food commodities form

    Cleaning operations

    Raw Data: - Organizing forms/questionnaires: A compatible archive system was used to classify the forms according to different rounds throughout the year. A registry was prepared to indicate different stages of the process of data checking, coding and entry till forms were back to the archive system. - Data office checking: This phase was achieved concurrently with the data collection phase in the field where questionnaires completed in the field were immediately sent to data office checking phase. - Data coding: A team was trained to work on the data coding phase, which in this survey is only limited to education specialization, profession and economic activity. In this respect, international classifications were used, while for the rest of the questions, coding was predefined during the design phase. - Data entry/validation: A team consisting of system analysts, programmers and data entry personnel were working on the data at this stage. System analysts and programmers started by identifying the survey framework and questionnaire fields to help build computerized data entry forms. A set of validation rules were added to the entry form to ensure accuracy of data entered. A team was then trained to complete the data entry process. Forms prepared for data entry were provided by the archive department to ensure forms are correctly extracted and put back in the archive system. A data validation process was run on the data to ensure the data entered is free of errors. - Results tabulation and dissemination: After the completion of all data processing operations, ORACLE was used to tabulate the survey final results. Those results were further checked using similar outputs from SPSS to ensure that tabulations produced were correct. A check was also run on each table to guarantee consistency of figures presented, together with required editing for tables' titles and report formatting.

    Harmonized Data: - The Statistical Package for Social Science (SPSS) was used to clean and harmonize the datasets. - The harmonization process started with cleaning all raw data files received from the Statistical Office. - Cleaned data files were then merged to produce one data file on the individual level containing all variables subject to harmonization. - A country-specific program was generated for each dataset to generate/compute/recode/rename/format/label harmonized variables. - A post-harmonization cleaning process was run on the data. - Harmonized data was saved on the household as well as the individual level, in SPSS and converted to STATA format.

  12. Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, Japan), South America (Brazil), and Middle East and Africa (UAE) [Dataset]. https://www.technavio.com/report/data-science-platform-market-industry-analysis
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global, Canada, United States
    Description

    Snapshot img

    Data Science Platform Market Size 2025-2029

    The data science platform market size is forecast to increase by USD 763.9 million, at a CAGR of 40.2% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing integration of Artificial Intelligence (AI) and Machine Learning (ML) technologies. This fusion enables organizations to derive deeper insights from their data, fueling business innovation and decision-making. Another trend shaping the market is the emergence of containerization and microservices in data science platforms. This approach offers enhanced flexibility, scalability, and efficiency, making it an attractive choice for businesses seeking to streamline their data science operations. However, the market also faces challenges. Data privacy and security remain critical concerns, with the increasing volume and complexity of data posing significant risks. Ensuring robust data security and privacy measures is essential for companies to maintain customer trust and comply with regulatory requirements. Additionally, managing the complexity of data science platforms and ensuring seamless integration with existing systems can be a daunting task, requiring significant investment in resources and expertise. Companies must navigate these challenges effectively to capitalize on the market's opportunities and stay competitive in the rapidly evolving data landscape.

    What will be the Size of the Data Science Platform Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the increasing demand for advanced analytics and artificial intelligence solutions across various sectors. Real-time analytics and classification models are at the forefront of this evolution, with APIs integrations enabling seamless implementation. Deep learning and model deployment are crucial components, powering applications such as fraud detection and customer segmentation. Data science platforms provide essential tools for data cleaning and data transformation, ensuring data integrity for big data analytics. Feature engineering and data visualization facilitate model training and evaluation, while data security and data governance ensure data privacy and compliance. Machine learning algorithms, including regression models and clustering models, are integral to predictive modeling and anomaly detection. Statistical analysis and time series analysis provide valuable insights, while ETL processes streamline data integration. Cloud computing enables scalability and cost savings, while risk management and algorithm selection optimize model performance. Natural language processing and sentiment analysis offer new opportunities for data storytelling and computer vision. Supply chain optimization and recommendation engines are among the latest applications of data science platforms, demonstrating their versatility and continuous value proposition. Data mining and data warehousing provide the foundation for these advanced analytics capabilities.

    How is this Data Science Platform Industry segmented?

    The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. DeploymentOn-premisesCloudComponentPlatformServicesEnd-userBFSIRetail and e-commerceManufacturingMedia and entertainmentOthersSectorLarge enterprisesSMEsApplicationData PreparationData VisualizationMachine LearningPredictive AnalyticsData GovernanceOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyUKMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW)

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.In the dynamic the market, businesses increasingly adopt solutions to gain real-time insights from their data, enabling them to make informed decisions. Classification models and deep learning algorithms are integral parts of these platforms, providing capabilities for fraud detection, customer segmentation, and predictive modeling. API integrations facilitate seamless data exchange between systems, while data security measures ensure the protection of valuable business information. Big data analytics and feature engineering are essential for deriving meaningful insights from vast datasets. Data transformation, data mining, and statistical analysis are crucial processes in data preparation and discovery. Machine learning models, including regression and clustering, are employed for model training and evaluation. Time series analysis and natural language processing are valuable tools for understanding trends and customer sen

  13. d

    Mobile Location Data | Asia | +300M Unique Devices | +100M Daily Users |...

    • datarade.ai
    .json, .csv, .xls
    Updated Mar 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Quadrant (2025). Mobile Location Data | Asia | +300M Unique Devices | +100M Daily Users | +200B Events / Month [Dataset]. https://datarade.ai/data-products/mobile-location-data-asia-300m-unique-devices-100m-da-quadrant
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Mar 21, 2025
    Dataset authored and provided by
    Quadrant
    Area covered
    Asia, Iran (Islamic Republic of), Israel, Palestine, Oman, Korea (Democratic People's Republic of), Georgia, Armenia, Bahrain, Kyrgyzstan, Philippines
    Description

    Quadrant provides Insightful, accurate, and reliable mobile location data.

    Our privacy-first mobile location data unveils hidden patterns and opportunities, provides actionable insights, and fuels data-driven decision-making at the world's biggest companies.

    These companies rely on our privacy-first Mobile Location and Points-of-Interest Data to unveil hidden patterns and opportunities, provide actionable insights, and fuel data-driven decision-making. They build better AI models, uncover business insights, and enable location-based services using our robust and reliable real-world data.

    We conduct stringent evaluations on data providers to ensure authenticity and quality. Our proprietary algorithms detect, and cleanse corrupted and duplicated data points – allowing you to leverage our datasets rapidly with minimal processing or cleaning. During the ingestion process, our proprietary Data Filtering Algorithms remove events based on a number of both qualitative factors, as well as latency and other integrity variables to provide more efficient data delivery. The deduplicating algorithm focuses on a combination of four important attributes: Device ID, Latitude, Longitude, and Timestamp. This algorithm scours our data and identifies rows that contain the same combination of these four attributes. Post-identification, it retains a single copy and eliminates duplicate values to ensure our customers only receive complete and unique datasets.

    We actively identify overlapping values at the provider level to determine the value each offers. Our data science team has developed a sophisticated overlap analysis model that helps us maintain a high-quality data feed by qualifying providers based on unique data values rather than volumes alone – measures that provide significant benefit to our end-use partners.

    Quadrant mobility data contains all standard attributes such as Device ID, Latitude, Longitude, Timestamp, Horizontal Accuracy, and IP Address, and non-standard attributes such as Geohash and H3. In addition, we have historical data available back through 2022.

    Through our in-house data science team, we offer sophisticated technical documentation, location data algorithms, and queries that help data buyers get a head start on their analyses. Our goal is to provide you with data that is “fit for purpose”.

  14. Quantitative Service Delivery Survey in Health 2000 - Uganda

    • microdata.ubos.org
    • datacatalog.ihsn.org
    • +3more
    Updated Feb 14, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Makerere Institute for Social Research, Uganda (2018). Quantitative Service Delivery Survey in Health 2000 - Uganda [Dataset]. https://microdata.ubos.org:7070/index.php/catalog/46
    Explore at:
    Dataset updated
    Feb 14, 2018
    Dataset provided by
    Ministry of Health of Ugandahttp://www.health.go.ug/
    World Bankhttp://worldbank.org/
    Ministry of Finance, Planning and Economic Development, Uganda
    Makerere Institute for Social Research, Uganda
    Time period covered
    2000
    Area covered
    Uganda
    Description

    Abstract

    This study examines various dimensions of primary health care delivery in Uganda, using a baseline survey of public and private dispensaries, the most common lower level health facilities in the country.

    The survey was designed and implemented by the World Bank in collaboration with the Makerere Institute for Social Research and the Ugandan Ministries of Health and of Finance, Planning and Economic Development. It was carried out in October - December 2000 and covered 155 local health facilities and seven district administrations in ten districts. In addition, 1617 patients exiting health facilities were interviewed. Three types of dispensaries (both with and without maternity units) were included: those run by the government, by private for-profit providers, and by private nonprofit providers, mainly religious.

    This research is a Quantitative Service Delivery Survey (QSDS). It collected microlevel data on service provision and analyzed health service delivery from a public expenditure perspective with a view to informing expenditure and budget decision-making, as well as sector policy.

    Objectives of the study included: 1) Measuring and explaining the variation in cost-efficiency across health units in Uganda, with a focus on the flow and use of resources at the facility level; 2) Diagnosing problems with facility performance, including the extent of drug leakage, as well as staff performance and availability;
    3) Providing information on pricing and user fee policies and assessing the types of service actually provided; 4) Shedding light on the quality of service across the three categories of service provider - government, for-profit, and nonprofit; 5) Examining the patterns of remuneration, pay structure, and oversight and monitoring and their effects on health unit performance; 6) Assessing the private-public partnership, particularly the program of financial aid to nonprofits.

    Geographic coverage

    The study districts were Mpigi, Mukono, and Masaka in the central region; Mbale, Iganga, and Soroti in the east; Arua and Apac in the north; and Mbarara and Bushenyi in the west.

    Analysis unit

    • local dispensary with or without maternity unit

    Universe

    The survey covered government, for-profit and nonprofit private dispensaries with or without maternity units in ten Ugandan districts.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The survey covered government, for-profit and nonprofit private dispensaries with or without maternity units in ten Ugandan districts.

    The sample design was governed by three principles. First, to ensure a degree of homogeneity across sampled facilities, attention was restricted to dispensaries, with and without maternity units (that is, to the health center III level). Second, subject to security constraints, the sample was intended to capture regional differences. Finally, the sample had to include facilities in the main ownership categories: government, private for-profit, and private nonprofit (religious organizations and NGOs). The sample of government and nonprofit facilities was based on the Ministry of Health facility register for 1999. Since no nationwide census of for-profit facilities was available, these facilities were chosen by asking sampled government facilities to identify the closest private dispensary.

    Of the 155 health facilities surveyed, 81 were government facilities, 30 were private for-profit facilities, and 44 were nonprofit facilities. An exit poll of clients covered 1,617 individuals.

    The final sample consisted of 155 primary health care facilities drawn from ten districts in the central, eastern, northern, and western regions of the country. It included government, private for-profit, and private nonprofit facilities. The nonprofit sector includes facilities owned and operated by religious organizations and NGOs. Approximately one third of the surveyed facilities were dispensaries without maternity units; the rest provided maternity care. The facilities varied considerably in size, from units run by a single individual to facilities with as many as 19 staff members.

    Ministry of Health facility register for 1999 was used to design the sampling frame. Ten districts were randomly selected. From the selected districts, a sample of government and private nonprofit facilities and a reserve list of replacement facilities were randomly drawn. Because of the unreliability of the register for private for-profit facilities, it was decided that for-profit facilities would be identified on the basis of information from the government facilities sampled. The administrative records for facilities in the original sample were first reviewed at the district headquarters, where some facilities that did not meet selection criteria and data collection requirements were dropped from the sample. These were replaced by facilities from the reserve list. Overall, 30 facilities were replaced.

    The sample was designed in such a way that the proportion of facilities drawn from different regions and ownership categories broadly mirrors that of the universe of facilities. Because no nationwide census of for-profit health facilities is available, it is difficult to assess the extent to which the sample is representative of this category. A census of health care facilities in selected districts, carried out in the context of the Delivery of Improved Services for Health (DISH) project supported by the U.S. Agency for International Development (USAID), suggests that about 63 percent of all facilities operate on a for-profit basis, while government and nonprofit providers run 26 and 11 percent of facilities, respectively. This would suggest an undersampling of private providers in the survey. It is not clear, however, whether the DISH districts are representative of other districts in Uganda in terms of the market for health care.

    For the exit poll, 10 interviews per facility were carried out in approximately 85 percent of the facilities. In the remaining facilities the target of 10 interviews was not met, as a result of low activity levels.

    Sampling deviation

    In the first stage in the sampling process, eight districts (out of 45) had to be dropped from the sample frame due to security concerns. These districts were Bundibugyo, Gulu, Kabarole, Kasese, Kibaale, Kitgum, Kotido, and Moroto.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The following survey instruments are available:

    • District Health Team Questionnaire;
    • District Facility Data Sheets;
    • Uganda Health Facility Survey Questionnaire;
    • Facility Data Sheets;
    • Facility Patient Exit Poll Questionnaire.

    The survey collected data at three levels: district administration, health facility, and client. In this way it was possible to capture central elements of the relationships between the provider organization, the frontline facility, and the user. In addition, comparison of data from different levels (triangulation) permitted cross-validation of information.

    At the district level, a District Health Team Questionnaire was administered to the district director of health services (DDHS), who was interviewed on the role of the DDHS office in health service delivery. Specifically, the questionnaire collected data on health infrastructure, staff training, support and supervision arrangements, and sources of financing.

    The District Facility Data Sheet was used at the district level to collect more detailed information on the sampled health units for fiscal 1999-2000, including data on staffing and the related salary structures, vaccine supplies and immunization activity, and basic and supplementary supplies of drugs to the facilities. In addition, patient data, including monthly returns from facilities on total numbers of outpatients, inpatients, immunizations, and deliveries, were reviewed for the period April-June 2000.

    At the facility level, the Uganda Health Facility Survey Questionnaire collected a broad range of information related to the facility and its activities. The questionnaire, which was administered to the in-charge, covered characteristics of the facility (location, type, level, ownership, catchment area, organization, and services); inputs (staff, drugs, vaccines, medical and nonmedical consumables, and capital inputs); outputs (facility utilization and referrals); financing (user charges, cost of services by category, expenditures, and financial and in-kind support); and institutional support (supervision, reporting, performance assessment, and procurement). Each health facility questionnaire was supplemented by a Facility Data Sheet (FDS). The FDS was designed to obtain data from the health unit records on staffing and the related salary structure; daily patient records for fiscal 1999-2000; the type of patients using the facility; vaccinations offered; and drug supply and use at the facility.

    Finally, at the facility level, an exit poll was used to interview about 10 patients per facility on the cost of treatment, drugs received, perceived quality of services, and reasons for using that unit instead of alternative sources of health care.

    Cleaning operations

    Detailed information about data editing procedures is available in "Data Cleaning Guide for PETS/QSDS Surveys" in external resources.

    STATA cleaning do-files and the data quality reports on the datasets can also be found in external resources.

  15. Cleaned Retail Customer Dataset (SQL-based ETL)

    • kaggle.com
    Updated May 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rizwan Bin Akbar (2025). Cleaned Retail Customer Dataset (SQL-based ETL) [Dataset]. https://www.kaggle.com/datasets/rizwanbinakbar/cleaned-retail-customer-dataset-sql-based-etl/versions/2
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 3, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Rizwan Bin Akbar
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset Description

    This dataset is a collection of customer, product, sales, and location data extracted from a CRM and ERP system for a retail company. It has been cleaned and transformed through various ETL (Extract, Transform, Load) processes to ensure data consistency, accuracy, and completeness. Below is a breakdown of the dataset components: 1. Customer Information (s_crm_cust_info)

    This table contains information about customers, including their unique identifiers and demographic details.

    Columns:
    
      cst_id: Customer ID (Primary Key)
    
      cst_gndr: Gender
    
      cst_marital_status: Marital status
    
      cst_create_date: Customer account creation date
    
    Cleaning Steps:
    
      Removed duplicates and handled missing or null cst_id values.
    
      Trimmed leading and trailing spaces in cst_gndr and cst_marital_status.
    
      Standardized gender values and identified inconsistencies in marital status.
    
    1. Product Information (s_crm_prd_info / b_crm_prd_info)

    This table contains information about products, including product identifiers, names, costs, and lifecycle dates.

    Columns:
    
      prd_id: Product ID
    
      prd_key: Product key
    
      prd_nm: Product name
    
      prd_cost: Product cost
    
      prd_start_dt: Product start date
    
      prd_end_dt: Product end date
    
    Cleaning Steps:
    
      Checked for duplicates and null values in the prd_key column.
    
      Validated product dates to ensure prd_start_dt is earlier than prd_end_dt.
    
      Corrected product costs to remove invalid entries (e.g., negative values).
    
    1. Sales Details (s_crm_sales_details / b_crm_sales_details)

    This table contains information about sales transactions, including order dates, quantities, prices, and sales amounts.

    Columns:
    
      sls_order_dt: Sales order date
    
      sls_due_dt: Sales due date
    
      sls_sales: Total sales amount
    
      sls_quantity: Number of products sold
    
      sls_price: Product unit price
    
    Cleaning Steps:
    
      Validated sales order dates and corrected invalid entries.
    
      Checked for discrepancies where sls_sales did not match sls_price * sls_quantity and corrected them.
    
      Removed null and negative values from sls_sales, sls_quantity, and sls_price.
    
    1. ERP Customer Data (b_erp_cust_az12, s_erp_cust_az12)

    This table contains additional customer demographic data, including gender and birthdate.

    Columns:
    
      cid: Customer ID
    
      gen: Gender
    
      bdate: Birthdate
    
    Cleaning Steps:
    
      Checked for missing or null gender values and standardized inconsistent entries.
    
      Removed leading/trailing spaces from gen and bdate.
    
      Validated birthdates to ensure they were within a realistic range.
    
    1. Location Information (b_erp_loc_a101)

    This table contains country information related to the customers' locations.

    Columns:
    
      cntry: Country
    
    Cleaning Steps:
    
      Standardized country names (e.g., "US" and "USA" were mapped to "United States").
    
      Removed special characters (e.g., carriage returns) and trimmed whitespace.
    
    1. Product Category (b_erp_px_cat_g1v2)

    This table contains product category information.

    Columns:
    
      Product category data (no significant cleaning required).
    

    Key Features:

    Customer demographics, including gender and marital status
    
    Product details such as cost, start date, and end date
    
    Sales data with order dates, quantities, and sales amounts
    
    ERP-specific customer and location data
    

    Data Cleaning Process:

    This dataset underwent extensive cleaning and validation, including:

    Null and Duplicate Removal: Ensuring no duplicate or missing critical data (e.g., customer IDs, product keys).
    
    Date Validations: Ensuring correct date ranges and chronological consistency.
    
    Data Standardization: Standardizing categorical fields (e.g., gender, country names) and fixing inconsistent values.
    
    Sales Integrity Checks: Ensuring sales amounts match the expected product of price and quantity.
    

    This dataset is now ready for analysis and modeling, with clean, consistent, and validated data for retail analytics, customer segmentation, product analysis, and sales forecasting.

  16. Best IPL Data Set

    • kaggle.com
    Updated Sep 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Subhodeep Das (2020). Best IPL Data Set [Dataset]. https://www.kaggle.com/datasets/theuniversesd/ipl-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 14, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Subhodeep Das
    Description

    Dataset

    This dataset was created by Subhodeep Das

    Released under Other (specified in description)

    Contents

  17. D

    Data Preparation Tools Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Mar 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Data Preparation Tools Report [Dataset]. https://www.archivemarketresearch.com/reports/data-preparation-tools-51852
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Mar 6, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Preparation Tools market is experiencing robust growth, projected to reach a market size of $3 billion in 2025 and exhibiting a Compound Annual Growth Rate (CAGR) of 17.7% from 2025 to 2033. This significant expansion is driven by several key factors. The increasing volume and velocity of data generated across industries necessitates efficient and effective data preparation processes to ensure data quality and usability for analytics and machine learning initiatives. The rising adoption of cloud-based solutions, coupled with the growing demand for self-service data preparation tools, is further fueling market growth. Businesses across various sectors, including IT and Telecom, Retail and E-commerce, BFSI (Banking, Financial Services, and Insurance), and Manufacturing, are actively seeking solutions to streamline their data pipelines and improve data governance. The diverse range of applications, from simple data cleansing to complex data transformation tasks, underscores the versatility and broad appeal of these tools. Leading vendors like Microsoft, Tableau, and Alteryx are continuously innovating and expanding their product offerings to meet the evolving needs of the market, fostering competition and driving further advancements in data preparation technology. This rapid growth is expected to continue, driven by ongoing digital transformation initiatives and the increasing reliance on data-driven decision-making. The segmentation of the market into self-service and data integration tools, alongside the varied applications across different industries, indicates a multifaceted and dynamic landscape. While challenges such as data security concerns and the need for skilled professionals exist, the overall market outlook remains positive, projecting substantial expansion throughout the forecast period. The adoption of advanced technologies like artificial intelligence (AI) and machine learning (ML) within data preparation tools promises to further automate and enhance the process, contributing to increased efficiency and reduced costs for businesses. The competitive landscape is dynamic, with established players alongside emerging innovators vying for market share, leading to continuous improvement and innovation within the industry.

  18. D

    Data Center Cleaning Service Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Data Center Cleaning Service Report [Dataset]. https://www.marketreportanalytics.com/reports/data-center-cleaning-service-72271
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Apr 9, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The data center cleaning services market is experiencing robust growth, driven by the increasing demand for high-availability and uptime in data centers worldwide. The rising adoption of cloud computing, the proliferation of edge data centers, and the stringent regulatory requirements for data center hygiene are key factors fueling this expansion. The market is segmented by application (internet industry, finance & insurance, manufacturing, government, others) and cleaning type (equipment, ceiling, floor, others). While precise market sizing data is not provided, a reasonable estimate based on industry reports and the provided CAGR would place the 2025 market value at approximately $2.5 billion (this is an educated estimation and not based on the provided data directly), with a projected CAGR of 8% over the forecast period (2025-2033). North America and Europe currently hold the largest market share due to the high concentration of data centers and stringent regulatory environments. However, Asia-Pacific is expected to witness significant growth in the coming years, fueled by rapid digital transformation and increasing investments in data center infrastructure. The competitive landscape is characterized by a mix of both large multinational corporations and specialized regional service providers. Key players focus on providing specialized cleaning solutions tailored to the unique requirements of data centers, including electrostatic discharge (ESD) protection, contamination control, and specialized equipment. The market's growth faces some restraints, including high service costs, the need for specialized training and expertise, and the potential risks associated with improper cleaning procedures that could damage sensitive equipment. However, increasing awareness of the importance of data center hygiene and the potential consequences of downtime are expected to outweigh these limitations, ensuring continued market expansion throughout the forecast period. The continued adoption of advanced cleaning technologies and the rise of green cleaning practices will further shape the market’s trajectory in the coming years.

  19. Exploratory Data Analysis (EDA) for COVIND-19

    • kaggle.com
    Updated Apr 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Badea-Matei Iuliana (2024). Exploratory Data Analysis (EDA) for COVIND-19 [Dataset]. https://www.kaggle.com/datasets/mateiiuliana/exploratory-data-analysis-eda-for-covind-19
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 9, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Badea-Matei Iuliana
    Description

    Description: The COVID-19 dataset used for this EDA project encompasses comprehensive data on COVID-19 cases, deaths, and recoveries worldwide. It includes information gathered from authoritative sources such as the World Health Organization (WHO), the Centers for Disease Control and Prevention (CDC), and national health agencies. The dataset covers global, regional, and national levels, providing a holistic view of the pandemic's impact.

    Purpose: This dataset is instrumental in understanding the multifaceted impact of the COVID-19 pandemic through data exploration. It aligns perfectly with the objectives of the EDA project, aiming to unveil insights, patterns, and trends related to COVID-19. Here are the key objectives: 1. Data Collection and Cleaning: • Gather reliable COVID-19 datasets from authoritative sources (such as WHO, CDC, or national health agencies). • Clean and preprocess the data to ensure accuracy and consistency. 2. Descriptive Statistics: • Summarize key statistics: total cases, recoveries, deaths, and testing rates. • Visualize temporal trends using line charts, bar plots, and heat maps. 3. Geospatial Analysis: • Map COVID-19 cases across countries, regions, or cities. • Identify hotspots and variations in infection rates. 4. Demographic Insights: • Explore how age, gender, and pre-existing conditions impact vulnerability. • Investigate disparities in infection rates among different populations. 5. Healthcare System Impact: • Analyze hospitalization rates, ICU occupancy, and healthcare resource allocation. • Assess the strain on medical facilities. 6. Economic and Social Effects: • Investigate the relationship between lockdown measures, economic indicators, and infection rates. • Explore behavioral changes (e.g., mobility patterns, remote work) during the pandemic. 7. Predictive Modeling (Optional): • If data permits, build simple predictive models (e.g., time series forecasting) to estimate future cases.

    Data Sources: The primary sources of the COVID-19 dataset include the Johns Hopkins CSSE COVID-19 Data Repository, Google Health’s COVID-19 Open Data, and the U.S. Economic Development Administration (EDA). These sources provide reliable and up-to-date information on COVID-19 cases, deaths, testing rates, and other relevant variables. Additionally, GitHub repositories and platforms like Medium host supplementary datasets and analyses, enriching the available data resources.

    Data Format: The dataset is available in various formats, such as CSV and JSON, facilitating easy access and analysis. Before conducting the EDA, the data underwent preprocessing steps to ensure accuracy and consistency. Data cleaning procedures were performed to address missing values, inconsistencies, and outliers, enhancing the quality and reliability of the dataset.

    License: The COVID-19 dataset may be subject to specific usage licenses or restrictions imposed by the original data sources. Proper attribution is essential to acknowledge the contributions of the WHO, CDC, national health agencies, and other entities providing the data. Users should adhere to any licensing terms and usage guidelines associated with the dataset.

    Attribution: We acknowledge the invaluable contributions of the World Health Organization (WHO), the Centers for Disease Control and Prevention (CDC), national health agencies, and other authoritative sources in compiling and disseminating the COVID-19 data used for this EDA project. Their efforts in collecting, curating, and sharing data have been instrumental in advancing our understanding of the pandemic and guiding public health responses globally.

  20. Household Survey on Information and Communications Technology– 2019 - West...

    • pcbs.gov.ps
    Updated Mar 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2020). Household Survey on Information and Communications Technology– 2019 - West Bank and Gaza [Dataset]. https://www.pcbs.gov.ps/PCBS-Metadata-en-v5.2/index.php/catalog/489
    Explore at:
    Dataset updated
    Mar 16, 2020
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttp://pcbs.gov.ps/
    Time period covered
    2019
    Area covered
    West Bank, Gaza Strip, Gaza
    Description

    Abstract

    The Palestinian society's access to information and communication technology tools is one of the main inputs to achieve social development and economic change to the status of Palestinian society; on the basis of its impact on the revolution of information and communications technology that has become a feature of this era. Therefore, and within the scope of the efforts exerted by the Palestinian Central Bureau of Statistics in providing official Palestinian statistics on various areas of life for the Palestinian community, PCBS implemented the household survey for information and communications technology for the year 2019. The main objective of this report is to present the trends of accessing and using information and communication technology by households and individuals in Palestine, and enriching the information and communications technology database with indicators that meet national needs and are in line with international recommendations.

    Geographic coverage

    Palestine, West Bank, Gaza strip

    Analysis unit

    Household, Individual

    Universe

    All Palestinian households and individuals (10 years and above) whose usual place of residence in 2019 was in the state of Palestine.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sampling Frame The sampling frame consists of master sample which were enumerated in the 2017 census. Each enumeration area consists of buildings and housing units with an average of about 150 households. These enumeration areas are used as primary sampling units (PSUs) in the first stage of the sampling selection.

    Sample size The estimated sample size is 8,040 households.

    Sample Design The sample is three stages stratified cluster (pps) sample. The design comprised three stages: Stage (1): Selection a stratified sample of 536 enumeration areas with (pps) method. Stage (2): Selection a stratified random sample of 15 households from each enumeration area selected in the first stage. Stage (3): Selection one person of the (10 years and above) age group in a random method by using KISH TABLES.

    Sample Strata The population was divided by: 1- Governorate (16 governorates, where Jerusalem was considered as two statistical areas) 2- Type of Locality (urban, rural, refugee camps).

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Questionnaire The survey questionnaire consists of identification data, quality controls and three main sections: Section I: Data on household members that include identification fields, the characteristics of household members (demographic and social) such as the relationship of individuals to the head of household, sex, date of birth and age.

    Section II: Household data include information regarding computer processing, access to the Internet, and possession of various media and computer equipment. This section includes information on topics related to the use of computer and Internet, as well as supervision by households of their children (5-17 years old) while using the computer and Internet, and protective measures taken by the household in the home.

    Section III: Data on Individuals (10 years and over) about computer use, access to the Internet and possession of a mobile phone.

    Cleaning operations

    Programming Consistency Check The data collection program was designed in accordance with the questionnaire's design and its skips. The program was examined more than once before the conducting of the training course by the project management where the notes and modifications were reflected on the program by the Data Processing Department after ensuring that it was free of errors before going to the field.

    Using PC-tablet devices reduced data processing stages, and fieldworkers collected data and sent it directly to server, and project management withdraw the data at any time.

    In order to work in parallel with Jerusalem (J1), a data entry program was developed using the same technology and using the same database used for PC-tablet devices.

    Data Cleaning After the completion of data entry and audit phase, data is cleaned by conducting internal tests for the outlier answers and comprehensive audit rules through using SPSS program to extract and modify errors and discrepancies to prepare clean and accurate data ready for tabulation and publishing.

    Tabulation After finalizing checking and cleaning data from any errors. Tables extracted according to prepared list of tables.

    Response rate

    The response rate in the West Bank reached 77.6% while in the Gaza Strip it reached 92.7%.

    Sampling error estimates

    Sampling Errors Data of this survey affected by sampling errors due to use of the sample and not a complete enumeration. Therefore, certain differences are expected in comparison with the real values obtained through censuses. Variance were calculated for the most important indicators, There is no problem to disseminate results at the national level and at the level of the West Bank and Gaza Strip.

    Non-Sampling Errors Non-Sampling errors are possible at all stages of the project, during data collection or processing. These are referred to non-response errors, response errors, interviewing errors and data entry errors. To avoid errors and reduce their effects, strenuous efforts were made to train the field workers intensively. They were trained on how to carry out the interview, what to discuss and what to avoid, as well as practical and theoretical training during the training course.

    The implementation of the survey encountered non-response where the case (household was not present at home) during the fieldwork visit become the high percentage of the non response cases. The total non-response rate reached 17.5%. The refusal percentage reached 2.9% which is relatively low percentage compared to the household surveys conducted by PCBS, and the reason is the questionnaire survey is clear.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Thomson Data (2022). B2B Data Cleansing Services - Verified Records - Updated Every 30 Days [Dataset]. https://datarade.ai/data-products/thomson-data-hr-data-reach-hr-professionals-across-the-world-thomson-data

B2B Data Cleansing Services - Verified Records - Updated Every 30 Days

Explore at:
.csv, .xls, .sql, .txtAvailable download formats
Dataset updated
Jan 8, 2022
Dataset authored and provided by
Thomson Data
Area covered
Eritrea, Zimbabwe, Panama, Andorra, Denmark, Palau, Micronesia (Federated States of), Bulgaria, Czech Republic, Finland
Description

At Thomson Data, we help businesses clean up and manage messy B2B databases to ensure they are up-to-date, correct, and detailed. We believe your sales development representatives and marketing representatives should focus on building meaningful relationships with prospects, not scrubbing through bad data.

Here are the key steps involved in our B2B data cleansing process:

  1. Data Auditing: We begin with a thorough audit of the database to identify errors, gaps, and inconsistencies, which majorly revolve around identifying outdated, incomplete, and duplicate information.

  2. Data Standardization: Ensuring consistency in the data records is one of our prime services; it includes standardizing job titles, addresses, and company names. It ensures that they can be easily shared and used by different teams.

  3. Data Deduplication: Another way we improve efficiency is by removing all duplicate records. Data deduplication is important in a large B2B dataset as multiple records from the same company may exist in the database.

  4. Data Enrichment: After the first three steps, we enrich your data, fill in the missing details, and then enhance the database with up-to-date records. This is the step that ensures the database is valuable, providing insights that are actionable and complete.

What are the Key Benefits of Keeping the Data Clean with Thomson Data’s B2B Data Cleansing Service? Once you understand the benefits of our data cleansing service, it will entice you to optimize your data management practices, and it will additionally help you stay competitive in today’s data-driven market.

Here are some advantages of maintaining a clean database with Thomson Data:

  1. Better ROI for your Sales and Marketing Campaigns: Our clean data will magnify your precise targeting, enabling you to strategize for effective campaigns, increased conversion rate, and ROI.

  2. Compliant with Data Regulations:
    The B2B data cleansing services we provide are compliant to global data norms.

  3. Streamline Operations: Your efforts are directed in the right channel when your data is clean and accurate, as your team doesn’t have to spend their valuable time fixing errors.

To summarize, we would again bring your attention to how accurate data is essential for driving sales and marketing in a B2B environment. It enhances your business prowess in the avenues of decision-making and customer relationships. Therefore, it is better to have a proactive approach toward B2B data cleansing service and outsource our offerings to stay competitive by unlocking the full potential of your data.

Send us a request and we will be happy to assist you.

Search
Clear search
Close search
Google apps
Main menu