Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
CodeParrot 🦜 Dataset Cleaned
What is it?
A dataset of Python files from Github. This is the deduplicated version of the codeparrot.
Processing
The original dataset contains a lot of duplicated and noisy data. Therefore, the dataset was cleaned with the following steps:
Deduplication Remove exact matches
Filtering Average line length < 100 Maximum line length < 1000 Alpha numeric characters fraction > 0.25 Remove auto-generated files (keyword search)
For… See the full description on the dataset page: https://huggingface.co/datasets/codeparrot/codeparrot-clean.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A collection of datasets and python scripts for extraction and analysis of isograms (and some palindromes and tautonyms) from corpus-based word-lists, specifically Google Ngram and the British National Corpus (BNC).Below follows a brief description, first, of the included datasets and, second, of the included scripts.1. DatasetsThe data from English Google Ngrams and the BNC is available in two formats: as a plain text CSV file and as a SQLite3 database.1.1 CSV formatThe CSV files for each dataset actually come in two parts: one labelled ".csv" and one ".totals". The ".csv" contains the actual extracted data, and the ".totals" file contains some basic summary statistics about the ".csv" dataset with the same name.The CSV files contain one row per data point, with the colums separated by a single tab stop. There are no labels at the top of the files. Each line has the following columns, in this order (the labels below are what I use in the database, which has an identical structure, see section below):
Label Data type Description
isogramy int The order of isogramy, e.g. "2" is a second order isogram
length int The length of the word in letters
word text The actual word/isogram in ASCII
source_pos text The Part of Speech tag from the original corpus
count int Token count (total number of occurences)
vol_count int Volume count (number of different sources which contain the word)
count_per_million int Token count per million words
vol_count_as_percent int Volume count as percentage of the total number of volumes
is_palindrome bool Whether the word is a palindrome (1) or not (0)
is_tautonym bool Whether the word is a tautonym (1) or not (0)
The ".totals" files have a slightly different format, with one row per data point, where the first column is the label and the second column is the associated value. The ".totals" files contain the following data:
Label
Data type
Description
!total_1grams
int
The total number of words in the corpus
!total_volumes
int
The total number of volumes (individual sources) in the corpus
!total_isograms
int
The total number of isograms found in the corpus (before compacting)
!total_palindromes
int
How many of the isograms found are palindromes
!total_tautonyms
int
How many of the isograms found are tautonyms
The CSV files are mainly useful for further automated data processing. For working with the data set directly (e.g. to do statistics or cross-check entries), I would recommend using the database format described below.1.2 SQLite database formatOn the other hand, the SQLite database combines the data from all four of the plain text files, and adds various useful combinations of the two datasets, namely:• Compacted versions of each dataset, where identical headwords are combined into a single entry.• A combined compacted dataset, combining and compacting the data from both Ngrams and the BNC.• An intersected dataset, which contains only those words which are found in both the Ngrams and the BNC dataset.The intersected dataset is by far the least noisy, but is missing some real isograms, too.The columns/layout of each of the tables in the database is identical to that described for the CSV/.totals files above.To get an idea of the various ways the database can be queried for various bits of data see the R script described below, which computes statistics based on the SQLite database.2. ScriptsThere are three scripts: one for tiding Ngram and BNC word lists and extracting isograms, one to create a neat SQLite database from the output, and one to compute some basic statistics from the data. The first script can be run using Python 3, the second script can be run using SQLite 3 from the command line, and the third script can be run in R/RStudio (R version 3).2.1 Source dataThe scripts were written to work with word lists from Google Ngram and the BNC, which can be obtained from http://storage.googleapis.com/books/ngrams/books/datasetsv2.html and [https://www.kilgarriff.co.uk/bnc-readme.html], (download all.al.gz).For Ngram the script expects the path to the directory containing the various files, for BNC the direct path to the *.gz file.2.2 Data preparationBefore processing proper, the word lists need to be tidied to exclude superfluous material and some of the most obvious noise. This will also bring them into a uniform format.Tidying and reformatting can be done by running one of the following commands:python isograms.py --ngrams --indir=INDIR --outfile=OUTFILEpython isograms.py --bnc --indir=INFILE --outfile=OUTFILEReplace INDIR/INFILE with the input directory or filename and OUTFILE with the filename for the tidied and reformatted output.2.3 Isogram ExtractionAfter preparing the data as above, isograms can be extracted from by running the following command on the reformatted and tidied files:python isograms.py --batch --infile=INFILE --outfile=OUTFILEHere INFILE should refer the the output from the previosu data cleaning process. Please note that the script will actually write two output files, one named OUTFILE with a word list of all the isograms and their associated frequency data, and one named "OUTFILE.totals" with very basic summary statistics.2.4 Creating a SQLite3 databaseThe output data from the above step can be easily collated into a SQLite3 database which allows for easy querying of the data directly for specific properties. The database can be created by following these steps:1. Make sure the files with the Ngrams and BNC data are named “ngrams-isograms.csv” and “bnc-isograms.csv” respectively. (The script assumes you have both of them, if you only want to load one, just create an empty file for the other one).2. Copy the “create-database.sql” script into the same directory as the two data files.3. On the command line, go to the directory where the files and the SQL script are. 4. Type: sqlite3 isograms.db 5. This will create a database called “isograms.db”.See the section 1 for a basic descript of the output data and how to work with the database.2.5 Statistical processingThe repository includes an R script (R version 3) named “statistics.r” that computes a number of statistics about the distribution of isograms by length, frequency, contextual diversity, etc. This can be used as a starting point for running your own stats. It uses RSQLite to access the SQLite database version of the data described above.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Reddit is a social news, content rating and discussion website. It's one of the most popular sites on the internet. Reddit has 52 million daily active users and approximately 430 million users who use it once a month. Reddit has different subreddits and here We'll use the r/AskScience Subreddit.
The dataset is extracted from the subreddit /r/AskScience from Reddit. The data was collected between 01-01-2016 and 20-05-2022. It contains 612,668 Datapoints and 25 Columns. The database contains a number of information about the questions asked on the subreddit, the description of the submission, the flair of the question, NSFW or SFW status, the year of the submission, and more. The data is extracted using python and Pushshift's API. A little bit of cleaning is done using NumPy and pandas as well. (see the descriptions of individual columns below).
The dataset contains the following columns and descriptions: author - Redditor Name author_fullname - Redditor Full name contest_mode - Contest mode [implement obscured scores and randomized sorting]. created_utc - Time the submission was created, represented in Unix Time. domain - Domain of submission. edited - If the post is edited or not. full_link - Link of the post on the subreddit. id - ID of the submission. is_self - Whether or not the submission is a self post (text-only). link_flair_css_class - CSS Class used to identify the flair. link_flair_text - Flair on the post or The link flair’s text content. locked - Whether or not the submission has been locked. num_comments - The number of comments on the submission. over_18 - Whether or not the submission has been marked as NSFW. permalink - A permalink for the submission. retrieved_on - time ingested. score - The number of upvotes for the submission. description - Description of the Submission. spoiler - Whether or not the submission has been marked as a spoiler. stickied - Whether or not the submission is stickied. thumbnail - Thumbnail of Submission. question - Question Asked in the Submission. url - The URL the submission links to, or the permalink if a self post. year - Year of the Submission. banned - Banned by the moderator or not.
This dataset can be used for Flair Prediction, NSFW Classification, and different Text Mining/NLP tasks. Exploratory Data Analysis can also be done to get the insights and see the trend and patterns over the years.
The dataset is gathered on Sep. 17th 2020 from GitHub. It has more than 5.2K Python repositories and 4.2M type annotations. The dataset is also de-duplicated using the CD4Py tool. Check out the README.MD file for the description of the dataset. Notable changes to each version of the dataset are documented in CHANGELOG.md. The dataset's scripts and utilities are available on its GitHub repository.
The dataset is gathered on Sep. 17th 2020 from GitHub. It has clean and complete versions (from v0.7): The clean version has 5.1K type-checked Python repositories and 1.2M type annotations. The complete version has 5.2K Python repositories and 3.3M type annotations. The dataset's source files are type-checked using mypy (clean version). The dataset is also de-duplicated using the CD4Py tool. Check out the README.MD file for the description of the dataset. Notable changes to each version of the dataset are documented in CHANGELOG.md. The dataset's scripts and utilities are available on its GitHub repository. {"references": ["A. Mir, E. Latoskinas and G. Gousios, "ManyTypes4Py: A Benchmark Python Dataset for Machine Learning-Based Type Inference," in 2021 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR), 2021 pp. 585-589. doi: 10.1109/MSR52588.2021.00079"]}
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is the BBC news dataset (cleaned version) which I have uploaded after my previous dataset post. The original dataset downloaded from the UCI Machine Learning Repository was unclean. The dataset was cleaned by extracting the keywords from the description column into the noisy 'keys' column data.
The BBC news dataset consists of the following data 1. # - News ID. 2. descr - description/detail of the news provided. 3. tags - the tags/keywords related to the corresponding news in the 'descr' label.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
We processed a unified trajectory dataset for automated vehicles' longitudinal behavior from 14 distinct sources. The extraction and cleaning of the dataset contains the following three steps - 1. extraction of longitudinal trajectory data, 2. general data cleaning, and 3. data-specific cleaning. The dataset obtained from step 2 and step 3 are named as the longitudinal trajectory data and car-following trajectory data. We also analyzed and validated the data by multiple methods. The obtained datasets are provided in this repo. The Python code used to analyze the datasets can be found at https://github.com/CATS-Lab/Filed-Experiment-Data-ULTra-AV. We hope this dataset can benefit the study of microscopic longitudinal AV behaviors.
Making Byzantine Computational Musicology FAIR - a working example This is the repository for the Making Byzantine Computational Musicology FAIR - a working example project. We have submitted a short paper for this. In this repository, there is a folder with the dataset, the data package schemas in YAML file, as well as the python code (main.py) for describing and validating the data. Upon acceptance of the paper, the accepted draft will also be uploaded.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Part of the dissertation Pitch of Voiced Speech in the Short-Time Fourier Transform: Algorithms, Ground Truths, and Evaluation Methods.© 2020, Bastian Bechtold. All rights reserved. Estimating the fundamental frequency of speech remains an active area of research, with varied applications in speech recognition, speaker identification, and speech compression. A vast number of algorithms for estimatimating this quantity have been proposed over the years, and a number of speech and noise corpora have been developed for evaluating their performance. The present dataset contains estimated fundamental frequency tracks of 25 algorithms, six speech corpora, two noise corpora, at nine signal-to-noise ratios between -20 and 20 dB SNR, as well as an additional evaluation of synthetic harmonic tone complexes in white noise.The dataset also contains pre-calculated performance measures both novel and traditional, in reference to each speech corpus’ ground truth, the algorithms’ own clean-speech estimate, and our own consensus truth. It can thus serve as the basis for a comparison study, or to replicate existing studies from a larger dataset, or as a reference for developing new fundamental frequency estimation algorithms. All source code and data is available to download, and entirely reproducible, albeit requiring about one year of processor-time.Included Code and Data
ground truth data.zip is a JBOF dataset of fundamental frequency estimates and ground truths of all speech files in the following corpora:
CMU-ARCTIC (consensus truth) [1]FDA (corpus truth and consensus truth) [2]KEELE (corpus truth and consensus truth) [3]MOCHA-TIMIT (consensus truth) [4]PTDB-TUG (corpus truth and consensus truth) [5]TIMIT (consensus truth) [6]
noisy speech data.zip is a JBOF datasets of fundamental frequency estimates of speech files mixed with noise from the following corpora:NOISEX [7]QUT-NOISE [8]
synthetic speech data.zip is a JBOF dataset of fundamental frequency estimates of synthetic harmonic tone complexes in white noise.noisy_speech.pkl and synthetic_speech.pkl are pickled Pandas dataframes of performance metrics derived from the above data for the following list of fundamental frequency estimation algorithms:AUTOC [9]AMDF [10]BANA [11]CEP [12]CREPE [13]DIO [14]DNN [15]KALDI [16]MAPSMBSC [17]NLS [18]PEFAC [19]PRAAT [20]RAPT [21]SACC [22]SAFE [23]SHR [24]SIFT [25]SRH [26]STRAIGHT [27]SWIPE [28]YAAPT [29]YIN [30]
noisy speech evaluation.py and synthetic speech evaluation.py are Python programs to calculate the above Pandas dataframes from the above JBOF datasets. They calculate the following performance measures:Gross Pitch Error (GPE), the percentage of pitches where the estimated pitch deviates from the true pitch by more than 20%.Fine Pitch Error (FPE), the mean error of grossly correct estimates.High/Low Octave Pitch Error (OPE), the percentage pitches that are GPEs and happens to be at an integer multiple of the true pitch.Gross Remaining Error (GRE), the percentage of pitches that are GPEs but not OPEs.Fine Remaining Bias (FRB), the median error of GREs.True Positive Rate (TPR), the percentage of true positive voicing estimates.False Positive Rate (FPR), the percentage of false positive voicing estimates.False Negative Rate (FNR), the percentage of false negative voicing estimates.F₁, the harmonic mean of precision and recall of the voicing decision.
Pipfile is a pipenv-compatible pipfile for installing all prerequisites necessary for running the above Python programs.
The Python programs take about an hour to compute on a fast 2019 computer, and require at least 32 Gb of memory.References:
John Kominek and Alan W Black. CMU ARCTIC database for speech synthesis, 2003.Paul C Bagshaw, Steven Hiller, and Mervyn A Jack. Enhanced Pitch Tracking and the Processing of F0 Contours for Computer Aided Intonation Teaching. In EUROSPEECH, 1993.F Plante, Georg F Meyer, and William A Ainsworth. A Pitch Extraction Reference Database. In Fourth European Conference on Speech Communication and Technology, pages 837–840, Madrid, Spain, 1995.Alan Wrench. MOCHA MultiCHannel Articulatory database: English, November 1999.Gregor Pirker, Michael Wohlmayr, Stefan Petrik, and Franz Pernkopf. A Pitch Tracking Corpus with Evaluation on Multipitch Tracking Scenario. page 4, 2011.John S. Garofolo, Lori F. Lamel, William M. Fisher, Jonathan G. Fiscus, David S. Pallett, Nancy L. Dahlgren, and Victor Zue. TIMIT Acoustic-Phonetic Continuous Speech Corpus, 1993.Andrew Varga and Herman J.M. Steeneken. Assessment for automatic speech recognition: II. NOISEX-92: A database and an experiment to study the effect of additive noise on speech recog- nition systems. Speech Communication, 12(3):247–251, July 1993.David B. Dean, Sridha Sridharan, Robert J. Vogt, and Michael W. Mason. The QUT-NOISE-TIMIT corpus for the evaluation of voice activity detection algorithms. Proceedings of Interspeech 2010, 2010.Man Mohan Sondhi. New methods of pitch extraction. Audio and Electroacoustics, IEEE Transactions on, 16(2):262—266, 1968.Myron J. Ross, Harry L. Shaffer, Asaf Cohen, Richard Freudberg, and Harold J. Manley. Average magnitude difference function pitch extractor. Acoustics, Speech and Signal Processing, IEEE Transactions on, 22(5):353—362, 1974.Na Yang, He Ba, Weiyang Cai, Ilker Demirkol, and Wendi Heinzelman. BaNa: A Noise Resilient Fundamental Frequency Detection Algorithm for Speech and Music. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12):1833–1848, December 2014.Michael Noll. Cepstrum Pitch Determination. The Journal of the Acoustical Society of America, 41(2):293–309, 1967.Jong Wook Kim, Justin Salamon, Peter Li, and Juan Pablo Bello. CREPE: A Convolutional Representation for Pitch Estimation. arXiv:1802.06182 [cs, eess, stat], February 2018. arXiv: 1802.06182.Masanori Morise, Fumiya Yokomori, and Kenji Ozawa. WORLD: A Vocoder-Based High-Quality Speech Synthesis System for Real-Time Applications. IEICE Transactions on Information and Systems, E99.D(7):1877–1884, 2016.Kun Han and DeLiang Wang. Neural Network Based Pitch Tracking in Very Noisy Speech. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12):2158–2168, Decem- ber 2014.Pegah Ghahremani, Bagher BabaAli, Daniel Povey, Korbinian Riedhammer, Jan Trmal, and Sanjeev Khudanpur. A pitch extraction algorithm tuned for automatic speech recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, pages 2494–2498. IEEE, 2014.Lee Ngee Tan and Abeer Alwan. Multi-band summary correlogram-based pitch detection for noisy speech. Speech Communication, 55(7-8):841–856, September 2013.Jesper Kjær Nielsen, Tobias Lindstrøm Jensen, Jesper Rindom Jensen, Mads Græsbøll Christensen, and Søren Holdt Jensen. Fast fundamental frequency estimation: Making a statistically efficient estimator computationally efficient. Signal Processing, 135:188–197, June 2017.Sira Gonzalez and Mike Brookes. PEFAC - A Pitch Estimation Algorithm Robust to High Levels of Noise. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(2):518—530, February 2014.Paul Boersma. Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise ratio of a sampled sound. In Proceedings of the institute of phonetic sciences, volume 17, page 97—110. Amsterdam, 1993.David Talkin. A robust algorithm for pitch tracking (RAPT). Speech coding and synthesis, 495:518, 1995.Byung Suk Lee and Daniel PW Ellis. Noise robust pitch tracking by subband autocorrelation classification. In Interspeech, pages 707–710, 2012.Wei Chu and Abeer Alwan. SAFE: a statistical algorithm for F0 estimation for both clean and noisy speech. In INTERSPEECH, pages 2590–2593, 2010.Xuejing Sun. Pitch determination and voice quality analysis using subharmonic-to-harmonic ratio. In Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International Conference on, volume 1, page I—333. IEEE, 2002.Markel. The SIFT algorithm for fundamental frequency estimation. IEEE Transactions on Audio and Electroacoustics, 20(5):367—377, December 1972.Thomas Drugman and Abeer Alwan. Joint Robust Voicing Detection and Pitch Estimation Based on Residual Harmonics. In Interspeech, page 1973—1976, 2011.Hideki Kawahara, Masanori Morise, Toru Takahashi, Ryuichi Nisimura, Toshio Irino, and Hideki Banno. TANDEM-STRAIGHT: A temporally stable power spectral representation for periodic signals and applications to interference-free spectrum, F0, and aperiodicity estimation. In Acous- tics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, pages 3933–3936. IEEE, 2008.Arturo Camacho. SWIPE: A sawtooth waveform inspired pitch estimator for speech and music. PhD thesis, University of Florida, 2007.Kavita Kasi and Stephen A. Zahorian. Yet Another Algorithm for Pitch Tracking. In IEEE International Conference on Acoustics Speech and Signal Processing, pages I–361–I–364, Orlando, FL, USA, May 2002. IEEE.Alain de Cheveigné and Hideki Kawahara. YIN, a fundamental frequency estimator for speech and music. The Journal of the Acoustical Society of America, 111(4):1917, 2002.
This dataset only contains test data, which is integrated into UltraEval-Audio(https://github.com/OpenBMB/UltraEval-Audio) framework.
python audio_evals/main.py --dataset librispeech-test-clean --model gpt4o_audio
python audio_evals/main.py --dataset librispeech-dev-clean --model gpt4o_audio
python audio_evals/main.py --dataset librispeech-test-other --model gpt4o_audio
python audio_evals/main.py --dataset librispeech-dev-other --model gpt4o_audio
🚀超凡体验,尽在UltraEval-Audio🚀… See the full description on the dataset page: https://huggingface.co/datasets/TwinkStart/librispeech.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This project focuses on data mapping, integration, and analysis to support the development and enhancement of six UNCDF operational applications: OrgTraveler, Comms Central, Internal Support Hub, Partnership 360, SmartHR, and TimeTrack. These apps streamline workflows for travel claims, internal support, partnership management, and time tracking within UNCDF.Key Features and Tools:Data Mapping for Salesforce CRM Migration: Structured and mapped data flows to ensure compatibility and seamless migration to Salesforce CRM.Python for Data Cleaning and Transformation: Utilized pandas, numpy, and APIs to clean, preprocess, and transform raw datasets into standardized formats.Power BI Dashboards: Designed interactive dashboards to visualize workflows and monitor performance metrics for decision-making.Collaboration Across Platforms: Integrated Google Collab for code collaboration and Microsoft Excel for data validation and analysis.
klib library enables us to quickly visualize missing data, perform data cleaning, visualize data distribution plot, visualize correlation plot and visualize categorical column values. klib is a Python library for importing, cleaning, analyzing and preprocessing data. Explanations on key functionalities can be found on Medium / TowardsDataScience in the examples section or on YouTube (Data Professor).
Original Github repo
https://raw.githubusercontent.com/akanz1/klib/main/examples/images/header.png" alt="klib Header">
!pip install klib
import klib
import pandas as pd
df = pd.DataFrame(data)
# klib.describe functions for visualizing datasets
- klib.cat_plot(df) # returns a visualization of the number and frequency of categorical features
- klib.corr_mat(df) # returns a color-encoded correlation matrix
- klib.corr_plot(df) # returns a color-encoded heatmap, ideal for correlations
- klib.dist_plot(df) # returns a distribution plot for every numeric feature
- klib.missingval_plot(df) # returns a figure containing information about missing values
Take a look at this starter notebook.
Further examples, as well as applications of the functions can be found here.
Pull requests and ideas, especially for further functions are welcome. For major changes or feedback, please open an issue first to discuss what you would like to change. Take a look at this Github repo.
This dataset was created by Eric R.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset and documentation contains detailed information of the iTEM Open Database, a harmonized transport data set of historical values, 1970 - present. It aims to create transparency through two key features:
The iTEM Open Database is comprised of individual datasets collected from public sources. Each dataset is downloaded, cleaned, and harmonised to the common region and technology definitions defined by the iTEM consortium https://transportenergy.org. For each dataset, we describe the name of the dataset, the web link to the original source, the web link to the cleaning script (in python), variables, and explain the data cleaning steps (which explains the data cleaning script in plain English).
Shall you find any problems with the dataset, please report the issues here https://github.com/transportenergy/database/issues.
Extrovert vs Introvert Personality Traits Dataset, a rich collection of behavioural and social data designed to explore the spectrum of human personality. This dataset captures key indicators of extroversion and introversion, making it a valuable resource for psychologists, data scientists, and researchers studying social behaviour, personality prediction, or data preprocessing techniques. Personality traits like extroversion and introversion shape how individuals interact with their social environments. This dataset provides insights into behaviours such as time spent alone, social event attendance, and social media engagement, enabling applications in psychology, sociology, marketing, and machine learning.
The dataset contains 2,900 rows and 8 columns. It is provided as a single CSV file, compatible with various data analysis tools like Python and R. The data quality notes indicate that the dataset includes some missing values in columns such as 'Time_spent_Alone' and 'Going_outside', offering opportunities for data cleaning practices like imputation and preprocessing. It also features balanced classes for the 'Personality' target variable, ensuring robust model training, and binary categorical variables that simplify encoding tasks.
This dataset is ideal for a variety of applications and use cases:
This dataset focuses on human personality, specifically the spectrum of extroversion and introversion, through behavioural and social data. It provides insights into how individuals interact with their social environments. Specific geographic or time range coverage is not detailed in the provided information.
CC BY-SA 4.0
This dataset is a valuable resource for:
Original Data Source: Extrovert vs. Introvert Behavior Data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains GPS tracking data and performance metrics for motorcycle taxis (boda bodas) in Nairobi, Kenya, comparing traditional internal combustion engine (ICE) motorcycles with electric motorcycles. The study was conducted in two phases:Baseline Phase: 118 ICE motorcycles tracked over 14 days (2023-11-13 to 2023-11-26)Transition Phase: 108 ICE motorcycles (control) and 9 electric motorcycles (treatment) tracked over 12 days (2023-12-10 to 2023-12-21)The dataset is organised into two main categories:Trip Data: Individual trip-level records containing timing, distance, duration, location, and speed metricsDaily Data: Daily aggregated summaries containing usage metrics, economic data, and energy consumptionThis dataset enables comparative analysis of electric vs. ICE motorcycle performance, economic modelling of transportation costs, environmental impact assessment, urban mobility pattern analysis, and energy efficiency studies in emerging markets.Institutions:EED AdvisoryClean Air TaskforceStellenbosch UniversitySteps to reproduce:Raw Data CollectionGPS tracking devices installed on motorcycles, collecting location data at 10-second intervalsRider-reported information on revenue, maintenance costs, and fuel/electricity usageProcessing StepsGPS data cleaning: Filtered invalid coordinates, removed duplicates, interpolated missing pointsTrip identification: Defined by >1 minute stationary periods or ignition cyclesTrip metrics calculation: Distance, duration, idle time, average/max speedsDaily data aggregation: Summed by user_id and date with self-reported economic dataValidation: Cross-checked with rider logs and known routesAnonymisation: Removed start and end coordinates for first and last trips of each day to protect rider privacy and home locationsTechnical InformationGeographic coverage: Nairobi, KenyaTime period: November-December 2023Time zone: UTC+3 (East Africa Time)Currency: Kenyan Shillings (KES)Data format: CSV filesSoftware used: Python 3.8 (pandas, numpy, geopy)Notes: Some location data points are intentionally missing to protect rider privacy. Self-reported economic and energy consumption data has some missing values where riders did not report.CategoriesMotorcycle, Transportation in Africa, Electric Vehicles
Perform this analysis on 2 excel files ‘Unstructured Data English.xlsx’ and ‘Unstructured Data Japanese.xls
Task: 1. Generate code for data cleansing in Python 2. Write a SQL Query/python to generate top 10 frequently occurring meaningful phrases in the data set 3. Using above cleansed data create a term document matrix for the given unstructured data. Use Python 3.7. The output should be in excel format explained as below,
S.no. (Unique identifier of a comment)
Token 1 2 3 4 so on…….. Unique identifier of each comment
Fire 0 0 3 0 ………. Token
Bad 2 0 1 8 ………. Number of times a token appears in a comment
Hate 5 2 2 0 ……….
Shine 1 1 2 3 ……….
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analyzing customers’ characteristics and giving the early warning of customer churn based on machine learning algorithms, can help enterprises provide targeted marketing strategies and personalized services, and save a lot of operating costs. Data cleaning, oversampling, data standardization and other preprocessing operations are done on 900,000 telecom customer personal characteristics and historical behavior data set based on Python language. Appropriate model parameters were selected to build BPNN (Back Propagation Neural Network). Random Forest (RF) and Adaboost, the two classic ensemble learning models were introduced, and the Adaboost dual-ensemble learning model with RF as the base learner was put forward. The four models and the other four classical machine learning models-decision tree, naive Bayes, K-Nearest Neighbor (KNN), Support Vector Machine (SVM) were utilized respectively to analyze the customer churn data. The results show that the four models have better performance in terms of recall rate, precision rate, F1 score and other indicators, and the RF-Adaboost dual-ensemble model has the best performance. Among them, the recall rates of BPNN, RF, Adaboost and RF-Adaboost dual-ensemble model on positive samples are respectively 79%, 90%, 89%,93%, the precision rates are 97%, 99%, 98%, 99%, and the F1 scores are 87%, 95%, 94%, 96%. The RF-Adaboost dual-ensemble model has the best performance, and the three indicators are 10%, 1%, and 6% higher than the reference. The prediction results of customer churn provide strong data support for telecom companies to adopt appropriate retention strategies for pre-churn customers and reduce customer churn.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
GovReport Summarization - 8192 tokens
ccdv/govreport-summarization with the changes of: data cleaned with the clean-text python package total tokens for each column computed and added in new columns according to the long-t5 tokenizer (done after cleaning)
train info
RangeIndex: 8200 entries, 0 to 8199 Data columns (total 4 columns): # Column Non-Null Count Dtype
0 report 8200 non-null… See the full description on the dataset page: https://huggingface.co/datasets/pszemraj/govreport-summarization-8192.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically