non-GTS data (COSMO data set) from the province of Emilia-Romagna from January to November 2007,
data are provided by ARPA-SIMC,
data have been processed at the Department of Meteorology and Geophysics,
no data quality control at the Department of Meteorology and Geophysics, University of Vienna at all,
for further details see file: jdc_data_description.pdf in entry "jdc_obsdata_info_1".
Database that integrates data from different networks of weather stations in Andalusia and its environment. This database has been launched by the Ministry of Agriculture, Fisheries and the Environment in order to respond to the need for climate and meteorological information in the framework of multiple studies.
The DEAR-Clima (Data Extraction Application for Regional Climate) is a user friendly interactive web application tool that visualizes and provides time series of essential climate variables and climate indices based on high horizontal resolution Regional Climate Model (RCM) simulations from the Coordinated Regional Downscaling Experiment ( CORDEX ) research program. Reliable and user friendly open access of future climate change data from high resolution RCM projections is essential to support decision makers, stakeholders, intermediary users and end-users for climate change impacts, mitigation and adaptation. The RCM data processed in this web application tool have a high spatial resolution (0.11°) over the european doamin and cover a time period from 1950 to 2100. The historical period of each experiment refers to 1950-2004, while the future period is 2006-2100 under the influence of three Representative Concentration Pathways (RCPs) adopted by the IPCC for its fifth Assessment Report (AR5); rcp26, rcp45 and rcp85. The simulation experiments are a product of various RCMs driven by several Global Climate Models (GCMs).
A streamflow data set, which is specifically suitable for the study of surface-water conditions throughout the United States under fluctuations in the prevailing climatic conditions, has been developed. This data set, called the Hydro-Climatic Data Network, or HCDN, consists of streamflow records for 1,659 sites throughout United States and its Territories.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Temperatures mitjanes mensuals de l’aire de la ciutat de Barcelona des de 1780. La temperatura es proporciona en graus centígrads (ºC).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Valores climatológicos normales’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from http://data.europa.eu/88u/dataset/https-datosabiertos-dipucadiz-es-catalogo-clima-normales on 19 January 2022.
--- Dataset description provided by original source is as follows ---
Periodo: 1981-2010 - Altitud (m): 2
Latitud: 36° 29' 59'' N - Longitud: 6° 15' 28'' O
Leyenda
T Temperatura media mensual/anual (°C)
TM Media mensual/anual de las temperaturas máximas diarias (°C)
Tm Media mensual/anual de las temperaturas mínimas diarias (°C)
R Precipitación mensual/anual media (mm)
H Humedad relativa media (%)
DR Número medio mensual/anual de días de precipitación superior o igual a 1
mm
DN Número medio mensual/anual de días de nieve
DT Número medio mensual/anual de días de tormenta
DF Número medio mensual/anual de días de niebla
DH Número medio mensual/anual de días de helada
DD Número medio mensual/anual de días despejados
I Número medio mensual/anual de horas de sol
--- Original source retains full ownership of the source dataset ---
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period.
A Microsoft Excel workbook is provided that tabulates best models for each downscaled climate dataset and for all downscaled climate datasets considered together. Best models were identified based on how well the models capture the climatology and interannual variability of four climate extreme indices using the Model Clima ...
Vectorial and alphanumeric information related to the characteristics of the meteorological stations integrated in the Environmental Climatology Information Subsystem (CLIMA). CLIMA integrates data from meteorological and related variables such as stratospheric ozone and pollen levels. It does not integrate data on variables related to environmental quality, although meteorological variables measured at stations belonging to these measurement networks are included.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table has key definitions about weather characteristics based on Shawi Indigenous language and knowledge that were prepared by Shawi researchers to inform the protocol : "Does food biodiversity protect against malnutrition and favour the resilience to climate change-related events in Amazon Indigenous communities? A protocol for a mixed methods study"
Los mapas de zonas homogéneas de clima para aguacate y plátano en Colombia fueron desarrolladas con base más de 4000 registros de cosechas reales de todo el país, y la información climática de la base de datos de Worldclim (Hijmans et al. 2005). Un análisis clustering permitió identificar las zonas del país con condiciones de clima similares para los cultivos estudiados. Estos mapas fueron usados en el proyecto de Agricultura Especifica por Sitio Compartiendo Experiencias (AESCE) para transferir conocimientos y practicas exitosas entre productores de una misma zona. Los mapas están en el sistema de coordenadas GCS_WGS_1984. La metodología detallada esta descrita en el archivo Protocolo_Clustering_de_clima_v1.pdf
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Modelos digitales de variables climáticas elaborados a partir de los datos procedentes de las estaciones meteorológicas andaluzas para el periodo 1970-2004.
Estudio de vulnerabilidad y desarrollo del sistema de información on-line sobre vulnerabilidad frente al cambio climático de la provincia de el oro
non-GTS data from the province of Emilia-Romagna for 2007,
data are provided by ARPA-SIMC,
data have been processed at the Department of Meteorology and Geophysics,
no data quality control at the Department of Meteorology and Geophysics, University of Vienna at all,
24h accumulation of precipitation data performed at University of Hohenheim,
for further details see file: jdc_data_description.pdf in entry "jdc_obsdata_info_1".
O ERA5 é a quinta geração da reanálise atmosférica do ECMWF do clima global. A reanálise combina dados do modelo com observações de todo o mundo em um conjunto de dados globalmente completo e consistente. O ERA5 substitui o ERA-Interim, que é a reanálise anterior. O ERA5 DAILY fornece valores agregados para cada dia de sete parâmetros de reanálise climática do ERA5: …
Proyecto de clima donde se recogen las medias mensuales y anual de datos de precipitación, temperatura máxima, media y mínima del año 1963 en Andalucía. Los datos climáticos han sido elaborados a partir de los datos obtenidos por el Instituto Nacional de Metereología. Se ha utilizado como base cartográfica el mapa Topográfico del Instituto Cartográfico de Andalucía 1:100.000 de 1999.
This dataset consists of transcripts from two focus groups with science users (1st group) and science producers (2nd group) who were partners of the South Central Climate Adaptation Science Center (CASC). The participants in the focus groups were science users and science producers identified by the South Central CASC and recruited in collaboration with Cornell's Center for Conservation Social Sciences. A total of 11 individuals participated in the science users focus group, and 16 participated in the science producers focus group. The purpose of the focus groups was to understand the range of perspectives and experiences of CASC partners in relation to their work with the CASC. We attempted to include participants that represented a diversity of organizations and regions working with the CASC. Participants in the science users groups included representatives of agencies intended to benefit from the science produced by the CASC: Landscape Conservation Cooperatives, federal natural resource agencies, state fish and wildlife agencies, tribal organizations, and nongovernmental conservation organizations. Participants in the science producers focus group included researchers that had received research funding from the CASC. The focus groups consisted of semi-structured conversations guided by a series of open-ended questions and lasted approximately two hours. The questions were designed to explore how partners contributed to the work of the CASC and the factors that influenced the ability of the CASC to work with their partners. The specific question topics focused on: how participants have worked with the CASC, reasons for becoming involved with the CASC, benefits of involvement with the CASC, challenges to involvement, and what the CASC could do to promote even more benefits from involvement. Additionally, we specifically explored how the CASC contributed to the coproduction of science and the generation of actionable science, with questions about interactions between science producers and science users and the role of the CASC in connecting them.
Entender o clima de uma região é fundamental para subsidiar processos de tomada de decisão pela gestão pública e providenciar ferramentas de desenvolvimento regional e de atividades econômicas ligadas ao campo como, por exemplo, a agropecuária e a agricultura familiar, importantes fatores que viabilizam, com algum sucesso, a sobrevivência na região mais seca do país: o Semiárido. O Semiárido Brasileiro apresenta características climáticas marcantes e apresenta bastante variabilidade tanto temporal quanto espacial, principalmente devido a sua extensão que abrange dez estados brasileiros. A característica estática dos métodos clássicos de classificação climática sofre duras críticas quanto aos resultados mais abrangentes, gerais, e, menos detalhados. Contudo, os métodos mais recentes que promovem uma climatologia mais dinâmica são alvos da falta de dados acessíveis, concisos, em séries prolongadas e em escalas, no máximo, diárias. Diante do exposto, o objetivo principal deste trabalho foi analisar, no período de 1994 a 2018, para os municípios de Areia e Campina Grande, ambos localizados no estado da Paraíba, o Tipo de Clima Anual (TCA), que é uma aplicação de uma técnica que utiliza métodos clássicos de classificação climatológica, contudo, de forma um pouco mais dinâmica para entender as características climáticas em escala anual. Além disso, foi analisada a variabilidade interanual das variáveis precipitação e temperatura para os 25 anos da série e para a Normal Climatológica de 1981 a 2010. Ademais, foram avaliados os critérios da inserção de municípios na nova delimitação do semiárido relacionados à quantidade de precipitação e índice de aridez. A base de Sistemas de Classificação Climática utilizada foi o sitema de Köppen-Geiger e o de Thornthwaite. Os resultados encontrados apontaram que, apesar da proximidade entre eles, os municípios de Areia e Campina Grande têm índices pluviométricos muito distintos, todavia suas distribuições têm comportamento semelhante. O município de Areia tem precipitação anual média de 1317,6 mm, o que a torna 70% mais úmida que Campina Grande (774,0 mm), porém com amplitude térmica semelhantes e médias de 22,5°C e 23,5°C, respectivamente. O TCA para Areia apresenta mais variações de clima que para Campina Grande, isso para os dois tipos de Classificações Climáticas utilizadas, e não correspondem necessariamente ao clima habitual para as localidades, sendo mais visível no método de Thornthwaite. O tipo climático habitual por Thornthwaite para Areia é B1rB’4b’4 e para Campina C1dA’a’, sendo por Köppen As’ para as duas localidades. Por fim, a análise dos critérios de inserção na delimitação mostrou que Campina Grande está apta a compor o semiárido, ao contrário de Areia. Ainda se levanta uma reflexão quanto ao índice de aridez utilizado para a classificação.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Detall dels recursos estadístics de les estacions meteorològiques de la ciutat de Barcelona. Cada estació mostra la informació captada per els diferents sensors.
Media sul periodo 1961-1990 della media invernale della temperatura minima giornaliera (°C)
Media sul periodo 1961-1990 della media annuale della temperatura media giornaliera (°C)
non-GTS data (COSMO data set) from the province of Emilia-Romagna from January to November 2007,
data are provided by ARPA-SIMC,
data have been processed at the Department of Meteorology and Geophysics,
no data quality control at the Department of Meteorology and Geophysics, University of Vienna at all,
for further details see file: jdc_data_description.pdf in entry "jdc_obsdata_info_1".