The data was collected using the High Frequency Survey (HFS), the new regional data collection tool & methodology launched in the Americas. The survey allowed for better reaching populations of interest with new remote modalities (phone interviews and self-administered surveys online) and improved sampling guidance and strategies. It includes a set of standardized regional core questions while allowing for operation-specific customizations. The core questions revolve around populations of interest's demographic profile, difficulties during their journey, specific protection needs, access to documentation & regularization, health access, coverage of basic needs, coping capacity & negative mechanisms used, and well-being & local integration. The data collected has been used by countries in their protection monitoring analysis and vulnerability analysis.
Whole country
Household
All people of concern.
Sample survey data [ssd]
In the absence of a well-developed sampling-frame for forcibly displaced populations in the Americas, the High Frequency Survey employed a multi-frame sampling strategy where respondents entered the sample through one of three channels: (i) those who opt-in to complete an online self-administered version of the questionnaire which was widely circulated through refugee social media; (ii) persons identified through UNHCR and partner databases who were remotely-interviewed by phone; and (iii) random selection from the cases approaching UNHCR for registration or assistance. The total sample size was 3950 households. At the time of the survey, the population of concern was estimated at around 500000 individuals.
Other [oth]
Questionaire contained the following sections: journey, family composition, vulnerability, basic Needs, coping capacity,well-being,COVID-19 Impact.
The 2019 Nauru mini census was carried out to update statistics on the population and the socio-economic situation of all persons living in private households in Nauru. Furthermore, the data collected in this census will be used as a sampling frame for future surveys that will be conducted in the country.
National coverage.
Household and Individual.
Census/enumeration data [cen]
Computer Assisted Personal Interview [capi]
The questionnaire was developped in English using the World Bank software called Survey Solutions.
The questionnaire is dividied into 4 main sections which are: - Household ID and Building Type: identification of the household; -Person Roster: questions related to household members (=individual characteristics, education, economic activities, disability); -Agriculture, Fisheries, Livestock and Aquaculture: questions related to these activities by household members; -Household: questions related to dwelling characteristics (=materials used for the dwelling, water storage).
There are also 3 categories that are for the interviewers' use: -Geographic Information + Photo; -Appendices: interviewer instructions and EA categories; -Legend: legend and structure of information in the questionnaire.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Veneta population by year. The dataset can be utilized to understand the population trend of Veneta.
The dataset constitues the following datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
https://www.icpsr.umich.edu/web/ICPSR/studies/7560/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/7560/terms
This data collection supplies standard monthly labor force data as well as supplemental data on work experience, income, and migration. Comprehensive information is given on the employment status, occupation, and industry of persons 14 years old and older. Additional data are available concerning weeks worked and hours per week worked, reason not working full-time, total income and income components, and residence. Information on demographic characteristics, such as age, sex, race, educational attainment, marital status, veteran status, household relationship, and Hispanic origin, is available for each person in the household enumerated.
This data package has the purpose to offer data for demographic indicators, part of 5-years American Community Census, that could be needed in the analysis made along with health-related data or alone. The American Community Survey based on 5-years estimates is, according to U.S Census Bureau, the most reliable, because the samples used are the largest and the data collected cover all country areas, regardless of the population number.
IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system.
The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.
National coverage
Dwelling
UNITS IDENTIFIED: - Dwellings: No - Households: Yes - Individuals: Yes - Group quarters: Yes
UNIT DESCRIPTIONS: - Group quarters: A collective household is a group of persons that does not live in an ordinary household, but lives in a collective establishment, sharing meal times.
Residents of France, of any nationality. Does not include French citizens living in other countries, foreign tourists, or people passing through.
Census/enumeration data [cen]
SAMPLE UNIT: Private dwellings and individuals for group quarters and compte a part
SAMPLE FRACTION: 5%
SAMPLE UNIVERSE: The microdata sample includes mainland France and Corsica.
SAMPLE SIZE (person records): 2,934,758
Face-to-face [f2f]
Form 1A for dwelling consists of (1) dwelling characteristics, (2) List A. permanent occupants of the dwelling, (3) List B. household members who do not live in the dwelling of enumeration, and (4) building characteristics; Form 2B. Individual form.
National coverage
households/individuals
survey
Quarterly
Sample size:
The STEP (Skills Toward Employment and Productivity) Measurement program is the first ever initiative to generate internationally comparable data on skills available in developing countries. The program implements standardized surveys to gather information on the supply and distribution of skills and the demand for skills in labor market of low-income countries.
The uniquely-designed Household Survey includes modules that measure the cognitive skills (reading, writing and numeracy), socio-emotional skills (personality, behavior and preferences) and job-specific skills (subset of transversal skills with direct job relevance) of a representative sample of adults aged 15 to 64 living in urban areas, whether they work or not. The cognitive skills module also incorporates a direct assessment of reading literacy based on the Survey of Adults Skills instruments. Modules also gather information about family, health and language.
The units of analysis are the individual respondents and households. A household roster is undertaken at the start of the survey and the individual respondent is randomly selected among all household members aged 15 to 64 included. The random selection process was designed by the STEP team and compliance with the procedure is carefully monitored during fieldwork.
The target population is defined as all non-institutionalized persons aged 15 to 64 (inclusive) living in private dwellings in the urban areas of the country at the time of the data collection. This includes all residents, except foreign diplomats and non-nationals working for international organizations
The following are considered "institutionalized" and excluded from the STEP survey:
- Residents of institutions (prisons, hospitals, etc)
- Residents of senior homes and hospices
- Residents of other group dwellings such as college dormitories, halfway homes, workers' quarters, etc
Other acceptable exclusions are:
- Persons living outside the country at the time of data collection, e.g., students at foreign universities
Deviation Requested from the Standard: The statistical population is composed of core urban households and excludes the categories identified here, as well as itinerants (as classified in the Population Census 2009 in Kenya).
Sample survey data [ssd]
The sample size was 3894 households. The Kenya sample design is a stratified 3 stage sample design. The sample was stratified by 4 geographic areas: 1-Nairobi, 2-Other Large Cities (over 100,000 households), 3- Medium cities (60,000 to 100,000 HHs), and 4-Other Urban Areas. For detailed description of the sample design and sampling methodologies, refer to Part 3 of the National Survey Design Planning Report (NSDPR) as well as the STEP Survey Weighting Procedures Summary. Both documents are provided as external resources.
War marred and unstable regions of Kenya were excluded from the survey. Itinerants (as classified in the Population Census 2009 in Kenya) were also excluded.
Face-to-face [f2f]
The STEP survey instruments include: (i) A Background Questionnaire developed by the WB STEP team. (ii) A Reading Literacy Assessment developed by Educational Testing Services (ETS).
All countries adapted and translated both instruments following the STEP Technical Standards: 2 independent translators adapted and translated the Background Questionnaire and Reading Literacy Assessment, while reconciliation was carried out by a third translator. In Kenya the section of the questionnaire assessing behavior and personality traits (Module 6) was translated into Swahili to adapt to respondents' language preferences, so that the respondent could choose to answer in either English or Swahili.
- The survey instruments were both piloted as part of the survey pretest.
- The adapted Background Questionnaires are provided in English as external resources. The Reading Literacy Assessment is protected by copyright and will not be published.
EEC Canada Inc. was responsible for data entry and processing.
The STEP Data management process is as follows:
An overall response rate of 91.8% was achieved in the Kenya STEP Survey. Table 21 of the STEP Survey Weighting Procedures Summary provides the detailed percentage distribution by final status code.
Census of population and housing refers to the entire process of collecting, compiling, evaluating, analyzing, and publishing data about the population and the living quarters in a country. It entails the listing and recording of the characteristics of each individual person and each living quarter as of a specified time and within a specified territory. It is the source of information on the size and distribution of the population as well as its demographic, social, economic, and cultural characteristics. These information are vital for making rational plans and programs for national and local development.
The 2011 Census of Population and Housing, conducted in April 2011, was designed to take an inventory of the total population and housing units in the RMI and to collect information about their characteristics. The census of population is the source of information on the size and distribution of the population as well as information about the demographic, social, economic and cultural characteristics. The census of housing, on the other hand, provides information on the supply of housing units, their structural characteristics and facilities which have bearing on the maintenance of privacy, health and the development of normal family living conditions. These information are vital for making rational plans and programs for social and economic development.
National Coverage
Individual Household
All de jure population of the Republic of the Marshall Islands on Census day.
Census/enumeration data [cen]
Face-to-face [f2f]
Data editing for the 2011 RMI Census used four phases of editing. The first phase of the data editing was the control phase which control clerks checked for completeness of the questionnaire. During this phase, items were verified by contacting the respondents either by phone or by home visit. The countries took advantage of enumerators still on the field to complete any missing information especially those pertaining to the head of the household, education and fertility questions.
The second phase of data editing was completed during data entry on items that had responses in places where no responses was expected and vice versa. Any information that was missing or incomplete in the questionnaire was substituted with a special code and keyed into the computer. Other than corrections to age, sex to name association and skip patterns no other information was edited during this phase.
The third phase utilized a standardized editing method called dynamic imputation. The method imputes missing or invalid items in the questionnaire with a person in the same geographical region that displays similar characteristics. The method used an approach called top-down to prevent circular and over editing of data.
The fourth phase was more of a quality control issue and refinements to the data edits. This was normally done with the production of tables and the interaction of subject-matter specialist.
The Estimating the Size of Populations through a Household Survey (EPSHS), sought to assess the feasibility of the network scale-up and proxy respondent methods for estimating the sizes of key populations at higher risk of HIV infection and to compare the results to other estimates of the population sizes. The study was undertaken based on the assumption that if these methods proved to be feasible with a reasonable amount of data collection for making adjustments, countries would be able to add this module to their standard household survey to produce size estimates for their key populations at higher risk of HIV infection. This would facilitate better programmatic responses for prevention and caring for people living with HIV and would improve the understanding of how HIV is being transmitted in the country.
The specific objectives of the ESPHS were: 1. To assess the feasibility of the network scale-up method for estimating the sizes of key populations at higher risk of HIV infection in a Sub-Saharan African context; 2. To assess the feasibility of the proxy respondent method for estimating the sizes of key populations at higher risk of HIV infection in a Sub-Saharan African context; 3. To estimate the population size of MSM, FSW, IDU, and clients of sex workers in Rwanda at a national level; 4. To compare the estimates of the sizes of key populations at higher risk for HIV produced by the network scale-up and proxy respondent methods with estimates produced using other methods; and 5. To collect data to be used in scientific publications comparing the use of the network scale-up method in different national and cultural environments.
National
The Estimating the Size of Populations through a Household Survey (ESPHS) used a two-stage sample design, implemented in a representative sample of 2,125 households selected nationwide in which all women and men age 15 years and above where eligible for an individual interview. The sampling frame used was the preparatory frame for the Rwanda Population and Housing Census (RPHC), which was conducted in 2012; it was provided by the National Institute of Statistics of Rwanda (NISR).
The sampling frame was a complete list of natural villages covering the whole country (14,837 villages). Two strata were defined: the city of Kigali and the rest of the country. One hundred and thirty Primary Sampling Units (PSU) were selected from the sampling frame (35 in Kigali and 95 in the other stratum). To reduce clustering effect, only 20 households were selected per cluster in Kigali and 15 in the other clusters. As a result, 33 percent of the households in the sample were located in Kigali.
The list of households in each cluster was updated upon arrival of the survey team in the cluster. Once the listing had been updated, a number was assigned to each existing household in the cluster. The supervisor then identified the households to be interviewed in the survey by using a table in which the households were randomly pre-selected. This table also provided the list of households pre-selected for each of the two different definitions of what it means "to know" someone.
For further details on sample design and implementation, see Appendix A of the final report.
Face-to-face [f2f]
The Estimating the Size of Populations through a Household Survey (ESPHS) used two types of questionnaires: a household questionnaire and an individual questionnaire. The same individual questionnaire was used to interview both women and men. In addition, two versions of the individual questionnaire were developed, using two different definitions of what it means “to know” someone. Each version of the individual questionnaire was used in half of the selected households.
The processing of the ESPHS data began shortly after the fieldwork commenced. Completed questionnaires were returned periodically from the field to the SPH office in Kigali, where they were entered and checked for consistency by data processing personnel who were specially trained for this task. Data were entered using CSPro, a programme specially developed for use in DHS surveys. All data were entered twice (100 percent verification). The concurrent processing of the data was a distinct advantage for data quality, because the School of Public Health had the opportunity to advise field teams of problems detected during data entry. The data entry and editing phase of the survey was completed in late August 2011.
A total of 2,125 households were selected in the sample, of which 2,120 were actually occupied at the time of the interview. The number of occupied households successfully interviewed was 2,102, yielding a household response rate of 99 percent.
From the households interviewed, 2,629 women were found to be eligible and 2,567 were interviewed, giving a response rate of 98 percent. Interviews with men covered 2,102 of the eligible 2,149 men, yielding a response rate of 98 percent. The response rates do not significantly vary by type of questionnaire or residence.
The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made to minimize this type of error during the implementation of the Rwanda ESPHS 2011, non-sampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the ESPHS 2011 is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the ESPHS 2011 sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the ESPHS 2011 is a SAS program. This program uses the Taylor linearization method for variance estimation for survey estimates that are means or proportions.
A more detailed description of estimates of sampling errors are presented in Appendix B of the survey report.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Whitehouse population by year. The dataset can be utilized to understand the population trend of Whitehouse.
The dataset constitues the following datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
National coverage
households/individuals
survey
Monthly
Sample size:
The data was collected using the High Frequency Survey (HFS), the new regional data collection tool & methodology launched in the Americas. The survey allowed for better reaching populations of interest with new remote modalities (phone interviews and self-administered surveys online) and improved sampling guidance and strategies. It includes a set of standardized regional core questions while allowing for operation-specific customizations. The core questions revolve around populations of interest's demographic profile, difficulties during their journey, specific protection needs, access to documentation & regularization, health access, coverage of basic needs, coping capacity & negative mechanisms used, and well-being & local integration. The data collected has been used by countries in their protection monitoring analysis and vulnerability analysis.
National coverage
Household
All people of concern.
Sample survey data [ssd]
In the absence of a well-developed sampling-frame for forcibly displaced populations in the Americas, the High Frequency Survey employed a multi-frame sampling strategy where respondents entered the sample through one of three channels: (i) those who opt-in to complete an online self-administered version of the questionnaire which was widely circulated through refugee social media; (ii) persons identified through UNHCR and partner databases who were remotely-interviewed by phone; and (iii) random selection from the cases approaching UNHCR for registration or assistance. The total sample size was 129 households. At the time of the survey, the population of concern was estimated at around 11000 individuals.
Other [oth]
The questionnaire contained the following sections: journey, family composition, vulnerability, basic Needs, coping capacity, well-being, COVID-19 Impact.
IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system.
The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.
National coverage
Occupied private dwellings and communal establishments
UNITS IDENTIFIED: - Dwellings: No - Households: Yes - Individuals: Yes - Group quarters: Yes
Every person who spends census night (21-22 April) in the household, including anyone staying temporarily; any other people who are usually members of the household but on the census night are absent on holiday, at school or college, or for any other reason even if they are being included on another census form elsewhere; anyone who arrives here on Monday 22nd April who was in Great Britain on the Sunday and who has not been included as present on another census form; and any newly born baby born before the 22nd April, even if still in hospital.
Census/enumeration data [cen]
MICRODATA SOURCE: Office of Population Censuses and Surveys. Constructed from fully-coded household and communal establishments forms.
SAMPLE UNIT: Dwelling
SAMPLE FRACTION: 2.0%
SAMPLE SIZE (person records): 541,894
Face-to-face [f2f]
Form for private households (H), Form for making and individual return (I), and Form for communal establishments, HM Ships or other vessels (L)
UNDERCOUNT: 2.0% of the population of Great Britain missed entirely and a further 1.6 per cent for whom records were imputed.
IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system.
The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.
National coverage
Households
UNITS IDENTIFIED: - Dwellings: No - Vacant units: No - Households: Yes - Individuals: Yes - Group quarters: Yes - Special populations: No
UNIT DESCRIPTIONS: - Dwellings: Building or any construction structures including boat, houseboat, and truck at which a person can live. - Households: A household refers to the living one person or many persons in the same house or the same construction structure. They seek for, consume, and utilize all facilities together for their benefit, regardless of whether they are related or not. - Group quarters: Household which compose of several people living together because of having certain rule or regulation which indicated that those people must live together or needed to stay together for their own benefit. There are two kinds of collective households: institutions and other collective households [also called 'special households' in this sample]
All Thai nationals residing in Thailand on the census date; foreign civilians who normally reside in Thailand or who temporarily reside in Thailand 3 months or more before the census date; any individual who has normally resided in Thailand but was away for military training, sailing, or temporarily travelling abroad; and Thai civil/military/diplomatic officers and their families who normally have their offices in foreign countries.
Census/enumeration data [cen]
MICRODATA SOURCE: National Statistical Office
SAMPLE DESIGN: A stratified two-stage sample was adopted. 5 strata were Bangkok and the four regions (Central, North, Northeastern, South), and each stratum was divided into municipal areas and non-municipal areas. Then, the sample was selected in two stages. In stage one, a number of sample enumeration districts (EDs) were selected systematically in each sub-stratum with sampling fraction of 1 in 20. In stage two, a sample of households was selected systematically from each sample ED as follows. For private households, one-fifth of households in each ED were selected. For collective households, one-fifth of special households and one fiftth of institutional households were selected in each sub-stratum (municipal and non-municipal areas.
SAMPLE UNIT: Household
SAMPLE FRACTION: 1%
SAMPLE SIZE (person records): 604,519
Face-to-face [f2f]
The population was enumerated with Form 2, which consists of three parts. Part 1 identifies the location of the household. Part 2 contains questions on population including questions on demography (S1-S16) and questions on detail of population (L17-L27). Part 3 contains housing questions that are asked of the sample private households only. Note: (i) Only Part 1 and questions on demography (S1-S16) of Part 2 in Form 2 were asked of the private households that have not been selected as sample households. (ii) For the private households that have been selected as sample private households (20%), all questions in Form 2 were asked. (iii) All collective households were enumerated using Form 2 on Part 1 (location of household) and Part 2 (questions on demography and on details of population), but questions on housing were not asked.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Winter Harbor town population by year. The dataset can be utilized to understand the population trend of Winter Harbor town.
The dataset constitues the following datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the White population by year. The dataset can be utilized to understand the population trend of White.
The dataset constitues the following datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Walton County population by year. The dataset can be utilized to understand the population trend of Walton County.
The dataset constitues the following datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Worth County population by year. The dataset can be utilized to understand the population trend of Worth County.
The dataset constitues the following datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the West population by year. The dataset can be utilized to understand the population trend of West.
The dataset constitues the following datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
The data was collected using the High Frequency Survey (HFS), the new regional data collection tool & methodology launched in the Americas. The survey allowed for better reaching populations of interest with new remote modalities (phone interviews and self-administered surveys online) and improved sampling guidance and strategies. It includes a set of standardized regional core questions while allowing for operation-specific customizations. The core questions revolve around populations of interest's demographic profile, difficulties during their journey, specific protection needs, access to documentation & regularization, health access, coverage of basic needs, coping capacity & negative mechanisms used, and well-being & local integration. The data collected has been used by countries in their protection monitoring analysis and vulnerability analysis.
Whole country
Household
All people of concern.
Sample survey data [ssd]
In the absence of a well-developed sampling-frame for forcibly displaced populations in the Americas, the High Frequency Survey employed a multi-frame sampling strategy where respondents entered the sample through one of three channels: (i) those who opt-in to complete an online self-administered version of the questionnaire which was widely circulated through refugee social media; (ii) persons identified through UNHCR and partner databases who were remotely-interviewed by phone; and (iii) random selection from the cases approaching UNHCR for registration or assistance. The total sample size was 3950 households. At the time of the survey, the population of concern was estimated at around 500000 individuals.
Other [oth]
Questionaire contained the following sections: journey, family composition, vulnerability, basic Needs, coping capacity,well-being,COVID-19 Impact.