Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Exceptional mathematical reasoning ability is one of the key features that demonstrate the power of large language models (LLMs). How to comprehensively define and evaluate the mathematical abilities of LLMs, and even reflect the user experience in real-world scenarios, has emerged as a critical issue. Current benchmarks predominantly concentrate on problem-solving capabilities, which presents a substantial risk of model overfitting and fails to accurately represent genuine mathematical… See the full description on the dataset page: https://huggingface.co/datasets/PremiLab-Math/MathCheck.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By Huggingface Hub [source]
This dataset contains meta-mathematics questions and answers collected from the Mistral-7B question-answering system. The responses, types, and queries are all provided in order to help boost the performance of MetaMathQA while maintaining high accuracy. With its well-structured design, this dataset provides users with an efficient way to investigate various aspects of question answering models and further understand how they function. Whether you are a professional or beginner, this dataset is sure to offer invaluable insights into the development of more powerful QA systems!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
Data Dictionary
The MetaMathQA dataset contains three columns: response, type, and query. - Response: the response to the query given by the question answering system. (String) - Type: the type of query provided as input to the system. (String) - Query:the question posed to the system for which a response is required. (String)
Preparing data for analysis
It’s important that before you dive into analysis, you first familiarize yourself with what kind data values are present in each column and also check if any preprocessing needs to be done on them such as removing unwanted characters or filling in missing values etc., so that it can be used without any issue while training or testing your model further down in your process flow.
##### Training Models using Mistral 7B
Mistral 7B is an open source framework designed for building machine learning models quickly and easily from tabular (csv) datasets such as those found in this dataset 'MetaMathQA ' . After collecting and preprocessing your dataset accordingly Mistral 7B provides with support for various Machine Learning algorithms like Support Vector Machines (SVM), Logistic Regression , Decision trees etc , allowing one to select from various popular libraries these offered algorithms with powerful overall hyperparameter optimization techniques so soon after selecting algorithm configuration its good practice that one use GridSearchCV & RandomSearchCV methods further tune both optimizations during model building stages . Post selection process one can then go ahead validate performances of selected models through metrics like accuracy score , F1 Metric , Precision Score & Recall Scores .
##### Testing phosphors :
After successful completion building phase right way would be robustly testing phosphors on different evaluation metrics mentioned above Model infusion stage helps here immediately make predictions based on earlier trained model OK auto back new test cases presented by domain experts could hey run quality assurance check again base score metrics mentioned above know asses confidence value post execution HHO updating baseline scores running experiments better preferred methodology AI workflows because Core advantage finally being have relevancy inexactness induced errors altogether impact low
- Generating natural language processing (NLP) models to better identify patterns and connections between questions, answers, and types.
- Developing understandings on the efficiency of certain language features in producing successful question-answering results for different types of queries.
- Optimizing search algorithms that surface relevant answer results based on types of queries
If you use this dataset in your research, please credit the original authors. Data Source
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: train.csv | Column name | Description | |:--------------|:------------------------------------| | response | The response to the query. (String) | | type | The type of query. (String) |
If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Huggingface Hub.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The IBEM dataset consists of 600 documents with a total number of 8272 pages, containing 29603 isolated and 137089 embedded Mathematical Expressions (MEs). The objective of the IBEM dataset is to facilitate the indexing and searching of MEs in massive collections of STEM documents. The dataset was built by parsing the LaTeX source files of documents from the KDD Cup Collection. Several experiments can be carried out with the IBEM dataset ground-truth (GT): ME detection and extraction, ME recognition, etc.
The dataset consists of the following files:
The dataset is partitioned into various sets as provided for the ICDAR 2021 Competition on Mathematical Formula Detection. The ground-truth related to this competition, which is included in this dataset version, can also be found here. More information about the competition can be found in the following paper:
D. Anitei, J.A. Sánchez, J.M. Fuentes, R. Paredes, and J.M. Benedí. ICDAR 2021 Competition on Mathematical Formula Detection. In ICDAR, pages 783–795, 2021.
For ME recognition tasks, we recommend rendering the “latex_expand” version of the formulae in order to create standalone expressions that have the same visual representation as MEs found in the original documents (see attached python script “extract_GT.py”). Extracting MEs from the documents based on coordinates is more complex, as special care is needed to concatenate the fragments of split expressions. Baseline results for ME recognition tasks will soon be made available.
The NaturalProofs Dataset is a large-scale dataset for studying mathematical reasoning in natural language. NaturalProofs consists of roughly 20,000 theorem statements and proofs, 12,500 definitions, and 1,000 additional pages (e.g. axioms, corollaries) derived from ProofWiki, an online compendium of mathematical proofs written by a community of contributors.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Data from a comparative judgement survey consisting of 62 working mathematics educators (ME) at Norwegian universities or city colleges, and 57 working mathematicians at Norwegian universities. A total of 3607 comparisons of which 1780 comparisons by the ME and 1827 ME. The comparative judgement survey consisted of respondents comparing pairs of statements on mathematical definitions compiled from a literature review on mathematical definitions in the mathematics education literature. Each WM was asked to judge 40 pairs of statements with the following question: “As a researcher in mathematics, where your target group is other mathematicians, what is more important about mathematical definitions?” Each ME was asked to judge 41 pairs of statements with the following question: “For a mathematical definition in the context of teaching and learning, what is more important?” The comparative judgement was done with No More Marking software (nomoremarking.com) The data set consists of the following data: comparisons made by ME (ME.csv) comparisons made by WM (WM.csv) Look up table of codes of statements and statement formulations (key.csv) Each line in the comparison represents a comparison, where the "winner" column represents the winner and the "loser" column the loser of the comparison.
MMLU (Massive Multitask Language Understanding) is a new benchmark designed to measure knowledge acquired during pretraining by evaluating models exclusively in zero-shot and few-shot settings. This makes the benchmark more challenging and more similar to how we evaluate humans. The benchmark covers 57 subjects across STEM, the humanities, the social sciences, and more. It ranges in difficulty from an elementary level to an advanced professional level, and it tests both world knowledge and problem solving ability. Subjects range from traditional areas, such as mathematics and history, to more specialized areas like law and ethics. The granularity and breadth of the subjects makes the benchmark ideal for identifying a model’s blind spots.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract: Graph Neural Networks (GNNs) have recently gained traction in transportation, bioinformatics, language and image processing, but research on their application to supply chain management remains limited. Supply chains are inherently graph-like, making them ideal for GNN methodologies, which can optimize and solve complex problems. The barriers include a lack of proper conceptual foundations, familiarity with graph applications in SCM, and real-world benchmark datasets for GNN-based supply chain research. To address this, we discuss and connect supply chains with graph structures for effective GNN application, providing detailed formulations, examples, mathematical definitions, and task guidelines. Additionally, we present a multi-perspective real-world benchmark dataset from a leading FMCG company in Bangladesh, focusing on supply chain planning. We discuss various supply chain tasks using GNNs and benchmark several state-of-the-art models on homogeneous and heterogeneous graphs across six supply chain analytics tasks. Our analysis shows that GNN-based models consistently outperform statistical ML and other deep learning models by around 10-30% in regression, 10-30% in classification and detection tasks, and 15-40% in anomaly detection tasks on designated metrics. With this work, we lay the groundwork for solving supply chain problems using GNNs, supported by conceptual discussions, methodological insights, and a comprehensive dataset.
GPQA stands for Graduate-Level Google-Proof Q&A Benchmark. It's a challenging dataset designed to evaluate the capabilities of Large Language Models (LLMs) and scalable oversight mechanisms. Let me provide more details about it:
Description: GPQA consists of 448 multiple-choice questions meticulously crafted by domain experts in biology, physics, and chemistry. These questions are intentionally designed to be high-quality and extremely difficult. Expert Accuracy: Even experts who hold or are pursuing PhDs in the corresponding domains achieve only 65% accuracy on these questions (or 74% when excluding clear mistakes identified in retrospect). Google-Proof: The questions are "Google-proof," meaning that even with unrestricted access to the web, highly skilled non-expert validators only reach an accuracy of 34% despite spending over 30 minutes searching for answers. AI Systems Difficulty: State-of-the-art AI systems, including our strongest GPT-4 based baseline, achieve only 39% accuracy on this challenging dataset.
The difficulty of GPQA for both skilled non-experts and cutting-edge AI systems makes it an excellent resource for conducting realistic scalable oversight experiments. These experiments aim to explore ways for human experts to reliably obtain truthful information from AI systems that surpass human capabilities¹³.
In summary, GPQA serves as a valuable benchmark for assessing the robustness and limitations of language models, especially when faced with complex and nuanced questions. Its difficulty level encourages research into effective oversight methods, bridging the gap between AI and human expertise.
(1) [2311.12022] GPQA: A Graduate-Level Google-Proof Q&A Benchmark - arXiv.org. https://arxiv.org/abs/2311.12022. (2) GPQA: A Graduate-Level Google-Proof Q&A Benchmark — Klu. https://klu.ai/glossary/gpqa-eval. (3) GPA Dataset (Spring 2010 through Spring 2020) - Data Science Discovery. https://discovery.cs.illinois.edu/dataset/gpa/. (4) GPQA: A Graduate-Level Google-Proof Q&A Benchmark - GitHub. https://github.com/idavidrein/gpqa. (5) Data Sets - OpenIntro. https://www.openintro.org/data/index.php?data=satgpa. (6) undefined. https://doi.org/10.48550/arXiv.2311.12022. (7) undefined. https://arxiv.org/abs/2311.12022%29.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveEmergency department (ED) frequent attenders (FA) have been the subject of discussion in many countries. This group of patients have contributed to the high expenses of health services and strained capacity in the department. Studies related to ED FAs aim to describe the characteristics of patients such as demographic and socioeconomic factors. The analysis may explore the relationship between these factors and multiple patient visits. However, the definition used for classifying patients varies across studies. While most studies used frequency of attendance to define the FA, the derivation of the frequency is not clear.MethodsWe propose a mathematical methodology to define the time interval between ED returns for classifying FAs. K-means clustering and the Elbow method were used to identify suitable FA definitions. Recursive clustering on the smallest time interval cluster created a new, smaller cluster and formal FA definition.ResultsApplied to a case study dataset of approximately 336,000 ED attendances, this framework can consistently and effectively identify FAs across EDs. Based on our data, a FA is defined as a patient with three or more attendances within sequential 21-day periods.ConclusionThis study introduces a standardized framework for defining ED FAs, providing a consistent and effective means of identification across different EDs. Furthermore, the methodology can be used to identify patients who are at risk of becoming a FA. This allows for the implementation of targeted interventions aimed at reducing the number of future attendances.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
It is widely accepted that humans and animals minimize energetic cost while walking. While such principles predict average behavior, they do not explain the variability observed in walking. For robust performance, walking movements must adapt at each step, not just on average. Here, we propose an analytical framework that reconciles issues of optimality, redundancy, and stochasticity. For human treadmill walking, we defined a goal function to formulate a precise mathematical definition of one possible control strategy: maintain constant speed at each stride. We recorded stride times and stride lengths from healthy subjects walking at five speeds. The specified goal function yielded a decomposition of stride-to-stride variations into new gait variables explicitly related to achieving the hypothesized strategy. Subjects exhibited greatly decreased variability for goal-relevant gait fluctuations directly related to achieving this strategy, but far greater variability for goal-irrelevant fluctuations. More importantly, humans immediately corrected goal-relevant deviations at each successive stride, while allowing goal-irrelevant deviations to persist across multiple strides. To demonstrate that this was not the only strategy people could have used to successfully accomplish the task, we created three surrogate data sets. Each tested a specific alternative hypothesis that subjects used a different strategy that made no reference to the hypothesized goal function. Humans did not adopt any of these viable alternative strategies. Finally, we developed a sequence of stochastic control models of stride-to-stride variability for walking, based on the Minimum Intervention Principle. We demonstrate that healthy humans are not precisely “optimal,” but instead consistently slightly over-correct small deviations in walking speed at each stride. Our results reveal a new governing principle for regulating stride-to-stride fluctuations in human walking that acts independently of, but in parallel with, minimizing energetic cost. Thus, humans exploit task redundancies to achieve robust control while minimizing effort and allowing potentially beneficial motor variability.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Exceptional mathematical reasoning ability is one of the key features that demonstrate the power of large language models (LLMs). How to comprehensively define and evaluate the mathematical abilities of LLMs, and even reflect the user experience in real-world scenarios, has emerged as a critical issue. Current benchmarks predominantly concentrate on problem-solving capabilities, which presents a substantial risk of model overfitting and fails to accurately represent genuine mathematical… See the full description on the dataset page: https://huggingface.co/datasets/PremiLab-Math/MathCheck.