100+ datasets found
  1. f

    Number of downloads per user.

    • figshare.com
    xls
    Updated May 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elina Late; Michael Ochsner (2024). Number of downloads per user. [Dataset]. http://doi.org/10.1371/journal.pone.0303190.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 10, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Elina Late; Michael Ochsner
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The aim of this paper is to investigate the re-use of research data deposited in digital data archive in the social sciences. The study examines the quantity, type, and purpose of data downloads by analyzing enriched user log data collected from Swiss data archive. The findings show that quantitative datasets are downloaded increasingly from the digital archive and that downloads focus heavily on a small share of the datasets. The most frequently downloaded datasets are survey datasets collected by research organizations offering possibilities for longitudinal studies. Users typically download only one dataset, but a group of heavy downloaders form a remarkable share of all downloads. The main user group downloading data from the archive are students who use the data in their studies. Furthermore, datasets downloaded for research purposes often, but not always, serve to be used in scholarly publications. Enriched log data from data archives offer an interesting macro level perspective on the use and users of the services and help understanding the increasing role of repositories in the social sciences. The study provides insights into the potential of collecting and using log data for studying and evaluating data archive use.

  2. UK House Price Index: data downloads January 2025

    • gov.uk
    Updated Mar 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HM Land Registry (2025). UK House Price Index: data downloads January 2025 [Dataset]. https://www.gov.uk/government/statistical-data-sets/uk-house-price-index-data-downloads-january-2025
    Explore at:
    Dataset updated
    Mar 26, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    HM Land Registry
    Area covered
    United Kingdom
    Description

    The UK House Price Index is a National Statistic.

    Create your report

    Download the full UK House Price Index data below, or use our tool to https://landregistry.data.gov.uk/app/ukhpi?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=tool&utm_term=9.30_26_03_25" class="govuk-link">create your own bespoke reports.

    Download the data

    Datasets are available as CSV files. Find out about republishing and making use of the data.

    Full file

    This file includes a derived back series for the new UK HPI. Under the UK HPI, data is available from 1995 for England and Wales, 2004 for Scotland and 2005 for Northern Ireland. A longer back series has been derived by using the historic path of the Office for National Statistics HPI to construct a series back to 1968.

    Download the full UK HPI background file:

    Individual attributes files

    If you are interested in a specific attribute, we have separated them into these CSV files:

  3. FStarDataSet-V2

    • huggingface.co
    Updated Sep 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Microsoft (2024). FStarDataSet-V2 [Dataset]. https://huggingface.co/datasets/microsoft/FStarDataSet-V2
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 4, 2024
    Dataset authored and provided by
    Microsofthttp://microsoft.com/
    License

    https://choosealicense.com/licenses/cdla-permissive-2.0/https://choosealicense.com/licenses/cdla-permissive-2.0/

    Description

    This dataset is the Version 2.0 of microsoft/FStarDataSet.

      Primary-Objective
    

    This dataset's primary objective is to train and evaluate Proof-oriented Programming with AI (PoPAI, in short). Given a specification of a program and proof in F*, the objective of a AI model is to synthesize the implemantation (see below for details about the usage of this dataset, including the input and output).

      Data Format
    

    Each of the examples in this dataset are organized as dictionaries… See the full description on the dataset page: https://huggingface.co/datasets/microsoft/FStarDataSet-V2.

  4. c

    Walmart products free dataset

    • crawlfeeds.com
    csv, zip
    Updated Apr 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Walmart products free dataset [Dataset]. https://crawlfeeds.com/datasets/walmart-products-free-dataset
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Apr 27, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Discover the Walmart Products Free Dataset, featuring 2,000 records in CSV format. This dataset includes detailed information about various Walmart products, such as names, prices, categories, and descriptions.

    It’s perfect for data analysis, e-commerce research, and machine learning projects. Download now and kickstart your insights with accurate, real-world data.

  5. e

    data download service (WFS) from: Ecological footprint, in number of planets...

    • data.europa.eu
    Updated Feb 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). data download service (WFS) from: Ecological footprint, in number of planets [Dataset]. https://data.europa.eu/data/datasets/fr-120066022-mdwfs-driea_if-empreinte_ecolo
    Explore at:
    inspire download serviceAvailable download formats
    Dataset updated
    Feb 8, 2022
    Description

    Ecological footprint calculated in number of planets per capita. The method is based on the regional ecological footprint, as calculated by the IUU IdF (Nov 2005). Within the 5 sectors considered in the calculation: food, services, goods, mobility and housing, the latter two have been recalculated on the basis of communal data. The property sector has been allocated with a weighting according to the resources of the communal population. The other two sectors were distributed in proportion to the population. C_dep_iau c_dep_iau_Labels c_arobase_d_Classes_Empr_ecolo C_Com_iau c_Com_iau_2_ Tags C_Com_iau_Labels c_Com_iau_2

  6. e

    INSPIRE Download Service (predefined ATOM) for data set Im Fastnachtsstück -...

    • data.europa.eu
    • gimi9.com
    atom feed
    Updated Apr 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LVermGeo im Auftrag von Mayen (2025). INSPIRE Download Service (predefined ATOM) for data set Im Fastnachtsstück - An den weißen Wacken I 1. [Dataset]. https://data.europa.eu/88u/dataset/4e31ef50-0a64-0002-6dbd-4101c2ab090b
    Explore at:
    atom feedAvailable download formats
    Dataset updated
    Apr 12, 2025
    Dataset authored and provided by
    LVermGeo im Auftrag von Mayen
    Description

    Description of the INSPIRE Download Service (predefined Atom): Statutes on the development plan "Im Fastnachtsstück - An den weißen Wacken I" (1st amendment) of 01.02.1995 - The link(s) for downloading the data sets is/are dynamically generated from Get Map calls to a WMS interface

  7. C

    National Hydrography Data - NHD and 3DHP

    • data.cnra.ca.gov
    • data.ca.gov
    • +3more
    Updated Jul 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). National Hydrography Data - NHD and 3DHP [Dataset]. https://data.cnra.ca.gov/dataset/national-hydrography-dataset-nhd
    Explore at:
    pdf, csv(12977), zip(73817620), pdf(3684753), website, zip(13901824), pdf(4856863), web videos, zip(578260992), pdf(1436424), zip(128966494), pdf(182651), zip(972664), zip(10029073), zip(1647291), pdf(1175775), zip(4657694), pdf(1634485), zip(15824984), zip(39288832), arcgis geoservices rest api, pdf(437025), pdf(9867020)Available download formats
    Dataset updated
    Jul 1, 2025
    Dataset authored and provided by
    California Department of Water Resources
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    The USGS National Hydrography Dataset (NHD) downloadable data collection from The National Map (TNM) is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. For additional information on NHD, go to https://www.usgs.gov/core-science-systems/ngp/national-hydrography.

    DWR was the steward for NHD and Watershed Boundary Dataset (WBD) in California. We worked with other organizations to edit and improve NHD and WBD, using the business rules for California. California's NHD improvements were sent to USGS for incorporation into the national database. The most up-to-date products are accessible from the USGS website. Please note that the California portion of the National Hydrography Dataset is appropriate for use at the 1:24,000 scale.

    For additional derivative products and resources, including the major features in geopackage format, please go to this page: https://data.cnra.ca.gov/dataset/nhd-major-features Archives of previous statewide extracts of the NHD going back to 2018 may be found at https://data.cnra.ca.gov/dataset/nhd-archive.

    In September 2022, USGS officially notified DWR that the NHD would become static as USGS resources will be devoted to the transition to the new 3D Hydrography Program (3DHP). 3DHP will consist of LiDAR-derived hydrography at a higher resolution than NHD. Upon completion, 3DHP data will be easier to maintain, based on a modern data model and architecture, and better meet the requirements of users that were documented in the Hydrography Requirements and Benefits Study (2016). The initial releases of 3DHP include NHD data cross-walked into the 3DHP data model. It will take several years for the 3DHP to be built out for California. Please refer to the resources on this page for more information.

    The FINAL,STATIC version of the National Hydrography Dataset for California was published for download by USGS on December 27, 2023. This dataset can no longer be edited by the state stewards. The next generation of national hydrography data is the USGS 3D Hydrography Program (3DHP).

    Questions about the California stewardship of these datasets may be directed to nhd_stewardship@water.ca.gov.

  8. w

    TRAINING DATASET: Hands-On Uploading Data (Download This File)

    • data.wu.ac.at
    • opendata.hawaii.gov
    xls
    Updated Nov 18, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Hawaii (2013). TRAINING DATASET: Hands-On Uploading Data (Download This File) [Dataset]. https://data.wu.ac.at/schema/data_gov/Mjk5OThlMjItOTI4MS00YzNhLWE3OTEtYjczMTA3YjM1MjBl
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Nov 18, 2013
    Dataset provided by
    State of Hawaii
    Description

    TRAINING DATASET: Hands-On Uploading Data (Download This File)

  9. NOAA Severe Weather Data Inventory

    • kaggle.com
    zip
    Updated Jun 2, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA (2019). NOAA Severe Weather Data Inventory [Dataset]. https://www.kaggle.com/datasets/noaa/noaa-severe-weather-data-inventory
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Jun 2, 2019
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description
    • Update Frequency: Weekly

    Data from this dataset can be downloaded/accessed through this dataset page and Kaggle's API.

    Context

    Severe weather is defined as a destructive storm or weather. It is usually applied to local, intense, often damaging storms such as thunderstorms, hail storms, and tornadoes, but it can also describe more widespread events such as tropical systems, blizzards, nor'easters, and derechos.

    The Severe Weather Data Inventory (SWDI) is an integrated database of severe weather records for the United States. The records in SWDI come from a variety of sources in the NCDC archive. SWDI provides the ability to search through all of these data to find records covering a particular time period and geographic region, and to download the results of your search in a variety of formats. The formats currently supported are Shapefile (for GIS), KMZ (for Google Earth), CSV (comma-separated), and XML.

    Content

    The current data layers in SWDI are:
    - Filtered Storm Cells (Max Reflectivity >= 45 dBZ) from NEXRAD (Level-III Storm Structure Product)
    - All Storm Cells from NEXRAD (Level-III Storm Structure Product)
    - Filtered Hail Signatures (Max Size > 0 and Probability = 100%) from NEXRAD (Level-III Hail Product)
    - All Hail Signatures from NEXRAD (Level-III Hail Product)
    - Mesocyclone Signatures from NEXRAD (Level-III Meso Product)
    - Digital Mesocyclone Detection Algorithm from NEXRAD (Level-III MDA Product)
    - Tornado Signatures from NEXRAD (Level-III TVS Product)
    - Preliminary Local Storm Reports from the NOAA National Weather Service
    - Lightning Strikes from Vaisala NLDN

    Disclaimer:
    SWDI provides a uniform way to access data from a variety of sources, but it does not provide any additional quality control beyond the processing which took place when the data were archived. The data sources in SWDI will not provide complete severe weather coverage of a geographic region or time period, due to a number of factors (eg, reports for a location or time period not provided to NOAA). The absence of SWDI data for a particular location and time should not be interpreted as an indication that no severe weather occurred at that time and location. Furthermore, much of the data in SWDI is automatically derived from radar data and represents probable conditions for an event, rather than a confirmed occurrence.

    Acknowledgements

    Dataset Source: NOAA. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source — http://www.data.gov/privacy-policy#data_policy — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Cover photo by NASA on Unsplash
    Unsplash Images are distributed under a unique Unsplash License.

  10. India Download Export | List of Download Exporters & Suppliers

    • seair.co.in
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seair Exim, India Download Export | List of Download Exporters & Suppliers [Dataset]. https://www.seair.co.in
    Explore at:
    .bin, .xml, .csv, .xlsAvailable download formats
    Dataset provided by
    Seair Exim Solutions
    Authors
    Seair Exim
    Area covered
    India
    Description

    Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.

  11. T

    Excel files containing data for Figures

    • dataverse.tdl.org
    xls
    Updated Aug 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Parrish Brady; Parrish Brady (2020). Excel files containing data for Figures [Dataset]. http://doi.org/10.18738/T8/EGV2TV
    Explore at:
    xls(22016), xls(71680), xls(9728), xls(13824), xls(529920), xls(339968), xls(26112), xls(17920), xls(67584)Available download formats
    Dataset updated
    Aug 24, 2020
    Dataset provided by
    Texas Data Repository
    Authors
    Parrish Brady; Parrish Brady
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Data organization for the figures in the document: Figure 3A LineOutWithSun_SSAzi_135to225_green_Correct_ROI5_INFO.xls Figure 3b LineOutWithSun_SSAzi_m45to45_green_Correct_ROI5_INFO.xls Figure 4 fulllinear_inDic_SqAzi_m180to0_CP_20to50_green_Correct_ROI5_INFO.xls fulllinear_inDic_SqAzi_m180to0_CP_20to50_green_Sim_Correct_ROI5_INFO.xls Figure 5a LineOut_Camera_Elevation_SqAzi_m180to0_green_Sim_Correct_ROI5_INFO.xls LineOut_Camera_Elevation_SqAzi_m180to0_green_Correct_ROI5_INFO.xls Figure 5b LineOut_Camera_Elevation_SqAzi_0to180_green_Correct_ROI5_INFO.xls LineOut_Camera_Elevation_SqAzi_0to180_green_Sim_Correct_ROI5_INFO.xls Figure 6a LineOutColor_SqAzi_m180to0_CP_20to50_Correct_ROI5_INFO.xls Figure 6b LineOutROI_SqAzi_m180to0_CP_20to50_green_Correct_INFO.xls Figure 7 fulllinear_inDic_SqAzi_m180to0_CP_20to50_green_Correct_ROI5_INFO.xls LineOut_MeshAoPDif_Camera_Elevation_SqAzi_0to180_green_Correct_ROI5_INFO.xls LineOut_MeshAoPDif_Camera_Elevation_SqAzi_m180to0_green_Correct_ROI5_INFO.xls

  12. e

    INSPIRE Download Service (predefined ATOM) for data set corridors 7, 9, 10...

    • data.europa.eu
    atom feed
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LVermGeo im Auftrag von Grafschaft, INSPIRE Download Service (predefined ATOM) for data set corridors 7, 9, 10 and 11 [Dataset]. https://data.europa.eu/data/datasets/d73b80bd-aa70-0002-39f8-1590c4872a85
    Explore at:
    atom feedAvailable download formats
    Dataset authored and provided by
    LVermGeo im Auftrag von Grafschaft
    Description

    Description of the INSPIRE Download Service (predefined Atom): Development plan -Floor 7, 9, 10 and 11- in the district of Nierendorf-9.01 - The link(s) for downloading the data sets is/are dynamically generated from Get Map calls to a WMS interface

  13. f

    Orange dataset table

    • figshare.com
    xlsx
    Updated Mar 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rui Simões (2022). Orange dataset table [Dataset]. http://doi.org/10.6084/m9.figshare.19146410.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 4, 2022
    Dataset provided by
    figshare
    Authors
    Rui Simões
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The complete dataset used in the analysis comprises 36 samples, each described by 11 numeric features and 1 target. The attributes considered were caspase 3/7 activity, Mitotracker red CMXRos area and intensity (3 h and 24 h incubations with both compounds), Mitosox oxidation (3 h incubation with the referred compounds) and oxidation rate, DCFDA fluorescence (3 h and 24 h incubations with either compound) and oxidation rate, and DQ BSA hydrolysis. The target of each instance corresponds to one of the 9 possible classes (4 samples per class): Control, 6.25, 12.5, 25 and 50 µM for 6-OHDA and 0.03, 0.06, 0.125 and 0.25 µM for rotenone. The dataset is balanced, it does not contain any missing values and data was standardized across features. The small number of samples prevented a full and strong statistical analysis of the results. Nevertheless, it allowed the identification of relevant hidden patterns and trends.

    Exploratory data analysis, information gain, hierarchical clustering, and supervised predictive modeling were performed using Orange Data Mining version 3.25.1 [41]. Hierarchical clustering was performed using the Euclidean distance metric and weighted linkage. Cluster maps were plotted to relate the features with higher mutual information (in rows) with instances (in columns), with the color of each cell representing the normalized level of a particular feature in a specific instance. The information is grouped both in rows and in columns by a two-way hierarchical clustering method using the Euclidean distances and average linkage. Stratified cross-validation was used to train the supervised decision tree. A set of preliminary empirical experiments were performed to choose the best parameters for each algorithm, and we verified that, within moderate variations, there were no significant changes in the outcome. The following settings were adopted for the decision tree algorithm: minimum number of samples in leaves: 2; minimum number of samples required to split an internal node: 5; stop splitting when majority reaches: 95%; criterion: gain ratio. The performance of the supervised model was assessed using accuracy, precision, recall, F-measure and area under the ROC curve (AUC) metrics.

  14. Fixed Broadband Deployment Data: December 2020

    • catalog.data.gov
    • opendata.fcc.gov
    • +4more
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    opendata.fcc.gov (2023). Fixed Broadband Deployment Data: December 2020 [Dataset]. https://catalog.data.gov/dataset/fixed-broadband-deployment-data-december-2020
    Explore at:
    Dataset updated
    Sep 14, 2023
    Dataset provided by
    Federal Communications Commissionhttp://fcc.gov/
    Description

    The data collected to create this dataset was in place through data as of June, 2021. For more recent broadband availability data, please see https://broadbandmap.fcc.gov; for more information about the related data collection, please see https://www.fcc.gov/BroadbandData. All facilities-based broadband providers are required to file data with the FCC twice a year (Form 477) on where they offer Internet access service at speeds exceeding 200 kbps in at least one direction. Fixed providers file lists of census blocks in which they can or do offer service to at least one location, with additional information about the service. Data Download Page: (https://www.fcc.gov/general/broadband-deployment-data-fcc-form-477. Resources page: https://www.fcc.gov/general/form-477-resources-filers

  15. April 2023 Public Data File from Crossref

    • academictorrents.com
    bittorrent
    Updated Apr 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crossref (2023). April 2023 Public Data File from Crossref [Dataset]. https://academictorrents.com/details/d9e554f4f0c3047d9f49e448a7004f7aa1701b69
    Explore at:
    bittorrent(185875088653)Available download formats
    Dataset updated
    Apr 25, 2023
    Dataset authored and provided by
    Crossrefhttps://www.crossref.org/
    License

    https://www.crossref.org/documentation/retrieve-metadata/rest-api/rest-api-metadata-license-information/https://www.crossref.org/documentation/retrieve-metadata/rest-api/rest-api-metadata-license-information/

    Description

    Note that this Crossref metadata is always openly available. The difference here is that we’ve done the time-saving work of putting all of the records registered through April 2023 into one file for download. To keep this metadata current, you can access new records via our public API at: And, if you do use our API, we encourage you to read the section of the documentation on "etiquette". That is, how to use the API without making it impossible for others to use.

  16. b

    Data in support of Clark et al. - Datasets - data.bris

    • data.bris.ac.uk
    Updated Oct 24, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Data in support of Clark et al. - Datasets - data.bris [Dataset]. https://data.bris.ac.uk/data/dataset/2uoex1k196c4o2c80eddeekf04
    Explore at:
    Dataset updated
    Oct 24, 2019
    Description

    Data in support of the eLife 2019 publication from Clark et al. Complete download (zip, 56.1 MiB)

  17. u

    Amazon review data 2018

    • cseweb.ucsd.edu
    • nijianmo.github.io
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UCSD CSE Research Project, Amazon review data 2018 [Dataset]. https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
    Explore at:
    Dataset authored and provided by
    UCSD CSE Research Project
    Description

    Context

    This Dataset is an updated version of the Amazon review dataset released in 2014. As in the previous version, this dataset includes reviews (ratings, text, helpfulness votes), product metadata (descriptions, category information, price, brand, and image features), and links (also viewed/also bought graphs). In addition, this version provides the following features:

    • More reviews:

      • The total number of reviews is 233.1 million (142.8 million in 2014).
    • New reviews:

      • Current data includes reviews in the range May 1996 - Oct 2018.
    • Metadata: - We have added transaction metadata for each review shown on the review page.

      • Added more detailed metadata of the product landing page.

    Acknowledgements

    If you publish articles based on this dataset, please cite the following paper:

    • Jianmo Ni, Jiacheng Li, Julian McAuley. Justifying recommendations using distantly-labeled reviews and fined-grained aspects. EMNLP, 2019.
  18. g

    INSPIRE Download Service (predefined ATOM) for data set development plan "01...

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    INSPIRE Download Service (predefined ATOM) for data set development plan "01 006 00 Käuersbach, 2. BA." [Dataset]. https://gimi9.com/dataset/eu_f3c79858-8612-0001-8e5e-b785382b5300/
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Description of the INSPIRE Download Service (predefined Atom): Development plan "01 006 00 Käuersbach, 2. BA." of the municipality of Saarwellingen - The link(s) for downloading the datasets is/are dynamically generated from a DataURL link of a WMS layer

  19. Hottest Kaggle Datasets

    • kaggle.com
    Updated Jan 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abeer Alzuhair (2021). Hottest Kaggle Datasets [Dataset]. https://www.kaggle.com/abeeralzuhair2020/hottest-kaggle-datasets/metadata
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 30, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Abeer Alzuhair
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This data was collected as a course project for the immersive data science course (by General Assembly and Misk Academy).

    Content

    This dataset is in a CSV format, it consists of 5717 rows and 15 columns, where each row is a dataset on Kaggle and each column represents a feature of that dataset. |Feature|Description| |-------|-----------| |title| dataset name | |usability| dataset usability rating by Kaggle | |num_of_files| number of files associated with the dataset | |types_of_files| types of files associated with the dataset | |files_size| size of the dataset files | |vote_counts| total votes count by the dataset viewer | |medal| reward to popular datasets measured by the number of upvotes (votes by novices are excluded from medal calculation), [Bronze = 5 Votes, Silver = 20 Votes, Gold = 50 Votes] | |url_reference| reference to the dataset page on Kaggle in the format: www.kaggle.com/url_reference | |keywords| Topics tagged with the dataset | |num_of_columns| number of features in the dataset | |views| number of views | |downloads| number of downloads | |download_per_view| download per view ratio | |date_created| dataset creation date | |last_updated| date of the last update |

    Acknowledgements

    I would like to thank all my GA instructors for their continuous help and support

    All data were taken from https://www.kaggle.com , collected on 30 Jan 2021

    Inspiration

    Using this dataset, we could try to predict the upcoming datasets uploaded, number of votes, number of downloads, medal type, etc.

  20. c

    Python code used to download gridMET climate data for public-supply water...

    • s.cnmilf.com
    • data.usgs.gov
    • +1more
    Updated Aug 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Python code used to download gridMET climate data for public-supply water service areas [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/python-code-used-to-download-gridmet-climate-data-for-public-supply-water-service-areas
    Explore at:
    Dataset updated
    Aug 29, 2024
    Dataset provided by
    U.S. Geological Survey
    Description

    This child item describes Python code used to retrieve gridMET climate data for a specific area and time period. Climate data were retrieved for public-supply water service areas, but the climate data collector could be used to retrieve data for other areas of interest. This dataset is part of a larger data release using machine learning to predict public supply water use for 12-digit hydrologic units from 2000-2020. Data retrieved by the climate data collector code were used as input feature variables in the public supply delivery and water use machine learning models. This page includes the following file: climate_data_collector.zip - a zip file containing the climate data collector Python code used to retrieve climate data and a README file.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Elina Late; Michael Ochsner (2024). Number of downloads per user. [Dataset]. http://doi.org/10.1371/journal.pone.0303190.t006

Number of downloads per user.

Related Article
Explore at:
19 scholarly articles cite this dataset (View in Google Scholar)
xlsAvailable download formats
Dataset updated
May 10, 2024
Dataset provided by
PLOS ONE
Authors
Elina Late; Michael Ochsner
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

The aim of this paper is to investigate the re-use of research data deposited in digital data archive in the social sciences. The study examines the quantity, type, and purpose of data downloads by analyzing enriched user log data collected from Swiss data archive. The findings show that quantitative datasets are downloaded increasingly from the digital archive and that downloads focus heavily on a small share of the datasets. The most frequently downloaded datasets are survey datasets collected by research organizations offering possibilities for longitudinal studies. Users typically download only one dataset, but a group of heavy downloaders form a remarkable share of all downloads. The main user group downloading data from the archive are students who use the data in their studies. Furthermore, datasets downloaded for research purposes often, but not always, serve to be used in scholarly publications. Enriched log data from data archives offer an interesting macro level perspective on the use and users of the services and help understanding the increasing role of repositories in the social sciences. The study provides insights into the potential of collecting and using log data for studying and evaluating data archive use.

Search
Clear search
Close search
Google apps
Main menu