This dataset was created by Chelsea
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract: With the e-commerce growth, more people are buying products over the internet. To increase customer satisfaction, merchants provide spaces for product and service reviews. Products with positive reviews attract customers, while products with negative reviews lose customers. Following this idea, some individuals and corporations write fake reviews to promote their products and services or defame their competitors. The difficulty for finding these reviews was in the large amount of information available. One solution is to use data mining techniques and tools, such as the classification function. Exploring this situation, the present work evaluates classification techniques to identify fake reviews about products and services on the Internet. The research also presents a literature systematic review on fake reviews. The research used 8 classification algorithms. The algorithms were trained and tested with a hotels database. The CONCENSO algorithm presented the best result, with 88% in the precision indicator. After the first test, the algorithms classified reviews on another hotels database. To compare the results of this new classification, the Review Skeptic algorithm was used. The SVM and GLMNET algorithms presented the highest convergence with the Review Skeptic algorithm, classifying 83% of reviews with the same result. The research contributes by demonstrating the algorithms ability to understand consumers’ real reviews to products and services on the Internet. Another contribution is to be the pioneer in the investigation of fake reviews in Brazil and in production engineering.
Data Access: The data in the research collection provided may only be used for research purposes. Portions of the data are copyrighted and have commercial value as data, so you must be careful to use it only for research purposes. Due to these restrictions, the collection is not open data. Please download the Agreement at Data Sharing Agreement and send the signed form to fakenewstask@gmail.com .
Citation
Please cite our work as
@article{shahi2021overview, title={Overview of the CLEF-2021 CheckThat! lab task 3 on fake news detection}, author={Shahi, Gautam Kishore and Stru{\ss}, Julia Maria and Mandl, Thomas}, journal={Working Notes of CLEF}, year={2021} }
Problem Definition: Given the text of a news article, determine whether the main claim made in the article is true, partially true, false, or other (e.g., claims in dispute) and detect the topical domain of the article. This task will run in English.
Subtask 3A: Multi-class fake news detection of news articles (English) Sub-task A would detect fake news designed as a four-class classification problem. The training data will be released in batches and roughly about 900 articles with the respective label. Given the text of a news article, determine whether the main claim made in the article is true, partially true, false, or other. Our definitions for the categories are as follows:
False - The main claim made in an article is untrue.
Partially False - The main claim of an article is a mixture of true and false information. The article contains partially true and partially false information but cannot be considered 100% true. It includes all articles in categories like partially false, partially true, mostly true, miscaptioned, misleading etc., as defined by different fact-checking services.
True - This rating indicates that the primary elements of the main claim are demonstrably true.
Other- An article that cannot be categorised as true, false, or partially false due to lack of evidence about its claims. This category includes articles in dispute and unproven articles.
Subtask 3B: Topical Domain Classification of News Articles (English) Fact-checkers require background expertise to identify the truthfulness of an article. The categorisation will help to automate the sampling process from a stream of data. Given the text of a news article, determine the topical domain of the article (English). This is a classification problem. The task is to categorise fake news articles into six topical categories like health, election, crime, climate, election, education. This task will be offered for a subset of the data of Subtask 3A.
Input Data
The data will be provided in the format of Id, title, text, rating, the domain; the description of the columns is as follows:
Task 3a
Task 3b
Output data format
Task 3a
Sample File
public_id, predicted_rating
1, false
2, true
Task 3b
Sample file
public_id, predicted_domain
1, health
2, crime
Additional data for Training
To train your model, the participant can use additional data with a similar format; some datasets are available over the web. We don't provide the background truth for those datasets. For testing, we will not use any articles from other datasets. Some of the possible source:
IMPORTANT!
Evaluation Metrics
This task is evaluated as a classification task. We will use the F1-macro measure for the ranking of teams. There is a limit of 5 runs (total and not per day), and only one person from a team is allowed to submit runs.
Submission Link: https://competitions.codalab.org/competitions/31238
Related Work
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides a labeled fake news data
This the dataset for Every Language Counts: Learn and Unlearn in Multilingual LLMs.
Each of the 100 row contains a GPT generated 'real' news article, a corresponding 'fake' news article with injected fake information, and the 'fake' keyword. It contains 10 Q&A pairs on 'real' news for instruction tunning. We also provide one question to evaluate 'real' news understanding and another question to count the appearance of 'fake' detail.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is just numbers
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by Chelsea
Released under Apache 2.0
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The dataset contains a list of twenty-seven freely available evaluation datasets for fake news detection analysed according to eleven main characteristics (i.e., news domain, application purpose, type of disinformation, language, size, news content, rating scale, spontaneity, media platform, availability, and extraction time)
This dataset was created by Johar M. Ashfaque
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this dataset have to part combined namely fake news and true news. fake news collected from Kaggle and some true news collected form IEEE Data port. Therefor some true news data required to optimize with the fake news. After that i have collect some true news from different trusted online site. Finally i have concat the Fake and True news as a single dataset for the purpose to help the Researchers further if they want to research by taken this topic.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Curated database of fact checked claims (fake and real news), with close to 70.000 URLs, classified by topic.
For benchmarking, please refer to its variant UPFD-POL and UPFD-GOS.
The dataset has been integrated with Pytorch Geometric (PyG) and Deep Graph Library (DGL). You can load the dataset after installing the latest versions of PyG or DGL.
The UPFD dataset includes two sets of tree-structured graphs curated for evaluating binary graph classification, graph anomaly detection, and fake/real news detection tasks. The dataset is dumped in the form of Pytorch-Geometric dataset object. You can easily load the data and run various GNN models using PyG.
The dataset includes fake&real news propagation (retweet) networks on Twitter built according to fact-check information from Politifact and Gossipcop. The news retweet graphs were originally extracted by FakeNewsNet. Each graph is a hierarchical tree-structured graph where the root node represents the news; the leaf nodes are Twitter users who retweeted the root news. A user node has an edge to the news node if he/she retweeted the news tweet. Two user nodes have an edge if one user retweeted the news tweet from the other user.
We crawled near 20 million historical tweets from users who participated in fake news propagation in FakeNewsNet to generate node features in the dataset. We incorporate four node feature types in the dataset, the 768-dimensional bert and 300-dimensional spacy features are encoded using pretrained BERT and spaCy word2vec, respectively. The 10-dimensional profile feature is obtained from a Twitter account's profile. You can refer to profile_feature.py for profile feature extraction. The 310-dimensional content feature is composed of a 300-dimensional user comment word2vec (spaCy) embedding plus a 10-dimensional profile feature.
The dataset statistics is shown below:
Data | #Graphs | #Fake News | #Total Nodes | #Total Edges | #Avg. Nodes per Graph |
---|---|---|---|---|---|
Politifact | 314 | 157 | 41,054 | 40,740 | 131 |
Gossipcop | 5464 | 2732 | 314,262 | 308,798 | 58 |
Please refer to the paper for more details about the UPFD dataset.
Due to the Twitter policy, we could not release the crawled user's historical tweets publicly. To get the corresponding Twitter user information, you can refer to the news lists under \data in our github repo and map the news id to FakeNewsNet. Then, you can crawl the user information by following the instruction on FakeNewsNet. In the UPFD project, we use Tweepy and Twitter Developer API to get the user information.
This dataset was created by Danyal Banaras
By downloading the data, you agree with the terms & conditions mentioned below:
Data Access: The data in the research collection may only be used for research purposes. Portions of the data are copyrighted and have commercial value as data, so you must be careful to use them only for research purposes.
Summaries, analyses and interpretations of the linguistic properties of the information may be derived and published, provided it is impossible to reconstruct the information from these summaries. You may not try identifying the individuals whose texts are included in this dataset. You may not try to identify the original entry on the fact-checking site. You are not permitted to publish any portion of the dataset besides summary statistics or share it with anyone else.
We grant you the right to access the collection's content as described in this agreement. You may not otherwise make unauthorised commercial use of, reproduce, prepare derivative works, distribute copies, perform, or publicly display the collection or parts of it. You are responsible for keeping and storing the data in a way that others cannot access. The data is provided free of charge.
Citation
Please cite our work as
@InProceedings{clef-checkthat:2022:task3, author = {K{"o}hler, Juliane and Shahi, Gautam Kishore and Stru{\ss}, Julia Maria and Wiegand, Michael and Siegel, Melanie and Mandl, Thomas}, title = "Overview of the {CLEF}-2022 {CheckThat}! Lab Task 3 on Fake News Detection", year = {2022}, booktitle = "Working Notes of CLEF 2022---Conference and Labs of the Evaluation Forum", series = {CLEF~'2022}, address = {Bologna, Italy},}
@article{shahi2021overview, title={Overview of the CLEF-2021 CheckThat! lab task 3 on fake news detection}, author={Shahi, Gautam Kishore and Stru{\ss}, Julia Maria and Mandl, Thomas}, journal={Working Notes of CLEF}, year={2021} }
Problem Definition: Given the text of a news article, determine whether the main claim made in the article is true, partially true, false, or other (e.g., claims in dispute) and detect the topical domain of the article. This task will run in English and German.
Task 3: Multi-class fake news detection of news articles (English) Sub-task A would detect fake news designed as a four-class classification problem. Given the text of a news article, determine whether the main claim made in the article is true, partially true, false, or other. The training data will be released in batches and roughly about 1264 articles with the respective label in English language. Our definitions for the categories are as follows:
False - The main claim made in an article is untrue.
Partially False - The main claim of an article is a mixture of true and false information. The article contains partially true and partially false information but cannot be considered 100% true. It includes all articles in categories like partially false, partially true, mostly true, miscaptioned, misleading etc., as defined by different fact-checking services.
True - This rating indicates that the primary elements of the main claim are demonstrably true.
Other- An article that cannot be categorised as true, false, or partially false due to a lack of evidence about its claims. This category includes articles in dispute and unproven articles.
Cross-Lingual Task (German)
Along with the multi-class task for the English language, we have introduced a task for low-resourced language. We will provide the data for the test in the German language. The idea of the task is to use the English data and the concept of transfer to build a classification model for the German language.
Input Data
The data will be provided in the format of Id, title, text, rating, the domain; the description of the columns is as follows:
ID- Unique identifier of the news article
Title- Title of the news article
text- Text mentioned inside the news article
our rating - class of the news article as false, partially false, true, other
Output data format
public_id- Unique identifier of the news article
predicted_rating- predicted class
Sample File
public_id, predicted_rating 1, false 2, true
IMPORTANT!
We have used the data from 2010 to 2022, and the content of fake news is mixed up with several topics like elections, COVID-19 etc.
Baseline: For this task, we have created a baseline system. The baseline system can be found at https://zenodo.org/record/6362498
Related Work
Shahi GK. AMUSED: An Annotation Framework of Multi-modal Social Media Data. arXiv preprint arXiv:2010.00502. 2020 Oct 1.https://arxiv.org/pdf/2010.00502.pdf
G. K. Shahi and D. Nandini, “FakeCovid – a multilingual cross-domain fact check news dataset for covid-19,” in workshop Proceedings of the 14th International AAAI Conference on Web and Social Media, 2020. http://workshop-proceedings.icwsm.org/abstract?id=2020_14
Shahi, G. K., Dirkson, A., & Majchrzak, T. A. (2021). An exploratory study of covid-19 misinformation on twitter. Online Social Networks and Media, 22, 100104. doi: 10.1016/j.osnem.2020.100104
Shahi, G. K., Struß, J. M., & Mandl, T. (2021). Overview of the CLEF-2021 CheckThat! lab task 3 on fake news detection. Working Notes of CLEF.
Nakov, P., Da San Martino, G., Elsayed, T., Barrón-Cedeno, A., Míguez, R., Shaar, S., ... & Mandl, T. (2021, March). The CLEF-2021 CheckThat! lab on detecting check-worthy claims, previously fact-checked claims, and fake news. In European Conference on Information Retrieval (pp. 639-649). Springer, Cham.
Nakov, P., Da San Martino, G., Elsayed, T., Barrón-Cedeño, A., Míguez, R., Shaar, S., ... & Kartal, Y. S. (2021, September). Overview of the CLEF–2021 CheckThat! Lab on Detecting Check-Worthy Claims, Previously Fact-Checked Claims, and Fake News. In International Conference of the Cross-Language Evaluation Forum for European Languages (pp. 264-291). Springer, Cham.
This is a multimodal dataset used in the paper "On the Role of Images for Analyzing Claims in Social Media", accepted at CLEOPATRA-2021 (2nd International Workshop on Cross-lingual Event-centric Open Analytics), co-located with The Web Conference 2021.
The four datasets are curated for two different tasks that broadly come under fake news detection. Originally, the datasets were released as part of challenges or papers for text-based NLP tasks and are further extended here with corresponding images.
The dataset details like data curation and annotation process can be found in the cited papers.
Datasets released here with corresponding images are relatively smaller than the original text-based tweets. The data statistics are as follows: 1. clef_en: 281 2. clef_ar: 2571 3. lesa: 1395 4. mediaeval: 1724
Each folder has two sub-folders and a json file data.json that consists of crawled tweets. Two sub-folders are: 1. images: This Contains crawled images with the same name as tweet-id in data.json. 2. splits: This contains 5-fold splits used for training and evaluation in our paper. Each file in this folder is a csv with two columns .
Code for the paper: https://github.com/cleopatra-itn/image_text_claim_detection
If you find the dataset and the paper useful, please cite our paper and the corresponding dataset papers[1,2,3] Cheema, Gullal S., et al. "On the Role of Images for Analyzing Claims in Social Media" 2nd International Workshop on Cross-lingual Event-centric Open Analytics (CLEOPATRA) co-located with The Web Conf 2021.
[1] Barrón-Cedeno, Alberto, et al. "Overview of CheckThat! 2020: Automatic identification and verification of claims in social media." International Conference of the Cross-Language Evaluation Forum for European Languages. Springer, Cham, 2020. [2] Gupta, Shreya, et al. "LESA: Linguistic Encapsulation and Semantic Amalgamation Based Generalised Claim Detection from Online Content." arXiv preprint arXiv:2101.11891 (2021). [3] Pogorelov, Konstantin, et al. "FakeNews: Corona Virus and 5G Conspiracy Task at MediaEval 2020." MediaEval 2020 Workshop. 2020.
http://www.apache.org/licenses/LICENSE-2.0http://www.apache.org/licenses/LICENSE-2.0
This dataset contains 56,964 conversations between een AI assistant and a (fake) "Human" (generated) in Dutch, specifically in the domain of programming (Stack Overflow). They are translations of Baize's machine-generated answers to the Stack Overflow dataset.
Data Instances
{'id': 9, 'input': 'Het gesprek tussen de mens en de AI-assistent. ' '[|Human|] Ik heb wat hulp nodig met Spark SQL union en het ordenen ' 'van kolommen. ' '[|AI|] Natuurlijk, ik help je graag. Waar heb je specifiek hulp ' 'bij nodig? ' '[|Human|] Ik wil de output van een UNION-query ordenen op een ' 'kolom die niet aanwezig is in de SELECT-instructie. Is dat ' 'mogelijk? ' '[|AI|] Ja, het is mogelijk met Spark SQL. Je kunt de ordinale ' 'positie van de kolom in de ORDER BY-clausule gebruiken in plaats ' 'van de kolomnaam. Als je bijvoorbeeld wilt ordenen op de derde ' 'kolom in de SELECT-instructie, kun je ORDER BY 3 gebruiken. ' '[|Human|] Dat is nuttig. Kan ik ook een alias gebruiken in de ' 'ORDER BY-clausule? ' '[|AI|] Ja, je kunt een alias gebruiken in de ORDER BY-clausule. De ' 'alias moet worden gedefinieerd in de SELECT-instructie. Als je ' 'bijvoorbeeld de derde kolom als "col3" alias geeft, kun je ordenen ' 'met ORDER BY col3. ' '[|Human|] Oké, ik denk dat ik het begrijp. Kan ik dezelfde alias ' 'gebruiken voor kolommen uit beide tabellen in de UNION? ' '[|AI|] Nee, je kunt dezelfde alias niet gebruiken voor kolommen ' 'uit beide tabellen in de UNION. Elke tabel in de UNION moet een ' 'unieke alias hebben voor de kolommen. ' '[|Human|] ', 'topic': 'Spark SQL UNION - ORDER BY kolom niet in SELECT'},
Data Fields
id: the ID of the item. The following 82 IDs are not included because they could not be translated: [1713, 1937, 1960, 4326, 4356, 8357, 8542, 8827, 9137, 9782, 11560, 11961, 12244, 12362, 12488, 13259, 13621, 14445, 14835, 15006, 17746, 18808, 19285, 19426, 19491, 21270, 21661, 22098, 23352, 23840, 23869, 25148, 25928, 27102, 27856, 28387, 29942, 30041, 30251, 32396, 32742, 32941, 33628, 34116, 34648, 34859, 35977, 35987, 36035, 36456, 37028, 37238, 37640, 38107, 38735, 39015, 40984, 41115, 41567, 42397, 43219, 43783, 44599, 44980, 45239, 47676, 48922, 49534, 50282, 50683, 50804, 50919, 51076, 51211, 52000, 52183, 52489, 52595, 53884, 54726, 55795, 56992]
input: the machine-generated conversation between AI and "Human". Always starts with Het gesprek tussen de mens en de AI-assistent. and has at least one occurrence of both [|AI|] and [|Human|].
topic: the topic description
Dataset Creation
Both the translations and the topics were translated with OpenAI's API for gpt-3.5-turbo. max_tokens=1024, temperature=0 as parameters.
The prompt template to translate the input is (where src_lang was English and tgt_lang Dutch):
CONVERSATION_TRANSLATION_PROMPT = """You are asked to translate a conversation between an AI assistant and a human from {src_lang} into {tgt_lang}.
Here are the requirements that you should adhere to:
1. maintain the format: the conversation consists of the AI (marked as [|AI|]
) and the human ([|Human|]
) talking in turns and responding to each other;
2. do not translate the speaker identifiers [|AI|]
and [|Human|]
but always copy them into the translation in appropriate places;
3. ensure accurate translation and keep the correctness of the conversation;
4. make sure that text is fluent to read and does not contain grammatical errors. Use standard {tgt_lang} without regional bias;
5. translate the human's text using informal, but standard, language;
6. make sure to avoid biases (such as gender bias, grammatical bias, social bias);
7. if the human asks to correct grammar mistakes or spelling mistakes then you have to generate a similar mistake in {tgt_lang}, and then also generate a corrected output version for the AI in {tgt_lang};
8. if the human asks to translate text from one to another language, then you only translate the human's question to {tgt_lang} but you keep the translation that the AI provides in the language that the human requested;
9. do not translate code fragments but copy them as they are. If there are English examples, variable names or definitions in code fragments, keep them in English.
Now translate the following conversation with the requirements set out above. Do not provide an explanation and do not add anything else.
"""
The prompt to translate the topic is:
TOPIC_TRANSLATION_PROMPT = "Translate the following title of a conversation from {src_lang} to {tgt_lang} in a succinct,"
" summarizing manner. Translate accurately and formally. Do not provide any explanation"
" about the translation and do not include the original title.
"
The system message was:
You are a helpful assistant that translates English to Dutch to the requirements that are given to you.
Note that 82 items (0.1%) were not successfully translated. The translation was missing the AI identifier [|AI|] and/or the human one [|Human|]. The IDs for the missing items are [1713, 1937, 1960, 4326, 4356, 8357, 8542, 8827, 9137, 9782, 11560, 11961, 12244, 12362, 12488, 13259, 13621, 14445, 14835, 15006, 17746, 18808, 19285, 19426, 19491, 21270, 21661, 22098, 23352, 23840, 23869, 25148, 25928, 27102, 27856, 28387, 29942, 30041, 30251, 32396, 32742, 32941, 33628, 34116, 34648, 34859, 35977, 35987, 36035, 36456, 37028, 37238, 37640, 38107, 38735, 39015, 40984, 41115, 41567, 42397, 43219, 43783, 44599, 44980, 45239, 47676, 48922, 49534, 50282, 50683, 50804, 50919, 51076, 51211, 52000, 52183, 52489, 52595, 53884, 54726, 55795, 56992].
The translation quality has not been verified. Use at your own risk!
Licensing Information
Licensing info for Stack Overflow Questions is listed as Apache 2.0. If you use the current dataset, you should also adhere to the original license.
This text was generated (either in part or in full) with GPT-3 (gpt-3.5-turbo), OpenAI’s large-scale language-generation model. Upon generating draft language, the author reviewed, edited, and revised the language to their own liking and takes ultimate responsibility for the content of this publication.
If you use this dataset, you must also follow the Sharing and Usage policies.
As clearly stated in their Terms of Use, specifically 2c.iii, "[you may not] use output from the Services to develop models that compete with OpenAI". That means that you cannot use this dataset to build models that are intended to commercially compete with OpenAI. As far as I am aware, that is a specific restriction that should serve as an addendum to the current license.
This dataset is also available on the Hugging Face hub with the same DOI and license. See that README for more info.
The dataset contains two types of articles fake and real News. This dataset was collected from realworld
sources; the truthful articles were obtained by crawling articles from Reuters.com (News
website). As for the fake news articles, they were collected from different sources. The fake news
articles were collected from unreliable websites that were flagged by Politifact (a fact-checking
organization in the USA) and Wikipedia. The dataset contains different types of articles on different
topics, however, the majority of articles focus on political and World news topics. ; itraore at ece.uvic.ca
[Real or Fake] : Fake Job Description Prediction This dataset contains 18K job descriptions out of which about 800 are fake. The data consists of both textual information and meta-information about the jobs. The dataset can be used to create classification models which can learn the job descriptions which are fraudulent.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The BuzzFeed-Webis Fake News Corpus 16 comprises the output of 9 publishers in a week close to the US elections. Among the selected publishers are 6 prolific hyperpartisan ones (three left-wing and three right-wing), and three mainstream publishers (see Table 1). All publishers earned Facebook’s blue checkmark, indicating authenticity and an elevated status within the network. For seven weekdays (September 19 to 23 and September 26 and 27), every post and linked news article of the 9 publishers was fact-checked by professional journalists at BuzzFeed. In total, 1,627 articles were checked, 826 mainstream, 256 left-wing and 545 right-wing. The imbalance between categories results from differing publication frequencies.
This dataset was created by Chelsea