Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Replication Package for A Study on the Pythonic Functional Constructs' Understandability
This package contains several folders and files with code and data used in the study.
examples/
Contains the code snippets used as objects of the study, named as reported in Table 1, summarizing the experiment design.
RQ1-RQ2-files-for-statistical-analysis/
Contains three .csv files used as input for conducting the statistical analysis and drawing the graphs for addressing the first two research questions of the study. Specifically:
- ConstructUsage.csv contains the declared frequency usage of the three functional constructs object of the study. This file is used to draw Figure 4.
- RQ1.csv contains the collected data used for the mixed-effect logistic regression relating the use of functional constructs with the correctness of the change task, and the logistic regression relating the use of map/reduce/filter functions with the correctness of the change task.
- RQ1Paired-RQ2.csv contains the collected data used for the ordinal logistic regression of the relationship between the perceived ease of understanding of the functional constructs and (i) participants' usage frequency, and (ii) constructs' complexity (except for map/reduce/filter).
inter-rater-RQ3-files/
Contains four .csv files used as input for computing the inter-rater agreement for the manual labeling used for addressing RQ3. Specifically, you will find one file for each functional construct, i.e., comprehension.csv, lambda.csv, and mrf.csv, and a different file used for highlighting the reasons why participants prefer to use the procedural paradigm, i.e., procedural.csv.
Questionnaire-Example.pdf
This file contains the questionnaire submitted to one of the ten experimental groups within our controlled experiment. Other questionnaires are similar, except for the code snippets used for the first section, i.e., change tasks, and the second section, i.e., comparison tasks.
RQ2ManualValidation.csv
This file contains the results of the manual validation being done to sanitize the answers provided by our participants used for addressing RQ2. Specifically, we coded the behavior description using four different levels: (i) correct, (ii) somewhat correct, (iii) wrong, and (iv) automatically generated.
RQ3ManualValidation.xlsx
This file contains the results of the open coding applied to address our third research question. Specifically, you will find four sheets, one for each functional construct and one for the procedural paradigm. For each sheet, you will find the provided answers together with the categories assigned to them.
Appendix.pdf
This file contains the results of the logistic regression relating the use of map, filter, and reduce functions with the correctness of the change task, not shown in the paper.
FuncConstructs-Statistics.r
This file contains an R script that you can reuse to re-run all the analyses conducted and discussed in the paper.
FuncConstructs-Statistics.ipynb
This file contains the code to re-execute all the analysis conducted in the paper as a notebook.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The “Fused Image dataset for convolutional neural Network-based crack Detection” (FIND) is a large-scale image dataset with pixel-level ground truth crack data for deep learning-based crack segmentation analysis. It features four types of image data including raw intensity image, raw range (i.e., elevation) image, filtered range image, and fused raw image. The FIND dataset consists of 2500 image patches (dimension: 256x256 pixels) and their ground truth crack maps for each of the four data types.
The images contained in this dataset were collected from multiple bridge decks and roadways under real-world conditions. A laser scanning device was adopted for data acquisition such that the captured raw intensity and raw range images have pixel-to-pixel location correspondence (i.e., spatial co-registration feature). The filtered range data were generated by applying frequency domain filtering to eliminate image disturbances (e.g., surface variations, and grooved patterns) from the raw range data [1]. The fused image data were obtained by combining the raw range and raw intensity data to achieve cross-domain feature correlation [2,3]. Please refer to [4] for a comprehensive benchmark study performed using the FIND dataset to investigate the impact from different types of image data on deep convolutional neural network (DCNN) performance.
If you share or use this dataset, please cite [4] and [5] in any relevant documentation.
In addition, an image dataset for crack classification has also been published at [6].
References:
[1] Shanglian Zhou, & Wei Song. (2020). Robust Image-Based Surface Crack Detection Using Range Data. Journal of Computing in Civil Engineering, 34(2), 04019054. https://doi.org/10.1061/(asce)cp.1943-5487.0000873
[2] Shanglian Zhou, & Wei Song. (2021). Crack segmentation through deep convolutional neural networks and heterogeneous image fusion. Automation in Construction, 125. https://doi.org/10.1016/j.autcon.2021.103605
[3] Shanglian Zhou, & Wei Song. (2020). Deep learning–based roadway crack classification with heterogeneous image data fusion. Structural Health Monitoring, 20(3), 1274-1293. https://doi.org/10.1177/1475921720948434
[4] Shanglian Zhou, Carlos Canchila, & Wei Song. (2023). Deep learning-based crack segmentation for civil infrastructure: data types, architectures, and benchmarked performance. Automation in Construction, 146. https://doi.org/10.1016/j.autcon.2022.104678
5 Shanglian Zhou, Carlos Canchila, & Wei Song. (2022). Fused Image dataset for convolutional neural Network-based crack Detection (FIND) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6383044
[6] Wei Song, & Shanglian Zhou. (2020). Laser-scanned roadway range image dataset (LRRD). Laser-scanned Range Image Dataset from Asphalt and Concrete Roadways for DCNN-based Crack Classification, DesignSafe-CI. https://doi.org/10.17603/ds2-bzv3-nc78
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
You will find three datasets containing heights of the high school students.
All heights are in inches.
The data is simulated. The heights are generated from a normal distribution with different sets of mean and standard deviation for boys and girls.
Height Statistics (inches) | Boys | Girls |
---|---|---|
Mean | 67 | 62 |
Standard Deviation | 2.9 | 2.2 |
There are 500 measurements for each gender.
Here are the datasets:
hs_heights.csv: contains a single column with heights for all boys and girls. There's no way to tell which of the values are for boys and which ones are for girls.
hs_heights_pair.csv: has two columns. The first column has boy's heights. The second column contains girl's heights.
hs_heights_flag.csv: has two columns. The first column has the flag is_girl. The second column contains a girl's height if the flag is 1. Otherwise, it contains a boy's height.
To see how I generated this dataset, check this out: https://github.com/ysk125103/datascience101/tree/main/datasets/high_school_heights
Image by Gillian Callison from Pixabay
These are the experimental data for the second version (v2) of the paper> Bach, Jakob. "Finding Optimal Diverse Feature Sets with Alternative Feature Selection"
published on arXiv in 2024.
You can find the paper here and the code here.
See the README
for details.
The datasets used in our study (which we also provide here) originate from PMLB.
The corresponding GitHub repository is MIT-licensed ((c) 2016 Epistasis Lab at UPenn).
Please see the file LICENSE
in the folder datasets/
for the license text.
OSU_SnowCourse Summary: Manual snow course observations were collected over WY 2012-2014 from four paired forest-open sites chosen to span a broad elevation range. Study sites were located in the upper McKenzie (McK) River watershed, approximately 100 km east of Corvallis, Oregon, on the western slope of the Cascade Range and in the Middle Fork Willamette (MFW) watershed, located to the south of the McKenzie. The sites were designated based on elevation, with a range of 1110-1480 m. Distributed snow depth and snow water equivalent (SWE) observations were collected via monthly manual snow courses from 1 November through 1 April and bi-weekly thereafter. Snow courses spanned 500 m of forested terrain and 500 m of adjacent open terrain. Snow depth observations were collected approximately every 10 m and SWE was measured every 100 m along the snow courses with a federal snow sampler. These data are raw observations and have not been quality controlled in any way. Distance along the transect was estimated in the field. OSU_SnowDepth Summary: 10-minute snow depth observations collected at OSU met stations in the upper McKenzie River Watershed and the Middle Fork Willamette Watershed during Water Years 2012-2014. Each meterological tower was deployed to represent either a forested or an open area at a particular site, and generally the locations were paired, with a meterological station deployed in the forest and in the open area at a single site. These data were collected in conjunction with manual snow course observations, and the meterological stations were located in the approximate center of each forest or open snow course transect. These data have undergone basic quality control. See manufacturer specifications for individual instruments to determine sensor accuracy. This file was compiled from individual raw data files (named "RawData.txt" within each site and year directory) provided by OSU, along with metadata of site attributes. We converted the Excel-based timestamp (seconds since origin) to a date, changed the NaN flags for missing data to NA, and added site attributes such as site name and cover. We replaced positive values with NA, since snow depth values in raw data are negative (i.e., flipped, with some correction to use the height of the sensor as zero). Thus, positive snow depth values in the raw data equal negative snow depth values. Second, the sign of the data was switched to make them positive. Then, the smooth.m (MATLAB) function was used to roughly smooth the data, with a moving window of 50 points. Third, outliers were removed. All values higher than the smoothed values +10, were replaced with NA. In some cases, further single point outliers were removed. OSU_Met Summary: Raw, 10-minute meteorological observations collected at OSU met stations in the upper McKenzie River Watershed and the Middle Fork Willamette Watershed during Water Years 2012-2014. Each meterological tower was deployed to represent either a forested or an open area at a particular site, and generally the locations were paired, with a meterological station deployed in the forest and in the open area at a single site. These data were collected in conjunction with manual snow course observations, and the meteorological stations were located in the approximate center of each forest or open snow course transect. These stations were deployed to collect numerous meteorological variables, of which snow depth and wind speed are included here. These data are raw datalogger output and have not been quality controlled in any way. See manufacturer specifications for individual instruments to determine sensor accuracy. This file was compiled from individual raw data files (named "RawData.txt" within each site and year directory) provided by OSU, along with metadata of site attributes. We converted the Excel-based timestamp (seconds since origin) to a date, changed the NaN and 7999 flags for missing data to NA, and added site attributes such as site name and cover. OSU_Location Summary: Location Metadata for manual snow course observations and meteorological sensors. These data are compiled from GPS data for which the horizontal accuracy is unknown, and from processed hemispherical photographs. They have not been quality controlled in any way.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Delay differential equations (DDEs) are a class of differential equations that can model diverse scientific phenomena. However, identifying the parameters, especially the time delay, that make a DDE’s predictions match experimental results can be challenging. We introduce DDE-Find, a data-driven framework for learning a DDE’s parameters, time delay and initial condition function. DDE-Find uses an adjoint-based approach to efficiently compute the gradient of a loss function with respect to the model parameters. We motivate and rigorously prove an expression for the gradients of the loss using the adjoint. DDE-Find builds upon recent developments in learning DDEs from data and delivers the first complete framework for learning DDEs from data. Through a series of numerical experiments, we demonstrate that DDE-Find can learn DDEs from noisy, limited data.
United States agricultural researchers have many options for making their data available online. This dataset aggregates the primary sources of ag-related data and determines where researchers are likely to deposit their agricultural data. These data serve as both a current landscape analysis and also as a baseline for future studies of ag research data. Purpose As sources of agricultural data become more numerous and disparate, and collaboration and open data become more expected if not required, this research provides a landscape inventory of online sources of open agricultural data. An inventory of current agricultural data sharing options will help assess how the Ag Data Commons, a platform for USDA-funded data cataloging and publication, can best support data-intensive and multi-disciplinary research. It will also help agricultural librarians assist their researchers in data management and publication. The goals of this study were to establish where agricultural researchers in the United States-- land grant and USDA researchers, primarily ARS, NRCS, USFS and other agencies -- currently publish their data, including general research data repositories, domain-specific databases, and the top journals compare how much data is in institutional vs. domain-specific vs. federal platforms determine which repositories are recommended by top journals that require or recommend the publication of supporting data ascertain where researchers not affiliated with funding or initiatives possessing a designated open data repository can publish data Approach The National Agricultural Library team focused on Agricultural Research Service (ARS), Natural Resources Conservation Service (NRCS), and United States Forest Service (USFS) style research data, rather than ag economics, statistics, and social sciences data. To find domain-specific, general, institutional, and federal agency repositories and databases that are open to US research submissions and have some amount of ag data, resources including re3data, libguides, and ARS lists were analysed. Primarily environmental or public health databases were not included, but places where ag grantees would publish data were considered. Search methods We first compiled a list of known domain specific USDA / ARS datasets / databases that are represented in the Ag Data Commons, including ARS Image Gallery, ARS Nutrition Databases (sub-components), SoyBase, PeanutBase, National Fungus Collection, i5K Workspace @ NAL, and GRIN. We then searched using search engines such as Bing and Google for non-USDA / federal ag databases, using Boolean variations of “agricultural data” /“ag data” / “scientific data” + NOT + USDA (to filter out the federal / USDA results). Most of these results were domain specific, though some contained a mix of data subjects. We then used search engines such as Bing and Google to find top agricultural university repositories using variations of “agriculture”, “ag data” and “university” to find schools with agriculture programs. Using that list of universities, we searched each university web site to see if their institution had a repository for their unique, independent research data if not apparent in the initial web browser search. We found both ag specific university repositories and general university repositories that housed a portion of agricultural data. Ag specific university repositories are included in the list of domain-specific repositories. Results included Columbia University – International Research Institute for Climate and Society, UC Davis – Cover Crops Database, etc. If a general university repository existed, we determined whether that repository could filter to include only data results after our chosen ag search terms were applied. General university databases that contain ag data included Colorado State University Digital Collections, University of Michigan ICPSR (Inter-university Consortium for Political and Social Research), and University of Minnesota DRUM (Digital Repository of the University of Minnesota). We then split out NCBI (National Center for Biotechnology Information) repositories. Next we searched the internet for open general data repositories using a variety of search engines, and repositories containing a mix of data, journals, books, and other types of records were tested to determine whether that repository could filter for data results after search terms were applied. General subject data repositories include Figshare, Open Science Framework, PANGEA, Protein Data Bank, and Zenodo. Finally, we compared scholarly journal suggestions for data repositories against our list to fill in any missing repositories that might contain agricultural data. Extensive lists of journals were compiled, in which USDA published in 2012 and 2016, combining search results in ARIS, Scopus, and the Forest Service's TreeSearch, plus the USDA web sites Economic Research Service (ERS), National Agricultural Statistics Service (NASS), Natural Resources and Conservation Service (NRCS), Food and Nutrition Service (FNS), Rural Development (RD), and Agricultural Marketing Service (AMS). The top 50 journals' author instructions were consulted to see if they (a) ask or require submitters to provide supplemental data, or (b) require submitters to submit data to open repositories. Data are provided for Journals based on a 2012 and 2016 study of where USDA employees publish their research studies, ranked by number of articles, including 2015/2016 Impact Factor, Author guidelines, Supplemental Data?, Supplemental Data reviewed?, Open Data (Supplemental or in Repository) Required? and Recommended data repositories, as provided in the online author guidelines for each the top 50 journals. Evaluation We ran a series of searches on all resulting general subject databases with the designated search terms. From the results, we noted the total number of datasets in the repository, type of resource searched (datasets, data, images, components, etc.), percentage of the total database that each term comprised, any dataset with a search term that comprised at least 1% and 5% of the total collection, and any search term that returned greater than 100 and greater than 500 results. We compared domain-specific databases and repositories based on parent organization, type of institution, and whether data submissions were dependent on conditions such as funding or affiliation of some kind. Results A summary of the major findings from our data review: Over half of the top 50 ag-related journals from our profile require or encourage open data for their published authors. There are few general repositories that are both large AND contain a significant portion of ag data in their collection. GBIF (Global Biodiversity Information Facility), ICPSR, and ORNL DAAC were among those that had over 500 datasets returned with at least one ag search term and had that result comprise at least 5% of the total collection. Not even one quarter of the domain-specific repositories and datasets reviewed allow open submission by any researcher regardless of funding or affiliation. See included README file for descriptions of each individual data file in this dataset. Resources in this dataset:Resource Title: Journals. File Name: Journals.csvResource Title: Journals - Recommended repositories. File Name: Repos_from_journals.csvResource Title: TDWG presentation. File Name: TDWG_Presentation.pptxResource Title: Domain Specific ag data sources. File Name: domain_specific_ag_databases.csvResource Title: Data Dictionary for Ag Data Repository Inventory. File Name: Ag_Data_Repo_DD.csvResource Title: General repositories containing ag data. File Name: general_repos_1.csvResource Title: README and file inventory. File Name: README_InventoryPublicDBandREepAgData.txt
https://aim-ima.be/Donnees-individuelles-realiser-l?lang=frhttps://aim-ima.be/Donnees-individuelles-realiser-l?lang=fr
IMA-AIM can provide you with detailed data on the health care system in Belgium. Their data collection includes information on the reimbursed care and medicines of the 11 million citizens insured in our country. The data is collected by the 7 health insurance funds and processed, analysed and made available for research by IMA-AIM.
The seven health insurance funds in Belgium collect a lot of data about their members in order to be able to carry out their tasks. IMA-AIM brings these data together in databases for the purpose of analysis and research. The databases contain three types of data: population data (demographic and socio-economic characteristics), information about reimbursed health care and information about reimbursed medicines.
The Permanent Sample (EPS) is a longitudinal dataset containing data from the Population, Health Care and Pharmanet databases, as well as data on hospitalisations. The data are available in separate datasets per calendar year. The aim of EPS is to make the administrative data of the health insurance funds permanently available to a number of federal and regional partners. More information about the EPS: https://metadata.ima-aim.be/nl/app/bdds/Ps
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A log of dataset alerts open, monitored or resolved on the open data portal. Alerts can include issues as well as deprecation or discontinuation notices.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Our analyses are based on 148×148 time- and frequency-domain correlation matrices. A correlation matrix covers all the possible use cases of every activity metric listed in the article. With these activity metrics and different preprocessing methods, we were able to calculate 148 different activity signals from multiple datasets of a single measurement. Each cell of a correlation matrix contains the mean and standard deviation of the calculated Pearson’s correlation coefficients between two types of activity signals based on 42 different subjects’ 10-days-long motion. The small correlation matrices presented both in the article and in the appendixes are derived from these 148 × 148 correlation matrices. This published Excel workbook contains multiple sheets labelled according to their content. The mean and standard deviation values for both time- and frequency-domain correlations can be found on their own separate sheet. Moreover, we reproduced the correlation matrix with an alternatively parametrized digital filter, which doubled the number of sheets to 8. In the Excel workbook, we used the same notation for both the datasets and activity metrics as presented in this article with an extension to the PIM metric: PIMs denotes the PIM metric where we used Simpson’s 3/8 rule integration method, PIMr indicates the PIM metric where we calculated the integral by simple numerical integration (Riemann sum). (XLSX)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In a resource-constrained world with growing population and demand for energy, goods, and services with commensurate environmental impacts, we need to understand how these trends relate to various aspects of economic activity. 7see-GB is a computational model that links energy demand through to final economic consumption, and is used to explore decadal scenarios for the UK macroeconomy. This dataset includes two published models (*.vpm) from the source model 7see-GB, version 5-10 (22Apr15). They show how results were created for the paper 'A Robust Data-driven Macro-socioeconomic-energy Model'. The source model was developed in Vensim(r) (5.8b) and these published models can be viewed with the Vensim Reader, as provided with this dataset. There are instructions on how to navigate the published models and inspect variables shown in the paper. The .exe and .dmg files are free 'Model Reader' executables for Windows/OSX which allow a user to run the model without buying the Vensim simulator.
With the launch of the State of Hawaii's Open Data portal, the State of Hawaii has now begun providing residents, analysts, and civic developers with unparalleled access to State data for use in increasing transparency, driving civic innovation, and engaging participants in a more collaborative form of government. Visitors to the site will find over 150 datasets organized by six major topics, with more datasets continuing to be added to the site: Data on the portal has been optimized so that users of varying technical ability will find the site easy to navigate and use. Residents, journalists and analysts will find that the data can easily be contextualized for various purposes using intuitive features built directly within the State of Hawaii's Open Data portal. Videos detailing how to sort, filter, visualize data can be found within the video guide section of the site. Developers wishing to use the data for civic innovation will benefit from the CKAN Open Data API, a fully-documented, RESTful, Application Programming Interface (API). For more information about the API powering the State of Hawaii's Open Data Portal, please visit the developer's page. State-of-the-art social data features enable participants to create a more collaborative form of government by commenting, discussing, and sharing datasets with other participants on the platform or to publish them on other social networks like Twitter or Facebook. Users of the site are encouraged to participate in the development and future direction of the site by suggesting datasets to be added to the platform. Click the link below to view training materials for Citizens, staff and administrators. https://opendata.hawaii.gov/pages/training Click the link below to view documentation on the CKAN API. https://docs.ckan.org/en/2.9/api/index.html Click the link below to view Open Data site statistics. https://opendata.hawaii.gov/stats
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Background: Attribution to the original contributor upon reuse of published data is important both as a reward for data creators and to document the provenance of research findings. Previous studies have found that papers with publicly available datasets receive a higher number of citations than similar studies without available data. However, few previous analyses have had the statistical power to control for the many variables known to predict citation rate, which has led to uncertain estimates of the "citation benefit". Furthermore, little is known about patterns in data reuse over time and across datasets. Method and Results: Here, we look at citation rates while controlling for many known citation predictors, and investigate the variability of data reuse. In a multivariate regression on 10,555 studies that created gene expression microarray data, we found that studies that made data available in a public repository received 9% (95% confidence interval: 5% to 13%) more citations than similar studies for which the data was not made available. Date of publication, journal impact factor, open access status, number of authors, first and last author publication history, corresponding author country, institution citation history, and study topic were included as covariates. The citation benefit varied with date of dataset deposition: a citation benefit was most clear for papers published in 2004 and 2005, at about 30%. Authors published most papers using their own datasets within two years of their first publication on the dataset, whereas data reuse papers published by third-party investigators continued to accumulate for at least six years. To study patterns of data reuse directly, we compiled 9,724 instances of third party data reuse via mention of GEO or ArrayExpress accession numbers in the full text of papers. The level of third-party data use was high: for 100 datasets deposited in year 0, we estimated that 40 papers in PubMed reused a dataset by year 2, 100 by year 4, and more than 150 data reuse papers had been published by year 5. Data reuse was distributed across a broad base of datasets: a very conservative estimate found that 20% of the datasets deposited between 2003 and 2007 had been reused at least once by third parties. Conclusion: After accounting for other factors affecting citation rate, we find a robust citation benefit from open data, although a smaller one than previously reported. We conclude there is a direct effect of third-party data reuse that persists for years beyond the time when researchers have published most of the papers reusing their own data. Other factors that may also contribute to the citation benefit are considered.We further conclude that, at least for gene expression microarray data, a substantial fraction of archived datasets are reused, and that the intensity of dataset reuse has been steadily increasing since 2003.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Customs records of are available for HARD TO FIND INTERNATIONAL INC. Learn about its Importer, supply capabilities and the countries to which it supplies goods
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Customs records of are available for HARD FIND ELECTRONICS LTD. Learn about its Importer, supply capabilities and the countries to which it supplies goods
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Customs records of are available for HARD FIND ELECTRONICS LTD BY ORDER SAURIS GMBH. Learn about its Importer, supply capabilities and the countries to which it supplies goods
This dataset was created by Paulo Moraes
It contains the following files:
Cohort of over 48,000 birth records (pregnancy, labour, birth and care) in Dundee. Between 1952-1966. Contains information on the birthing events such as birth weight, date, feeding, and socio economic variables such as parent occupation.
The website shows data on the plan and implementation of the health services program by individual health activities (VZD) :
Within the framework of each activity, the data for each period are shown separately by contractors and together, the activity by regional units of ZZZS and the activity data at the level of Slovenia together.
Data on the plan and implementation of the health services program are shown in the accounting unit (e.g. points, quotients, weights, groups of comparable cases, non-medical care day, care, days...), which are used to calculate the work performed in the field of individual activities.
The publication of information about the plan and implementation of the program on the ZZZS website is primarily intended for the professional public. The displayed program plan for an individual contractor refers to the defined billing period. (example: The plan for the period 1-3 201X is calculated as 3/12 of the annual plan agreed in the contract).
The data on the implementation of the program represents the implementation of the program at an individual provider for insured persons who benefited from medical services from him during the accounting period. Data on the realization of the program do not refer to persons insured in accordance with the European legal order and bilateral agreements on social security. Data for individual contractors are classified by regional units based on the contractor's headquarters. The content of the data on the "number of cases" is defined in the Instruction on recording and accounting for medical services and issued materials.
The institute reserves the right to change the data, in the event of subsequently discovered irregularities after already published on the Internet.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Customs records of are available for GUANGDONG FIND TECH CO.,LTD. Learn about its Importer, supply capabilities and the countries to which it supplies goods
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Replication Package for A Study on the Pythonic Functional Constructs' Understandability
This package contains several folders and files with code and data used in the study.
examples/
Contains the code snippets used as objects of the study, named as reported in Table 1, summarizing the experiment design.
RQ1-RQ2-files-for-statistical-analysis/
Contains three .csv files used as input for conducting the statistical analysis and drawing the graphs for addressing the first two research questions of the study. Specifically:
- ConstructUsage.csv contains the declared frequency usage of the three functional constructs object of the study. This file is used to draw Figure 4.
- RQ1.csv contains the collected data used for the mixed-effect logistic regression relating the use of functional constructs with the correctness of the change task, and the logistic regression relating the use of map/reduce/filter functions with the correctness of the change task.
- RQ1Paired-RQ2.csv contains the collected data used for the ordinal logistic regression of the relationship between the perceived ease of understanding of the functional constructs and (i) participants' usage frequency, and (ii) constructs' complexity (except for map/reduce/filter).
inter-rater-RQ3-files/
Contains four .csv files used as input for computing the inter-rater agreement for the manual labeling used for addressing RQ3. Specifically, you will find one file for each functional construct, i.e., comprehension.csv, lambda.csv, and mrf.csv, and a different file used for highlighting the reasons why participants prefer to use the procedural paradigm, i.e., procedural.csv.
Questionnaire-Example.pdf
This file contains the questionnaire submitted to one of the ten experimental groups within our controlled experiment. Other questionnaires are similar, except for the code snippets used for the first section, i.e., change tasks, and the second section, i.e., comparison tasks.
RQ2ManualValidation.csv
This file contains the results of the manual validation being done to sanitize the answers provided by our participants used for addressing RQ2. Specifically, we coded the behavior description using four different levels: (i) correct, (ii) somewhat correct, (iii) wrong, and (iv) automatically generated.
RQ3ManualValidation.xlsx
This file contains the results of the open coding applied to address our third research question. Specifically, you will find four sheets, one for each functional construct and one for the procedural paradigm. For each sheet, you will find the provided answers together with the categories assigned to them.
Appendix.pdf
This file contains the results of the logistic regression relating the use of map, filter, and reduce functions with the correctness of the change task, not shown in the paper.
FuncConstructs-Statistics.r
This file contains an R script that you can reuse to re-run all the analyses conducted and discussed in the paper.
FuncConstructs-Statistics.ipynb
This file contains the code to re-execute all the analysis conducted in the paper as a notebook.