https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global market size for Test Data Generation Tools was valued at USD 800 million in 2023 and is projected to reach USD 2.2 billion by 2032, growing at a CAGR of 12.1% during the forecast period. The surge in the adoption of agile and DevOps practices, along with the increasing complexity of software applications, is driving the growth of this market.
One of the primary growth factors for the Test Data Generation Tools market is the increasing need for high-quality test data in software development. As businesses shift towards more agile and DevOps methodologies, the demand for automated and efficient test data generation solutions has surged. These tools help in reducing the time required for test data creation, thereby accelerating the overall software development lifecycle. Additionally, the rise in digital transformation across various industries has necessitated the need for robust testing frameworks, further propelling the market growth.
The proliferation of big data and the growing emphasis on data privacy and security are also significant contributors to market expansion. With the introduction of stringent regulations like GDPR and CCPA, organizations are compelled to ensure that their test data is compliant with these laws. Test Data Generation Tools that offer features like data masking and data subsetting are increasingly being adopted to address these compliance requirements. Furthermore, the increasing instances of data breaches have underscored the importance of using synthetic data for testing purposes, thereby driving the demand for these tools.
Another critical growth factor is the technological advancements in artificial intelligence and machine learning. These technologies have revolutionized the field of test data generation by enabling the creation of more realistic and comprehensive test data sets. Machine learning algorithms can analyze large datasets to generate synthetic data that closely mimics real-world data, thus enhancing the effectiveness of software testing. This aspect has made AI and ML-powered test data generation tools highly sought after in the market.
Regional outlook for the Test Data Generation Tools market shows promising growth across various regions. North America is expected to hold the largest market share due to the early adoption of advanced technologies and the presence of major software companies. Europe is also anticipated to witness significant growth owing to strict regulatory requirements and increased focus on data security. The Asia Pacific region is projected to grow at the highest CAGR, driven by rapid industrialization and the growing IT sector in countries like India and China.
Synthetic Data Generation has emerged as a pivotal component in the realm of test data generation tools. This process involves creating artificial data that closely resembles real-world data, without compromising on privacy or security. The ability to generate synthetic data is particularly beneficial in scenarios where access to real data is restricted due to privacy concerns or regulatory constraints. By leveraging synthetic data, organizations can perform comprehensive testing without the risk of exposing sensitive information. This not only ensures compliance with data protection regulations but also enhances the overall quality and reliability of software applications. As the demand for privacy-compliant testing solutions grows, synthetic data generation is becoming an indispensable tool in the software development lifecycle.
The Test Data Generation Tools market is segmented into software and services. The software segment is expected to dominate the market throughout the forecast period. This dominance can be attributed to the increasing adoption of automated testing tools and the growing need for robust test data management solutions. Software tools offer a wide range of functionalities, including data profiling, data masking, and data subsetting, which are essential for effective software testing. The continuous advancements in software capabilities also contribute to the growth of this segment.
In contrast, the services segment, although smaller in market share, is expected to grow at a substantial rate. Services include consulting, implementation, and support services, which are crucial for the successful deployment and management of test data generation tools. The increasing complexity of IT inf
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset used in the article entitled 'Synthetic Datasets Generator for Testing Information Visualization and Machine Learning Techniques and Tools'. These datasets can be used to test several characteristics in machine learning and data processing algorithms.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The Test Data Generation Tools market is experiencing robust growth, driven by the increasing demand for high-quality software and the rising adoption of agile and DevOps methodologies. The market's expansion is fueled by several factors, including the need for realistic and representative test data to ensure thorough software testing, the growing complexity of applications, and the increasing pressure to accelerate software delivery cycles. The market is segmented by type (Random, Pathwise, Goal, Intelligent) and application (Large Enterprises, SMEs), each demonstrating unique growth trajectories. Intelligent test data generation, offering advanced capabilities like data masking and synthetic data creation, is gaining significant traction, while large enterprises are leading the adoption due to their higher testing volumes and budgets. Geographically, North America and Europe currently hold the largest market shares, but the Asia-Pacific region is expected to witness significant growth due to rapid digitalization and increasing software development activities. Competitive intensity is high, with a mix of established players like IBM and Informatica and emerging innovative companies continuously introducing advanced features and functionalities. The market's growth is, however, constrained by challenges such as the complexity of implementing and managing test data generation tools and the need for specialized expertise. Overall, the market is projected to maintain a healthy growth rate throughout the forecast period (2025-2033), driven by continuous technological advancements and evolving software testing requirements. While the precise CAGR isn't provided, assuming a conservative yet realistic CAGR of 15% based on industry trends and the factors mentioned above, the market is poised for significant expansion. This growth will be fueled by the increasing adoption of cloud-based solutions, improved data masking techniques for enhanced security and privacy, and the rise of AI-powered test data generation tools that automatically create comprehensive and realistic datasets. The competitive landscape will continue to evolve, with mergers and acquisitions likely shaping the market structure. Furthermore, the focus on data privacy regulations will influence the development and adoption of advanced data anonymization and synthetic data generation techniques. The market will see further segmentation as specialized tools catering to specific industry needs (e.g., financial services, healthcare) emerge. The long-term outlook for the Test Data Generation Tools market remains positive, driven by the relentless demand for higher software quality and faster development cycles.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Test Data Generation Tools market is experiencing robust growth, driven by the increasing demand for efficient and reliable software testing in a rapidly evolving digital landscape. The market's expansion is fueled by several key factors: the escalating complexity of software applications, the growing adoption of agile and DevOps methodologies which necessitate faster test cycles, and the rising need for high-quality software releases to meet stringent customer expectations. Organizations across various sectors, including finance, healthcare, and technology, are increasingly adopting test data generation tools to automate the creation of realistic and representative test data, thereby reducing testing time and costs while enhancing the overall quality of software products. This shift is particularly evident in the adoption of cloud-based solutions, offering scalability and accessibility benefits. The competitive landscape is marked by a mix of established players like IBM and Microsoft, alongside specialized vendors like Broadcom and Informatica, and emerging innovative startups. The market is witnessing increased mergers and acquisitions as larger players seek to expand their market share and product portfolios. Future growth will be influenced by advancements in artificial intelligence (AI) and machine learning (ML), enabling the generation of even more realistic and sophisticated test data, further accelerating market expansion. The market's projected Compound Annual Growth Rate (CAGR) suggests a substantial increase in market value over the forecast period (2025-2033). While precise figures were not provided, a reasonable estimation based on current market trends indicates a significant expansion. Market segmentation will likely see continued growth across various sectors, with cloud-based solutions gaining traction. Geographic expansion will also contribute to overall growth, particularly in regions with rapidly developing software industries. However, challenges remain, such as the need for skilled professionals to manage and utilize these tools effectively and the potential security concerns related to managing large datasets. Addressing these challenges will be crucial for sustained market growth and wider adoption. The overall outlook for the Test Data Generation Tools market remains positive, driven by the persistent need for efficient and robust software testing processes in a continuously evolving technological environment.
Synthetic Data Generation Market Size 2025-2029
The synthetic data generation market size is forecast to increase by USD 4.39 billion, at a CAGR of 61.1% between 2024 and 2029.
The market is experiencing significant growth, driven by the escalating demand for data privacy protection. With increasing concerns over data security and the potential risks associated with using real data, synthetic data is gaining traction as a viable alternative. Furthermore, the deployment of large language models is fueling market expansion, as these models can generate vast amounts of realistic and diverse data, reducing the reliance on real-world data sources. However, high costs associated with high-end generative models pose a challenge for market participants. These models require substantial computational resources and expertise to develop and implement effectively. Companies seeking to capitalize on market opportunities must navigate these challenges by investing in research and development to create more cost-effective solutions or partnering with specialists in the field. Overall, the market presents significant potential for innovation and growth, particularly in industries where data privacy is a priority and large language models can be effectively utilized.
What will be the Size of the Synthetic Data Generation Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe market continues to evolve, driven by the increasing demand for data-driven insights across various sectors. Data processing is a crucial aspect of this market, with a focus on ensuring data integrity, privacy, and security. Data privacy-preserving techniques, such as data masking and anonymization, are essential in maintaining confidentiality while enabling data sharing. Real-time data processing and data simulation are key applications of synthetic data, enabling predictive modeling and data consistency. Data management and workflow automation are integral components of synthetic data platforms, with cloud computing and model deployment facilitating scalability and flexibility. Data governance frameworks and compliance regulations play a significant role in ensuring data quality and security.
Deep learning models, variational autoencoders (VAEs), and neural networks are essential tools for model training and optimization, while API integration and batch data processing streamline the data pipeline. Machine learning models and data visualization provide valuable insights, while edge computing enables data processing at the source. Data augmentation and data transformation are essential techniques for enhancing the quality and quantity of synthetic data. Data warehousing and data analytics provide a centralized platform for managing and deriving insights from large datasets. Synthetic data generation continues to unfold, with ongoing research and development in areas such as federated learning, homomorphic encryption, statistical modeling, and software development.
The market's dynamic nature reflects the evolving needs of businesses and the continuous advancements in data technology.
How is this Synthetic Data Generation Industry segmented?
The synthetic data generation industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. End-userHealthcare and life sciencesRetail and e-commerceTransportation and logisticsIT and telecommunicationBFSI and othersTypeAgent-based modellingDirect modellingApplicationAI and ML Model TrainingData privacySimulation and testingOthersProductTabular dataText dataImage and video dataOthersGeographyNorth AmericaUSCanadaMexicoEuropeFranceGermanyItalyUKAPACChinaIndiaJapanRest of World (ROW)
By End-user Insights
The healthcare and life sciences segment is estimated to witness significant growth during the forecast period.In the rapidly evolving data landscape, the market is gaining significant traction, particularly in the healthcare and life sciences sector. With a growing emphasis on data-driven decision-making and stringent data privacy regulations, synthetic data has emerged as a viable alternative to real data for various applications. This includes data processing, data preprocessing, data cleaning, data labeling, data augmentation, and predictive modeling, among others. Medical imaging data, such as MRI scans and X-rays, are essential for diagnosis and treatment planning. However, sharing real patient data for research purposes or training machine learning algorithms can pose significant privacy risks. Synthetic data generation addresses this challenge by producing realistic medical imaging data, ensuring data privacy while enabling research
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Test Data Generation Tools market is rapidly evolving, driven by the increasing need for high-quality software and data integrity across various industries. Test data generation tools are essential in the software development lifecycle, enabling organizations to create realistic, secure, and compliant datasets f
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global synthetic data software market size was valued at approximately USD 1.2 billion in 2023 and is projected to reach USD 7.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 22.4% during the forecast period. The growth of this market can be attributed to the increasing demand for data privacy and security, advancements in artificial intelligence (AI) and machine learning (ML), and the rising need for high-quality data to train AI models.
One of the primary growth factors for the synthetic data software market is the escalating concern over data privacy and governance. With the rise of stringent data protection regulations like GDPR in Europe and CCPA in California, organizations are increasingly seeking alternatives to real data that can still provide meaningful insights without compromising privacy. Synthetic data software offers a solution by generating artificial data that mimics real-world data distributions, thereby mitigating privacy risks while still allowing for robust data analysis and model training.
Another significant driver of market growth is the rapid advancement in AI and ML technologies. These technologies require vast amounts of data to train models effectively. Traditional data collection methods often fall short in terms of volume, variety, and veracity. Synthetic data software addresses these limitations by creating scalable, diverse, and accurate datasets, enabling more effective and efficient model training. As AI and ML applications continue to expand across various industries, the demand for synthetic data software is expected to surge.
The increasing application of synthetic data software across diverse sectors such as healthcare, finance, automotive, and retail also acts as a catalyst for market growth. In healthcare, synthetic data can be used to simulate patient records for research without violating patient privacy laws. In finance, it can help in creating realistic datasets for fraud detection and risk assessment without exposing sensitive financial information. Similarly, in automotive, synthetic data is crucial for training autonomous driving systems by simulating various driving scenarios.
From a regional perspective, North America holds the largest market share due to its early adoption of advanced technologies and the presence of key market players. Europe follows closely, driven by stringent data protection regulations and a strong focus on privacy. The Asia Pacific region is expected to witness the highest growth rate owing to the rapid digital transformation, increasing investments in AI and ML, and a burgeoning tech-savvy population. Latin America and the Middle East & Africa are also anticipated to experience steady growth, supported by emerging technological ecosystems and increasing awareness of data privacy.
When examining the synthetic data software market by component, it is essential to consider both software and services. The software segment dominates the market as it encompasses the actual tools and platforms that generate synthetic data. These tools leverage advanced algorithms and statistical methods to produce artificial datasets that closely resemble real-world data. The demand for such software is growing rapidly as organizations across various sectors seek to enhance their data capabilities without compromising on security and privacy.
On the other hand, the services segment includes consulting, implementation, and support services that help organizations integrate synthetic data software into their existing systems. As the market matures, the services segment is expected to grow significantly. This growth can be attributed to the increasing complexity of synthetic data generation and the need for specialized expertise to optimize its use. Service providers offer valuable insights and best practices, ensuring that organizations maximize the benefits of synthetic data while minimizing risks.
The interplay between software and services is crucial for the holistic growth of the synthetic data software market. While software provides the necessary tools for data generation, services ensure that these tools are effectively implemented and utilized. Together, they create a comprehensive solution that addresses the diverse needs of organizations, from initial setup to ongoing maintenance and support. As more organizations recognize the value of synthetic data, the demand for both software and services is expected to rise, driving overall market growth.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The Big Data Technology Market size was valued at USD 349.40 USD Billion in 2023 and is projected to reach USD 918.16 USD Billion by 2032, exhibiting a CAGR of 14.8 % during the forecast period. Big data is larger, more complex data sets, especially from new data sources. These data sets are so voluminous that traditional data processing software just can’t manage them. But these massive volumes of data can be used to address business problems that wouldn’t have been able to tackle before. Big data technology is defined as software-utility. This technology is primarily designed to analyze, process and extract information from a large data set and a huge set of extremely complex structures. This is very difficult for traditional data processing software to deal with. Among the larger concepts of rage in technology, big data technologies are widely associated with many other technologies such as deep learning, machine learning, artificial intelligence (AI), and Internet of Things (IoT) that are massively augmented. In combination with these technologies, big data technologies are focused on analyzing and handling large amounts of real-time data and batch-related data. Recent developments include: February 2024: - SQream, a GPU data analytics platform, partnered with Dataiku, an AI and machine learning platform, to deliver a comprehensive solution for efficiently generating big data analytics and business insights by handling complex data., October 2023: - MultiversX (ELGD), a blockchain infrastructure firm, formed a partnership with Google Cloud to enhance Web3’s presence by integrating big data analytics and artificial intelligence tools. The collaboration aims to offer new possibilities for developers and startups., May 2023: - Vpon Big Data Group partnered with VIOOH, a digital out-of-home advertising (DOOH) supply-side platform, to display the unique advertising content generated by Vpon’s AI visual content generator "InVnity" with VIOOH's digital outdoor advertising inventories. This partnership pioneers the future of outdoor advertising by using AI and big data solutions., May 2023: - Salesforce launched the next generation of Tableau for users to automate data analysis and generate actionable insights., March 2023: - SAP SE, a German multinational software company, entered a partnership with AI companies, including Databricks, Collibra NV, and DataRobot, Inc., to introduce the next generation of data management portfolio., November 2022: - Thai Oil and Retail Corporation PTT Oil and Retail Business Public Company implemented the Cloudera Data Platform to deliver insights and enhance customer engagement. The implementation offered a unified and personalized experience across 1,900 gas stations and 3,000 retail branches., November 2022: - IBM launched new software for enterprises to break down data and analytics silos that helped users make data-driven decisions. The software helps to streamline how users access and discover analytics and planning tools from multiple vendors in a single dashboard view., September 2022: - ActionIQ, a global leader in CX solutions, and Teradata, a leading software company, entered a strategic partnership and integrated AIQ’s new HybridCompute Technology with Teradata VantageCloud analytics and data platform.. Key drivers for this market are: Increasing Adoption of AI, ML, and Data Analytics to Boost Market Growth . Potential restraints include: Rising Concerns on Information Security and Privacy to Hinder Market Growth. Notable trends are: Rising Adoption of Big Data and Business Analytics among End-use Industries.
This software tool generates simulated radar signals and creates RF datasets. The datasets can be used to develop and test detection algorithms by utilizing machine learning/deep learning techniques for the 3.5 GHz Citizens Broadband Radio Service (CBRS) or similar bands. In these bands, the primary users of the band are federal incumbent radar systems. The software tool generates radar waveforms and randomizes the radar waveform parameters. The pulse modulation types for the radar signals and their parameters are selected based on NTIA testing procedures for ESC certification, available at http://www.its.bldrdoc.gov/publications/3184.aspx. Furthermore, the tool mixes the waveforms with interference and packages them into one RF dataset file. The tool utilizes a graphical user interface (GUI) to simplify the selection of parameters and the mixing process. A reference RF dataset was generated using this software. The RF dataset is published at https://doi.org/10.18434/M32116.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Testing web APIs automatically requires generating input data values such as addressess, coordinates or country codes. Generating meaningful values for these types of parameters randomly is rarely feasible, which means a major obstacle for current test case generation approaches. In this paper, we present ARTE, the first semantic-based approach for the Automated generation of Realistic TEst inputs for web APIs. Specifically, ARTE leverages the specification of the API under test to extract semantically related values for every parameter by applying knowledge extraction techniques. Our approach has been integrated into RESTest, a state-of-the-art tool for API testing, achieving an unprecedented level of automation which allows to generate up to 100\% more valid API calls than existing fuzzing techniques (30\% on average). Evaluation results on a set of 26 real-world APIs show that ARTE can generate realistic inputs for 7 out of every 10 parameters, outperforming the results obtained by related approaches.
http://www.gnu.org/licenses/gpl-3.0.en.htmlhttp://www.gnu.org/licenses/gpl-3.0.en.html
This program has been imported from the CPC Program Library held at Queen's University Belfast (1969-2018)
Abstract We present a tool for fully-automated generation of both simulations configuration files (Mif) and Matlab scripts for automated data analysis, dedicated for Object Oriented Micromagnetic Framework (OOMMF). We introduce extended graphical user interface (GUI) that allows for fast, error-proof and easy creation of Mifs, without any programming skills usually required for manual Mif writing necessary. With MAGE we provide OOMMF extensions for complementing it by mangetoresistance and spin-transf...
Title of program: MAGE (Mif/M-file Automatic GEnerator) Catalogue Id: AFAZ_v1_0
Nature of problem Numerous problems of ferromagnetic nanoelements can be investigated with micromagnetic simulations using The Object Oriented MicroMagnetic Framework (OOMMF). Often, research requires continuous parameters and condition changes while running a large number of simulations with time-varying parameters, which means that the user has to be experienced with programming and that a lot of time has to be spent on creating numerous expanded Mifs. What is more, after the simulations are finished, the analy ...
Versions of this program held in the CPC repository in Mendeley Data AFAZ_v1_0; MAGE (Mif/M-file Automatic GEnerator); 10.1016/j.cpc.2016.06.021
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The synthetic data generation market is experiencing explosive growth, driven by the increasing need for high-quality data in various applications, including AI/ML model training, data privacy compliance, and software testing. The market, currently estimated at $2 billion in 2025, is projected to experience a Compound Annual Growth Rate (CAGR) of 25% from 2025 to 2033, reaching an estimated $10 billion by 2033. This significant expansion is fueled by several key factors. Firstly, the rising adoption of artificial intelligence and machine learning across industries demands large, high-quality datasets, often unavailable due to privacy concerns or data scarcity. Synthetic data provides a solution by generating realistic, privacy-preserving datasets that mirror real-world data without compromising sensitive information. Secondly, stringent data privacy regulations like GDPR and CCPA are compelling organizations to explore alternative data solutions, making synthetic data a crucial tool for compliance. Finally, the advancements in generative AI models and algorithms are improving the quality and realism of synthetic data, expanding its applicability in various domains. Major players like Microsoft, Google, and AWS are actively investing in this space, driving further market expansion. The market segmentation reveals a diverse landscape with numerous specialized solutions. While large technology firms dominate the broader market, smaller, more agile companies are making significant inroads with specialized offerings focused on specific industry needs or data types. The geographical distribution is expected to be skewed towards North America and Europe initially, given the high concentration of technology companies and early adoption of advanced data technologies. However, growing awareness and increasing data needs in other regions are expected to drive substantial market growth in Asia-Pacific and other emerging markets in the coming years. The competitive landscape is characterized by a mix of established players and innovative startups, leading to continuous innovation and expansion of market applications. This dynamic environment indicates sustained growth in the foreseeable future, driven by an increasing recognition of synthetic data's potential to address critical data challenges across industries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
This datasets have SQL injection attacks (SLQIA) as malicious Netflow data. The attacks carried out are SQL injection for Union Query and Blind SQL injection. To perform the attacks, the SQLMAP tool has been used.
NetFlow traffic has generated using DOROTHEA (DOcker-based fRamework fOr gaTHering nEtflow trAffic). NetFlow is a network protocol developed by Cisco for the collection and monitoring of network traffic flow data generated. A flow is defined as a unidirectional sequence of packets with some common properties that pass through a network device.
Datasets
The firts dataset was colleted to train the detection models (D1) and other collected using different attacks than those used in training to test the models and ensure their generalization (D2).
The datasets contain both benign and malicious traffic. All collected datasets are balanced.
The version of NetFlow used to build the datasets is 5.
Dataset | Aim | Samples | Benign-malicious traffic ratio |
---|---|---|---|
D1 | Training | 400,003 | 50% |
D2 | Test | 57,239 | 50% |
Infrastructure and implementation
Two sets of flow data were collected with DOROTHEA. DOROTHEA is a Docker-based framework for NetFlow data collection. It allows you to build interconnected virtual networks to generate and collect flow data using the NetFlow protocol. In DOROTHEA, network traffic packets are sent to a NetFlow generator that has a sensor ipt_netflow installed. The sensor consists of a module for the Linux kernel using Iptables, which processes the packets and converts them to NetFlow flows.
DOROTHEA is configured to use Netflow V5 and export the flow after it is inactive for 15 seconds or after the flow is active for 1800 seconds (30 minutes)
Benign traffic generation nodes simulate network traffic generated by real users, performing tasks such as searching in web browsers, sending emails, or establishing Secure Shell (SSH) connections. Such tasks run as Python scripts. Users may customize them or even incorporate their own. The network traffic is managed by a gateway that performs two main tasks. On the one hand, it routes packets to the Internet. On the other hand, it sends it to a NetFlow data generation node (this process is carried out similarly to packets received from the Internet).
The malicious traffic collected (SQLI attacks) was performed using SQLMAP. SQLMAP is a penetration tool used to automate the process of detecting and exploiting SQL injection vulnerabilities.
The attacks were executed on 16 nodes and launch SQLMAP with the parameters of the following table.
Parameters | Description |
---|---|
'--banner','--current-user','--current-db','--hostname','--is-dba','--users','--passwords','--privileges','--roles','--dbs','--tables','--columns','--schema','--count','--dump','--comments', --schema' | Enumerate users, password hashes, privileges, roles, databases, tables and columns |
--level=5 | Increase the probability of a false positive identification |
--risk=3 | Increase the probability of extracting data |
--random-agent | Select the User-Agent randomly |
--batch | Never ask for user input, use the default behavior |
--answers="follow=Y" | Predefined answers to yes |
Every node executed SQLIA on 200 victim nodes. The victim nodes had deployed a web form vulnerable to Union-type injection attacks, which was connected to the MYSQL or SQLServer database engines (50% of the victim nodes deployed MySQL and the other 50% deployed SQLServer).
The web service was accessible from ports 443 and 80, which are the ports typically used to deploy web services. The IP address space was 182.168.1.1/24 for the benign and malicious traffic-generating nodes. For victim nodes, the address space was 126.52.30.0/24.
The malicious traffic in the test sets was collected under different conditions. For D1, SQLIA was performed using Union attacks on the MySQL and SQLServer databases.
However, for D2, BlindSQL SQLIAs were performed against the web form connected to a PostgreSQL database. The IP address spaces of the networks were also different from those of D1. In D2, the IP address space was 152.148.48.1/24 for benign and malicious traffic generating nodes and 140.30.20.1/24 for victim nodes.
To run the MySQL server we ran MariaDB version 10.4.12.
Microsoft SQL Server 2017 Express and PostgreSQL version 13 were used.
The dataset includes information on distributed electric generation (grid-connected) by the number of generators, number of generators less than one megawatt, total aggregate capacity, aggregate capacity used only for backup, and capacity by technology type.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Synthetic Data Generation market is experiencing explosive growth, projected to reach a value of $0.30 billion in 2025 and exhibiting a remarkable Compound Annual Growth Rate (CAGR) of 60.02%. This surge is driven by the increasing need for data privacy regulations compliance, the rising demand for data-driven decision-making across various sectors, and the limitations of real-world data availability. Key application areas like healthcare and life sciences leverage synthetic data for training machine learning models on sensitive patient information without compromising privacy. Similarly, retail and e-commerce utilize it for personalized recommendations and fraud detection, while the finance, banking, and insurance sectors benefit from its application in risk assessment and fraud prevention. The adoption of agent-based and direct modeling techniques fuels this growth, with agent-based modelling gaining traction due to its ability to simulate complex systems and interactions. Major players like Alphabet, Amazon, and IBM are actively investing in this space, driving innovation and market competition. The market is segmented by end-user and type of synthetic data generation, highlighting the diverse applications and technological approaches within the industry. Geographic growth is expected across North America (particularly the US), Europe (Germany and the UK), APAC (China and Japan), and other regions, fueled by increasing digitalization and data-driven strategies. The market's future growth trajectory is promising, fueled by continuous technological advancements in synthetic data generation techniques. The increasing sophistication of these methods leads to improved data quality and realism, further expanding applicability across diverse domains. While challenges remain, such as addressing potential biases in synthetic datasets and ensuring data fidelity, ongoing research and development efforts are focused on mitigating these concerns. The rising adoption of cloud-based solutions and the increasing accessibility of synthetic data generation tools are key factors expected to propel market expansion throughout the forecast period (2025-2033). This makes the Synthetic Data Generation market a highly lucrative and dynamic sector poised for significant growth in the coming years.
README.md explaining the Enhanced_Enigma1.py Cryptographic-Data Generator script.
This repository contains Enhanced_Enigma1.py
, a Python script designed to simulate the behavior of the historical German Enigma I encryption machine (specifically, the 3-rotor Army and Air Force version).
The primary purposes of this script are:
This dataset was created to pilot techniques for creating synthetic data from datasets containing sensitive and protected information in the local government context. Synthetic data generation replaces actual data with representative data generated from statistical models; this preserves the key data properties that allow insights to be drawn from the data while protecting the privacy of the people included in the data. We invite you to read the Understanding Synthetic Data white paper for a concise introduction to synthetic data.
This effort was a collaboration of the Urban Institute, Allegheny County’s Department of Human Services (DHS) and CountyStat, and the University of Pittsburgh’s Western Pennsylvania Regional Data Center.
The source data for this project consisted of 1) month-by-month records of services included in Allegheny County's data warehouse and 2) demographic data about the individuals who received the services. As the County’s data warehouse combines this service and client data, this data is referred to as “Integrated Services data”. Read more about the data warehouse and the kinds of services it includes here.
Synthetic data are typically generated from probability distributions or models identified as being representative of the confidential data. For this dataset, a model of the Integrated Services data was used to generate multiple versions of the synthetic dataset. These different candidate datasets were evaluated to select for publication the dataset version that best balances utility and privacy. For high-level information about this evaluation, see the Synthetic Data User Guide.
For more information about the creation of the synthetic version of this data, see the technical brief for this project, which discusses the technical decision making and modeling process in more detail.
This disaggregated synthetic data allows for many analyses that are not possible with aggregate data (summary statistics). Broadly, this synthetic version of this data could be analyzed to better understand the usage of human services by people in Allegheny County, including the interplay in the usage of multiple services and demographic information about clients.
Some amount of deviation from the original data is inherent to the synthetic data generation process. Specific examples of limitations (including undercounts and overcounts for the usage of different services) are given in the Synthetic Data User Guide and the technical report describing this dataset's creation.
Please reach out to this dataset's data steward (listed below) to let us know how you are using this data and if you found it to be helpful. Please also provide any feedback on how to make this dataset more applicable to your work, any suggestions of future synthetic datasets, or any additional information that would make this more useful. Also, please copy wprdc@pitt.edu on any such feedback (as the WPRDC always loves to hear about how people use the data that they publish and how the data could be improved).
1) A high-level overview of synthetic data generation as a method for protecting privacy can be found in the Understanding Synthetic Data white paper.
2) The Synthetic Data User Guide provides high-level information to help users understand the motivation, evaluation process, and limitations of the synthetic version of Allegheny County DHS's Human Services data published here.
3) Generating a Fully Synthetic Human Services Dataset: A Technical Report on Synthesis and Evaluation Methodologies describes the full technical methodology used for generating the synthetic data, evaluating the various options, and selecting the final candidate for publication.
4) The WPRDC also hosts the Allegheny County Human Services Community Profiles dataset, which provides annual updates on human-services usage, aggregated by neighborhood/municipality. That data can be explored using the County's Human Services Community Profile web site.
This repository contains scripts, input files, and some example output files for the Residential Population Generator, an R-based tool to generate synthetic human residental populations to use in making estimates of near-field chemical exposures. This tool is most readily adapted for using in the workflow for CHEM, the Combined Human Exposure Model, avaialable in two other GitHub repositories in the HumanExposure project, including ProductUseScheduler and source2dose. CHEM is currently best suited to estimating exposure to product use. Outputs from RPGen are translated into ProductUseScheduler, which with subsequent outputs used in source2dose.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global synthetic data tool market is projected to reach USD 10,394.0 million by 2033, exhibiting a CAGR of 34.8% during the forecast period. The growing adoption of AI and ML technologies, increasing demand for data privacy and security, and the rising need for data for training and testing machine learning models are the key factors driving market growth. Additionally, the availability of open-source synthetic data generation tools and the increasing adoption of cloud-based synthetic data platforms are further contributing to market growth. North America is expected to hold the largest market share during the forecast period due to the early adoption of AI and ML technologies and the presence of key vendors in the region. Europe is anticipated to witness significant growth due to increasing government initiatives to promote AI adoption and the growing data privacy concerns. The Asia Pacific region is projected to experience rapid growth due to government initiatives to develop AI capabilities and the increasing adoption of AI and ML technologies in various industries, namely healthcare, retail, and manufacturing.
https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
BASE YEAR | 2024 |
HISTORICAL DATA | 2019 - 2024 |
REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
MARKET SIZE 2023 | 7.98(USD Billion) |
MARKET SIZE 2024 | 9.55(USD Billion) |
MARKET SIZE 2032 | 40.0(USD Billion) |
SEGMENTS COVERED | Type ,Application ,Deployment Mode ,Organization Size ,Regional |
COUNTRIES COVERED | North America, Europe, APAC, South America, MEA |
KEY MARKET DYNAMICS | Growing Demand for Data Privacy and Security Advancement in Artificial Intelligence AI and Machine Learning ML Increasing Need for Faster and More Efficient Data Generation Growing Adoption of Synthetic Data in Various Industries Government Regulations and Compliance |
MARKET FORECAST UNITS | USD Billion |
KEY COMPANIES PROFILED | MostlyAI ,Gretel.ai ,H2O.ai ,Scale AI ,UNchart ,Anomali ,Replica ,Big Syntho ,Owkin ,DataGenix ,Synthesized ,Verisart ,Datumize ,Deci ,Datasaur |
MARKET FORECAST PERIOD | 2025 - 2032 |
KEY MARKET OPPORTUNITIES | Data privacy compliance Improved data availability Enhanced data quality Reduced data bias Costeffective |
COMPOUND ANNUAL GROWTH RATE (CAGR) | 19.61% (2025 - 2032) |
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global market size for Test Data Generation Tools was valued at USD 800 million in 2023 and is projected to reach USD 2.2 billion by 2032, growing at a CAGR of 12.1% during the forecast period. The surge in the adoption of agile and DevOps practices, along with the increasing complexity of software applications, is driving the growth of this market.
One of the primary growth factors for the Test Data Generation Tools market is the increasing need for high-quality test data in software development. As businesses shift towards more agile and DevOps methodologies, the demand for automated and efficient test data generation solutions has surged. These tools help in reducing the time required for test data creation, thereby accelerating the overall software development lifecycle. Additionally, the rise in digital transformation across various industries has necessitated the need for robust testing frameworks, further propelling the market growth.
The proliferation of big data and the growing emphasis on data privacy and security are also significant contributors to market expansion. With the introduction of stringent regulations like GDPR and CCPA, organizations are compelled to ensure that their test data is compliant with these laws. Test Data Generation Tools that offer features like data masking and data subsetting are increasingly being adopted to address these compliance requirements. Furthermore, the increasing instances of data breaches have underscored the importance of using synthetic data for testing purposes, thereby driving the demand for these tools.
Another critical growth factor is the technological advancements in artificial intelligence and machine learning. These technologies have revolutionized the field of test data generation by enabling the creation of more realistic and comprehensive test data sets. Machine learning algorithms can analyze large datasets to generate synthetic data that closely mimics real-world data, thus enhancing the effectiveness of software testing. This aspect has made AI and ML-powered test data generation tools highly sought after in the market.
Regional outlook for the Test Data Generation Tools market shows promising growth across various regions. North America is expected to hold the largest market share due to the early adoption of advanced technologies and the presence of major software companies. Europe is also anticipated to witness significant growth owing to strict regulatory requirements and increased focus on data security. The Asia Pacific region is projected to grow at the highest CAGR, driven by rapid industrialization and the growing IT sector in countries like India and China.
Synthetic Data Generation has emerged as a pivotal component in the realm of test data generation tools. This process involves creating artificial data that closely resembles real-world data, without compromising on privacy or security. The ability to generate synthetic data is particularly beneficial in scenarios where access to real data is restricted due to privacy concerns or regulatory constraints. By leveraging synthetic data, organizations can perform comprehensive testing without the risk of exposing sensitive information. This not only ensures compliance with data protection regulations but also enhances the overall quality and reliability of software applications. As the demand for privacy-compliant testing solutions grows, synthetic data generation is becoming an indispensable tool in the software development lifecycle.
The Test Data Generation Tools market is segmented into software and services. The software segment is expected to dominate the market throughout the forecast period. This dominance can be attributed to the increasing adoption of automated testing tools and the growing need for robust test data management solutions. Software tools offer a wide range of functionalities, including data profiling, data masking, and data subsetting, which are essential for effective software testing. The continuous advancements in software capabilities also contribute to the growth of this segment.
In contrast, the services segment, although smaller in market share, is expected to grow at a substantial rate. Services include consulting, implementation, and support services, which are crucial for the successful deployment and management of test data generation tools. The increasing complexity of IT inf