Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset was created by Abhishek Ranjan
Released under Database: Open Database, Contents: Database Contents
Facebook
TwitterGitHub is how people build software and is home to the largest community of open source developers in the world, with over 12 million people contributing to 31 million projects on GitHub since 2008.
This 3TB+ dataset comprises the largest released source of GitHub activity to date. It contains a full snapshot of the content of more than 2.8 million open source GitHub repositories including more than 145 million unique commits, over 2 billion different file paths, and the contents of the latest revision for 163 million files, all of which are searchable with regular expressions.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.github_repos.[TABLENAME]. Fork this kernel to get started to learn how to safely manage analyzing large BigQuery datasets.
This dataset was made available per GitHub's terms of service. This dataset is available via Google Cloud Platform's Marketplace, GitHub Activity Data, as part of GCP Public Datasets.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains the SQL tables of the training and test datasets used in our experimentation. These tables contain the preprocessed textual data (in a form of tokens) extracted from each training and test project. Besides the preprocessed textual data, this dataset also contains meta-data about the projects, GitHub topics, and GitHub collections. The GitHub projects are identified by the tuple “Owner” and “Name”. The descriptions of the table fields are attached to their respective data descriptions.
Facebook
TwitterRelease of CertWare was announced 23 Mar 2012 on: code.nasa.gov The announcement points to the Certware project on NASA’s GitHub repository at: nasa.github.com/CertWare The project site contains install instructions as an Eclipse feature, various tutorials and resources, and a link to the GitHub source repository. CertWare is released under the NASA Open Source Agreement (NOSA).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A common question for those new and familiar to computer science and software engineering is what is the most best and/or most popular programming language. It is very difficult to give a definitive answer, as there are a seemingly indefinite number of metrics that can define the 'best' or 'most popular' programming language.
One such metric that can be used to define a 'popular' programming language is the number of projects and files that are made using that programming language. As GitHub is the most popular public collaboration and file-sharing platform, analyzing the languages that are used for repositories, PRs, and issues on GitHub and be a good indicator for the popularity of a language.
This dataset contains statistics about the programming languages used for repositories, PRs, and issues on GitHub. The data is from 2011 to 2021.
This data was queried and aggregated from BigQuery's public github_repos and githubarchive datasets.
Only data for public GitHub repositories, and their corresponding PRs/issues, have their data available publicly. Thus, this dataset is only based on public repositories, which may not be fully representative of all repositories on GitHub.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The GitHub Code clean dataset in a more filtered version of codeparrot/github-code dataset, it consists of 115M code files from GitHub in 32 programming languages with 60 extensions totaling in almost 1TB of text data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
GitHub projects can be easily replicated through the site's fork process or through a Git clone-push sequence. This is a problem for empirical software engineering, because it can lead to skewed results or mistrained machine learning models. We provide a dataset of 10.6 million GitHub projects that are copies of others, and link each record with the project's ultimate parent. The ultimate parents were derived from a ranking along six metrics. The related projects were calculated as the connected components of an 18.2 million node and 12 million edge denoised graph created by directing edges to ultimate parents. The graph was created by filtering out more than 30 hand-picked and 2.3 million pattern-matched clumping projects. Projects that introduced unwanted clumping were identified by repeatedly visualizing shortest path distances between unrelated important projects. Our dataset identified 30 thousand duplicate projects in an existing popular reference dataset of 1.8 million projects. An evaluation of our dataset against another created independently with different methods found a significant overlap, but also differences attributed to the operational definition of what projects are considered as related.
The dataset is provided as two files identifying GitHub repositories using the login-name/project-name convention. The file deduplicate_names contains 10,649,348 tab-separated records mapping a duplicated source project to a definitive target project.
The file forks_clones_noise_names is a 50,324,363 member superset of the source projects, containing also projects that were excluded from the mapping as noise.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset containing GitHub issues (that are labeled using technical debt keywords) together with their comments. Both issues and comments have their GitHub reactions. The dataset is a MongoDB exported JSON.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This repository contains the dataset for the study of computational reproducibility of Jupyter notebooks from biomedical publications. Our focus lies in evaluating the extent of reproducibility of Jupyter notebooks derived from GitHub repositories linked to publications present in the biomedical literature repository, PubMed Central. We analyzed the reproducibility of Jupyter notebooks from GitHub repositories associated with publications indexed in the biomedical literature repository PubMed Central. The dataset includes the metadata information of the journals, publications, the Github repositories mentioned in the publications and the notebooks present in the Github repositories.
Data Collection and Analysis
We use the code for reproducibility of Jupyter notebooks from the study done by Pimentel et al., 2019 and adapted the code from ReproduceMeGit. We provide code for collecting the publication metadata from PubMed Central using NCBI Entrez utilities via Biopython.
Our approach involves searching PMC using the esearch function for Jupyter notebooks using the query: ``(ipynb OR jupyter OR ipython) AND github''. We meticulously retrieve data in XML format, capturing essential details about journals and articles. By systematically scanning the entire article, encompassing the abstract, body, data availability statement, and supplementary materials, we extract GitHub links. Additionally, we mine repositories for key information such as dependency declarations found in files like requirements.txt, setup.py, and pipfile. Leveraging the GitHub API, we enrich our data by incorporating repository creation dates, update histories, pushes, and programming languages.
All the extracted information is stored in a SQLite database. After collecting and creating the database tables, we ran a pipeline to collect the Jupyter notebooks contained in the GitHub repositories based on the code from Pimentel et al., 2019.
Our reproducibility pipeline was started on 27 March 2023.
Repository Structure
Our repository is organized into two main folders:
Accessing Data and Resources:
System Requirements:
Running the pipeline:
Running the analysis:
References:
Facebook
Twitterhttps://sqmagazine.co.uk/privacy-policy/https://sqmagazine.co.uk/privacy-policy/
GitHub remains the central hub for software collaboration, and its reach, impact, and complexity continue to expand. From small open‑source projects to enterprise deployments, GitHub shapes how code is built, shared, and maintained. For instance, large corporations rely on GitHub actions and CI/CD pipelines to streamline release cycles, while open‑source...
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Data and code repository for the Open COVID-19 Data Working Group: a global and multi-organizational initative that aims to enable rapid sharing of trusted and open public health data to advance the response to infectious diseases.
Facebook
Twitterhttps://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is obtained from the Github API and contains only public repository-level metadata. It may be useful for anyone interested in studying the Github ecosystem. It contains approximately 3.1 million entries.
The Github API Terms of Service apply.
You may not use this dataset for spamming purposes, including for the purposes of selling GitHub users' personal information, such as to recruiters, headhunters, and job boards.
Please see the sample exploration notebook for some examples of what you can do! The data format is a JSON array of entries, an example of which is given below.
{
"owner": "pelmers",
"name": "text-rewriter",
"stars": 13,
"forks": 5,
"watchers": 4,
"isFork": false,
"isArchived": false,
"languages": [ { "name": "JavaScript", "size": 21769 }, { "name": "HTML", "size": 2096 }, { "name": "CSS", "size": 2081 } ],
"languageCount": 3,
"topics": [ { "name": "chrome-extension", "stars": 43211 } ],
"topicCount": 1,
"diskUsageKb": 75,
"pullRequests": 4,
"issues": 12,
"description": "Webextension to rewrite phrases in pages",
"primaryLanguage": "JavaScript",
"createdAt": "2015-03-14T22:35:11Z",
"pushedAt": "2022-02-11T14:26:00Z",
"defaultBranchCommitCount": 54,
"license": null,
"assignableUserCount": 1,
"codeOfConduct": null,
"forkingAllowed": true,
"nameWithOwner": "pelmers/text-rewriter",
"parent": null
}
The collection script and exploration notebook are also available on Github: https://github.com/pelmers/github-repository-metadata. For more background info, you can read my blog post.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Software Engineering has evolved as a field to study not only the many ways software is created but also how it evolves, becomes successful, is effective and efficient in its objectives, satisfies its quality attributes, and much more. Nonetheless, there are still many open issues during its conception, development, and maintenance phases. Especially, understanding how developers collaborate may help in all such phases, but it is also challenging. Luckily, we may now explore a novel angle to deal with such a challenge: studying the social aspects of software development over social networks.
With GitHub becoming the main representative of collaborative software development online tools, there are approaches to assess the follow-network, stargazer-network, and contributors-network. Moreover, having such networks built from real software projects offers support for relevant applications, such as detection of key developers, recommendation of collaboration among developers, detection of developer communities, and analyses of collaboration patterns in agile development.
GitSED is a dataset based on GitHub that is curated (cleaned and reduced), augmented with external data, and enriched with social information on developers’ interactions. The original data is extracted from GHTorrent (an offline repository of data collected through the GitHub REST API). Our final dataset contains data from up to June 2019. It comprises:
There are two previous versions of GitSED, which were originally built for the following conference papers:
v2 (May 2017): Gabriel P. Oliveira, Natércia A. Batista, Michele A. Brandão, and Mirella M. Moro. Tie Strength in GitHub Heterogeneous Networks. In Proceedings of the 24th Brazilian Symposium on Multimedia and the Web (WebMedia'18), 2018.
v1 (Sep 2015): Natércia A. Batista, Michele A. Brandão, Gabriela B. Alves, Ana Paula Couto da Silva, and Mirella M. Moro. Collaboration strength metrics and analyses on GitHub. In Proceedings of the International Conference on Web Intelligence (WI'17), 2017.
Facebook
Twitterhttps://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/
GitHub R repositories dataset
R source files from GitHub.
This dataset has been created using the public GitHub datasets from Google BigQuery.
This is the actual query that has been used to export the data:
EXPORT DATA
OPTIONS (
uri = 'gs://your-bucket/gh-r/*.parquet',
format = 'PARQUET') as
(
select
f.id, f.repo_name, f.path,
c.content, c.size
from (
SELECT distinct
id, repo_name, path
FROM bigquery-public-data.github_repos.files
where ends_with(path… See the full description on the dataset page: https://huggingface.co/datasets/dfalbel/github-r-repos.
Facebook
Twitterhttps://github.com/microsoft/DataScienceProblems/blob/main/LICENSE.txthttps://github.com/microsoft/DataScienceProblems/blob/main/LICENSE.txt
Evaluate a natural language code generation model on real data science pedagogical notebooks! Data Science Problems (DSP) includes well-posed data science problems in Markdown along with unit tests to verify correctness and a Docker environment for reproducible execution. About 1/3 of notebooks in this benchmark also include data dependencies, so this benchmark not only can test a model's ability to chain together complex tasks, but also evaluate the solutions on real data! See our paper Training and Evaluating a Jupyter Notebook Data Science Assistant (https://arxiv.org/abs/2201.12901) for more details about state of the art results and other properties of the dataset.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
GitHub user data for past and ongoing open-source software project with contributors from National Center for Science and Engineering Statistics, Bureau of Economic Analysis, University of Virginia, Coleridge Initiative, and Edge & Node
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
In recent years, continuous integration and deployment (CI/CD) has become increasingly popular in both the open-source community and industry. Evaluating CI/CD performance is a critical aspect of software development, as it not only helps minimize execution costs but also ensures faster feedback for developers. Despite its importance, there is limited fine-grained knowledge about the performance of CI/CD processes—knowledge that is essential for identifying bottlenecks and optimization opportunities.
Moreover, the availability of large-scale, publicly accessible datasets of CI/CD logs remains scarce. The few datasets that do exist are often outdated and lack comprehensive coverage. To address this gap, we introduce a new dataset comprising 116k CI/CD workflows executed using GitHub Actions (GHA) across 25k public code projects spanning 20 different programming languages.
This dataset includes 513k workflow runs encompassing 2.3 million individual steps. For each workflow run, we provide detailed metadata along with complete run logs. To the best of our knowledge, this is the largest dataset of CI/CD runs that includes full log data. The inclusion of these logs enables more in-depth analysis of CI/CD pipelines, offering insights that cannot be gleaned solely from code repositories.
We postulate that this dataset will facilitate future CI/CD pipeline behavior research through log-based analysis. Potential applications include performance evaluation (e.g., measuring task execution times) and root cause analysis (e.g., identifying reasons for pipeline failures).
Facebook
TwitterExtensive Developer Coverage: Our employee dataset includes a diverse range of developer profiles from GitHub, spanning various skill levels, industries, and expertise. Access information on developers from all corners of the software development world.
Developer Profiles: Explore detailed developer profiles, including user bios, locations, company affiliations, and skills. Understand developer backgrounds, experiences, and areas of expertise.
Repositories and Contributions: Access information about the repositories created by developers and their contributions to open-source projects. Analyze the projects they've worked on, their coding activity, and the impact they've made on the developer community.
Programming Languages: Gain insights into the programming languages that developers are proficient in. Identify skilled developers in specific programming languages that align with your project needs.
Customizable Data Delivery: The dataset is available in flexible formats, such as CSV, JSON, or API integration, allowing seamless integration with your existing data infrastructure. Customize the data to meet your specific research and analysis requirements.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Using GitHub APIs, we construct an unbiased dataset of over 10 million GitHub users. The data was collected between Jul. 20 and Aug. 27, 2018, covering 10,000 users. Each data entry is stored in JSON format, representing one GitHub user, and containing the descriptive information in the user’s profile page, the information of her commit activities and created/forked public repositories.
We provide a sample of dataset in 'Github_dataset_sample.json'. If you are interested in using the full dataset, please contact chenyang AT fudan.edu.cn to obtain the full dataset for research purposes only.
Please cite the following paper when using the dataset: Qingyuan Gong, Yushan Liu, Jiayun Zhang, Yang Chen, Qi Li, Yu Xiao, Xin Wang, Pan Hui. Detecting Malicious Accounts in Online Developer Communities Using Deep Learning. To appear: IEEE Transactions on Knowledge and Data Engineering.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset was created by Abhishek Ranjan
Released under Database: Open Database, Contents: Database Contents