100+ datasets found
  1. State of Open Data 2024: Springer Nature DAS analysis quantitative data

    • figshare.com
    xlsx
    Updated Nov 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Graham Smith (2024). State of Open Data 2024: Springer Nature DAS analysis quantitative data [Dataset]. http://doi.org/10.6084/m9.figshare.27886320.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 28, 2024
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Graham Smith
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Raw data supporting the Springer Nature Data Availability Statement (DAS) analysis in the State of Open Data 2024. SOOD_2024_special_analysis_DAS_SN.xlsx contains the DAS, DOI, publication date, DAS categories and related country by Insitution of any author.SOOD 2024_DAS_analysis_sharing.xlsx contains the summary data by country and data sharing type.Utilizing the Dimensions database, we identified articles containing key DAS identifiers such as “Data Availability Statement” or “Availability of Data and Materials” within their full text. Digital Object Identifiers (DOIs) of these articles were collected and matched against Springer Nature’s XML database to extract the DAS for each article. The extracted DAS were categorized into specific sharing types using text and data matching terms. For statements indicating that data are publicly available in a repository, we matched against a predefined list of repository identifiers, names, and URLs. The DAS were classified into the following categories:1. Data are available from the author on request. 2. Data are included in the manuscript or its supplementary material. 3. Some or all of the data are publicly available, for example in a repository.4. Figure source data are included with the manuscript. 5. Data availability is not applicable.6. Data are declared as not available by the author.7. Data available online but not in a repository.These categories are non-exclusive: more than one can apply to any one article. Publications outside the 2019–2023 range and non-article publication types (e.g., book chapters) that were initially included in the Dimensions search results were excluded from the final dataset. Articles were included in the final analysis after applying the exclusion criteria. Upon processing, it was found that only 370 results were returned for Botswana across the five-year period; due to this low number, Botswana was not included in the DAS focused country-level analysis. This analysis does not assess the accuracy of the DAS in the context of each individual article. There was no manual verification of the categories applied; as a result, terms used out of context could have led to misclassification. Approximately 5% of articles remained unclassified following text and data matching due to these limitations.

  2. e

    Global - Roads Open Access Data Set - Dataset - ENERGYDATA.INFO

    • energydata.info
    Updated Jul 25, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Global - Roads Open Access Data Set - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/global-roads-open-access-data-set-2010
    Explore at:
    Dataset updated
    Jul 25, 2018
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The Global Roads Open Access Data Set, Version 1 (gROADSv1) was developed under the auspices of the CODATA Global Roads Data Development Task Group. The data set combines the best available roads data by country into a global roads coverage, using the UN Spatial Data Infrastructure Transport (UNSDI-T) version 2 as a common data model. All country road networks have been joined topologically at the borders, and many countries have been edited for internal topology. Source data for each country are provided in the documentation, and users are encouraged to refer to the readme file for use constraints that apply to a small number of countries. Because the data are compiled from multiple sources, the date range for road network representations ranges from the 1980s to 2010 depending on the country (most countries have no confirmed date), and spatial accuracy varies. The baseline global data set was compiled by the Information Technology Outreach Services (ITOS) of the University of Georgia. Updated data for 27 countries and 6 smaller geographic entities were assembled by Columbia University's Center for International Earth Science Information Network (CIESIN), with a focus largely on developing countries with the poorest data coverage.

  3. n

    HadISD: Global sub-daily, surface meteorological station data, 1931-2022,...

    • data-search.nerc.ac.uk
    • catalogue.ceda.ac.uk
    Updated Jul 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). HadISD: Global sub-daily, surface meteorological station data, 1931-2022, v3.3.0.2022f [Dataset]. https://data-search.nerc.ac.uk/geonetwork/srv/search?keyword=dewpoint
    Explore at:
    Dataset updated
    Jul 24, 2021
    Description

    This is version v3.3.0.2022f of Met Office Hadley Centre's Integrated Surface Database, HadISD. These data are global sub-daily surface meteorological data. The quality controlled variables in this dataset are: temperature, dewpoint temperature, sea-level pressure, wind speed and direction, cloud data (total, low, mid and high level). Past significant weather and precipitation data are also included, but have not been quality controlled, so their quality and completeness cannot be guaranteed. Quality control flags and data values which have been removed during the quality control process are provided in the qc_flags and flagged_values fields, and ancillary data files show the station listing with a station listing with IDs, names and location information. The data are provided as one NetCDF file per station. Files in the station_data folder station data files have the format "station_code"_HadISD_HadOBS_19310101-20230101_v3.3.1.2022f.nc. The station codes can be found under the docs tab. The station codes file has five columns as follows: 1) station code, 2) station name 3) station latitude 4) station longitude 5) station height. To keep informed about updates, news and announcements follow the HadOBS team on twitter @metofficeHadOBS. For more detailed information e.g bug fixes, routine updates and other exploratory analysis, see the HadISD blog: http://hadisd.blogspot.co.uk/ References: When using the dataset in a paper you must cite the following papers (see Docs for link to the publications) and this dataset (using the "citable as" reference) : Dunn, R. J. H., (2019), HadISD version 3: monthly updates, Hadley Centre Technical Note. Dunn, R. J. H., Willett, K. M., Parker, D. E., and Mitchell, L.: Expanding HadISD: quality-controlled, sub-daily station data from 1931, Geosci. Instrum. Method. Data Syst., 5, 473-491, doi:10.5194/gi-5-473-2016, 2016. Dunn, R. J. H., et al. (2012), HadISD: A Quality Controlled global synoptic report database for selected variables at long-term stations from 1973-2011, Clim. Past, 8, 1649-1679, 2012, doi:10.5194/cp-8-1649-2012 Smith, A., N. Lott, and R. Vose, 2011: The Integrated Surface Database: Recent Developments and Partnerships. Bulletin of the American Meteorological Society, 92, 704–708, doi:10.1175/2011BAMS3015.1 For a homogeneity assessment of HadISD please see this following reference Dunn, R. J. H., K. M. Willett, C. P. Morice, and D. E. Parker. "Pairwise homogeneity assessment of HadISD." Climate of the Past 10, no. 4 (2014): 1501-1522. doi:10.5194/cp-10-1501-2014, 2014.

  4. Confidence healthcare leaders have in data utilization worldwide in 2022

    • statista.com
    Updated May 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Confidence healthcare leaders have in data utilization worldwide in 2022 [Dataset]. https://www.statista.com/statistics/1316667/confidence-in-data-utilization-in-healthcare-worldwide/
    Explore at:
    Dataset updated
    May 21, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Dec 2021 - Feb 2022
    Area covered
    Worldwide
    Description

    As of February 2022, 71 percent of healthcare leaders surveyed globally said they have confidence in the actionable insights their hospital/healthcare facility is able to extract from available data. Overall, healthcare leaders had high confidence in the data utilization process of their organization and the value that data can bring to their work.

  5. d

    2020 - 2021 Diversity Report

    • catalog.data.gov
    • data.cityofnewyork.us
    • +1more
    Updated Nov 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). 2020 - 2021 Diversity Report [Dataset]. https://catalog.data.gov/dataset/2020-2021-diversity-report
    Explore at:
    Dataset updated
    Nov 29, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    Report on Demographic Data in New York City Public Schools, 2020-21Enrollment counts are based on the November 13 Audited Register for 2020. Categories with total enrollment values of zero were omitted. Pre-K data includes students in 3-K. Data on students with disabilities, English language learners, and student poverty status are as of March 19, 2021. Due to missing demographic information in rare cases and suppression rules, demographic categories do not always add up to total enrollment and/or citywide totals. NYC DOE "Eligible for free or reduced-price lunch” counts are based on the number of students with families who have qualified for free or reduced-price lunch or are eligible for Human Resources Administration (HRA) benefits. English Language Arts and Math state assessment results for students in grade 9 are not available for inclusion in this report, as the spring 2020 exams did not take place. Spring 2021 ELA and Math test results are not included in this report for K-8 students in 2020-21. Due to the COVID-19 pandemic’s complete transformation of New York City’s school system during the 2020-21 school year, and in accordance with New York State guidance, the 2021 ELA and Math assessments were optional for students to take. As a result, 21.6% of students in grades 3-8 took the English assessment in 2021 and 20.5% of students in grades 3-8 took the Math assessment. These participation rates are not representative of New York City students and schools and are not comparable to prior years, so results are not included in this report. Dual Language enrollment includes English Language Learners and non-English Language Learners. Dual Language data are based on data from STARS; as a result, school participation and student enrollment in Dual Language programs may differ from the data in this report. STARS course scheduling and grade management software applications provide a dynamic internal data system for school use; while standard course codes exist, data are not always consistent from school to school. This report does not include enrollment at District 75 & 79 programs. Students enrolled at Young Adult Borough Centers are represented in the 9-12 District data but not the 9-12 School data. “Prior Year” data included in Comparison tabs refers to data from 2019-20. “Year-to-Year Change” data included in Comparison tabs indicates whether the demographics of a school or special program have grown more or less similar to its district or attendance zone (or school, for special programs) since 2019-20. Year-to-year changes must have been at least 1 percentage point to qualify as “More Similar” or “Less Similar”; changes less than 1 percentage point are categorized as “No Change”. The admissions method tab contains information on the admissions methods used for elementary, middle, and high school programs during the Fall 2020 admissions process. Fall 2020 selection criteria are included for all programs with academic screens, including middle and high school programs. Selection criteria data is based on school-reported information. Fall 2020 Diversity in Admissions priorities is included for applicable middle and high school programs. Note that the data on each school’s demographics and performance includes all students of the given subgroup who were enrolled in the school on November 13, 2020. Some of these students may not have been admitted under the admissions method(s) shown, as some students may have enrolled in the school outside the centralized admissions process (via waitlist, over-the-counter, or transfer), and schools may have changed admissions methods over the past few years. Admissions methods are only reported for grades K-12. "3K and Pre-Kindergarten data are reported at the site level. See below for definitions of site types included in this report. Additionally, please note that this report excludes all students at District 75 sites, reflecting slightly lower enrollment than our total of 60,265 students

  6. f

    Reliability Data: Field Failure-time Data

    • iastate.figshare.com
    pdf
    Updated Jun 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    William Meeker; Luis Escobar; Francis Pascual (2021). Reliability Data: Field Failure-time Data [Dataset]. http://doi.org/10.25380/iastate.14454756.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 11, 2021
    Dataset provided by
    Iowa State University
    Authors
    William Meeker; Luis Escobar; Francis Pascual
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    It is sometimes said that reliability field data is the “real reliability data” because they reflect actual reliability performance of a product or system. Reliability field data areobtained, most commonly, from warranty returns (combined with production/sales records to provide information on units that were not returned) and maintenance databases. For some products (e.g., medical devices), careful field tracking is done, providing detailed information about all units deployed into the field. Reliability field data are almost always multiply censored because many units had not failedat the time the data were analyzed. In addition to failure times, sometimes failure mode information is also available for units that have failed. Other complications like truncation also arise in some field reliability data sets.

  7. Share of countries global with data privacy legislation 2024

    • statista.com
    • ai-chatbox.pro
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of countries global with data privacy legislation 2024 [Dataset]. https://www.statista.com/statistics/1558960/countries-with-active-data-privacy-law/
    Explore at:
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 2024
    Area covered
    Worldwide
    Description

    As of June 2024, 71 percent of countries worldwide had data privacy legislation in place. Furthermore, nine percent had the legislation drafted. Overall, 15 percent of markets worldwide had no data privacy legislation yet, and five percent have not provided any data on such laws.

  8. National Energy Efficiency Data-Framework (NEED) report: summary of analysis...

    • gov.uk
    • s3.amazonaws.com
    Updated Aug 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Business, Energy & Industrial Strategy (2023). National Energy Efficiency Data-Framework (NEED) report: summary of analysis 2021 [Dataset]. https://www.gov.uk/government/statistics/national-energy-efficiency-data-framework-need-report-summary-of-analysis-2021
    Explore at:
    Dataset updated
    Aug 11, 2023
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Business, Energy & Industrial Strategy
    Description

    The National Energy Efficiency Data-Framework (NEED) was set up to provide a better understanding of energy use and energy efficiency in domestic and non-domestic buildings in Great Britain. The data framework matches data about a property together - including energy consumption and energy efficiency measures installed - at household level.

    11 August 2023 Error notice: revisions to the June 2021 Domestic NEED annual report

    We identified 2 processing errors in this edition of the Domestic NEED Annual report and corrected them. The changes are small and do not affect the overall findings of the report, only the domestic energy consumption estimates. The revisions are summarised here:

    Error 1: Local authority consumption estimates

    Error 2: Some properties incorrectly excluded from the Scotland multiple attributes tables

    • Extent of the error: These corrections primarily affect the number in sample column for all years as some properties were incorrectly excluded from the consumption estimates. There have also been revisions to the mean, median, upper and lower quartiles. Using 2019 as an example, around 80% of the updated mean and median values are within 300 kWh of what was previously published.
    • Years affected: 2017-2019
    • Countries affected: Scotland
    • Data tables affected: Multiple attributes tables: Scotland, 2019 (all tables)

    4 August 2021 Error notice: revisions to the June 2021 Domestic NEED annual report

    We identified 2 processing errors in this edition of the Domestic NEED Annual report and corrected them. The changes are small and do not affect the overall findings of the report, only the domestic energy consumption estimates. The impact of energy efficiency measures analysis remains unchanged. The revisions are summarised here:

    Error 1: Some properties incorrectly excluded from the 2019 gas consumption estimates

  9. e

    Government; Expenditure on education and student grants, loans since 1900

    • data.europa.eu
    • cbs.nl
    • +2more
    atom feed, json
    Updated Jun 9, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). Government; Expenditure on education and student grants, loans since 1900 [Dataset]. https://data.europa.eu/data/datasets/4162-government-expenditure-on-education-and-student-grants-loans-since-1900?locale=en
    Explore at:
    json, atom feedAvailable download formats
    Dataset updated
    Jun 9, 2015
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This table gives an overview of government expenditure on regular education in the Netherlands since 1900. All figures presented have been calculated according to the standardised definitions of the OECD.

    Government expenditure on education consists of expenditure by central and local government on education institutions and education. Government finance schools, colleges and universities. It pays for research and development conducted by universities. Furthermore it provides student grants and loans, allowances for school costs, provisions for students with a disability and child care allowances to households as well as subsidies to companies and non-profit organisations.

    Total government expenditure is broken down into expenditure on education institutions and education on the one hand and government expenditure on student grants and loans and allowances for school costs to households on the other. If applicable these subjects are broken down into pre-primary and primary education, special needs primary education, secondary education, senior secondary vocational and adult education, higher professional education and university education. Data are available from 1900. Figures for the Second World War period are based on estimations due to a lack of source material.

    The table also includes the indicator government expenditure on education as a percentage of gross domestic product (GDP). This indicator is used to compare government expenditure on education internationally. The indicator is compounded on the basis of definitions of the OECD (Organisation for Economic Cooperation and Development). The indicator is also presented in the StatLine table education; Education expenditure and CBS/OECD indicators. Figures for the First World War and Second World War period are not available for this indicator due to a lack of reliable data on GDP for these periods.

    The statistic on education spending is compiled on a cash basis. This means that the education expenditure and revenues are allocated to the year in which they are paid out or received. However, the activity or transaction associated with the payment or receipt can take place in a different year.

    Statistics Netherlands published the revised National Accounts in June 2018. Among other things, GDP has been adjusted upwards as a result of the revision. The revision has not been extended to the years before 1995. In the indicator “Total government expenditure as % of GDP”, a break occurs between 1994 and 1995 as a result of the revision.

    Data available from: 1900

    Status of the figures: The figures from 1995 to 2020 are final. The 2021 figures are revised provisional, the 2022 figures are provisional.

    Changes on 7 December 2023: The revised provisional figures of 2021 and the provisional figures of 2022 have been added.

    When will new figures be published? The final figures for 2021 will be published in the first quarter of 2024. The final figures for 2022 and the provisional figures for 2023 will be published in December 2024.

  10. A

    ‘Parcel collector’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Aug 30, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2018). ‘Parcel collector’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-parcel-collector-b20c/fdf9e6d7/?iid=035-725&v=presentation
    Explore at:
    Dataset updated
    Aug 30, 2018
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Parcel collector’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/23f2a097-00e0-44ce-9eb1-c79232471121 on 26 January 2022.

    --- Dataset description provided by original source is as follows ---

    This is a collection of layers created by Tian Xie(Intern in DDP) in August, 2018. This collection includes Detroit Parcel Data(Parcel_collector), InfoUSA business data(BIZ_INFOUSA), and building data(Building). The building and business data have been edited by Tian during field research and have attached images.

    The original source for these layers are:
    1. Business Data: InfoUSA business database purchased by DDP in 2017
    2. Building Data: Detroit Building Footprint data
    3. Parcel Data: from Detroit Open Data Portal, download in May 2018.
    For field research by Tian, some fields have been added and some records in building and business have been edited.
    1. For business data, Tian confirmed most of public assessable businesses and deleted those which do not exist. Also, Tian add new Business to the business data if it did not exist on the record.
    2. For building data, Tian recorded the total business space for each building, not-empty business space, occupancy status, parking adjacency status, and took picture for every building in downtown Detroit.
    Detail field META DATA:
    InfoUSA Business
    • OBJECTID_1
    • COMPANY_NA: company name
    • ADDRESS: company address
    • CITY: city
    • STATE: state
    • ZIP_CODE: zip code
    • MAILING_CA: source InfoUSA
    • MAILING_DE source InfoUSA
    • LOCATION_A source InfoUSA: address
    • LOCATION_1 source InfoUSA: city
    • LOCATION_2 source InfoUSA: state
    • LOCATION_3 source InfoUSA: zip code
    • LOCATION_4source InfoUSA
    • LOCATION_5 source InfoUSA
    • COUNTY: county
    • PHONE_NUMB: phone number
    • WEB_ADDRES: website address
    • LAST_NAME: contact last name
    • FIRST_NAME: contact first name
    • CONTACT_TI: contact type
    • CONTACT_PR:
    • CONTACT_GE: contact gender
    • ACTUAL_EMP: employee number
    • EMPLOYEE_S: employee number class
    • ACTUAL_SAL: actual sale
    • SALES_VOLU: sales value
    • PRIMARY_SI: primary sales value
    • PRIMARY_1: primary classification
    • SECONDARY_: secondary classification
    • SECONDARY1
    • SECONDAR_1
    • SECONDAR_2
    • CREDIT_ALP: credit level
    • CREDIT_NUM: credit number
    • HEADQUARTE: headquarte
    • YEAR_1ST_A: year open
    • OFFICE_SIZ: office size
    • SQUARE_FOO: square foot
    • FIRM_INDIV:
    • PUBLIC_PRI
    • Fleet_size
    • FRANCHISE_
    • FRANCHISE1
    • INDUSTRY_S
    • ADSIZE_IN_
    • METRO_AREA
    • INFOUSA_ID
    • LATITUDE: y
    • LONGITUDE: x
    • PARKING: parking adjacency
    • NAICS_CODE: NAICS CODE
    • NAICS_DESC: NAICS DESCRIPTION
    • parcelnum*: PARCEL NUMBER
    • parcelobji* PARCEL OBJECT ID
    • CHECK_*
    • ACCESSIABLE* PUBLIC ACCESSIBILITY
    • PROPMANAGER* PROPERTY MANAGER
    • GlobalID
    Notes: field with * means it came from other source or field research done by Tian Xie in Aug, 2018
    Building
    • OBJECTID_12
    • BUILDING_I: building id
    • PARCEL_ID : parcel id
    • BUILD_TYPE: building type
    • CITY_ID:city id
    • APN: parcel number
    • RES_SQFT: Res square feet
    • NONRES_SQF non-res square feet
    • YEAR_BUILT: year built
    • YEAR_DEMO
    • HOUSING_UN: housing units
    • STORIES: # of stories
    • MEDIAN_HGT: median height
    • CONDITION: building condition
    • HAS_CONDOS: has condos or not
    • FLAG_SQFT: flag square feet
    • FLAG_YEAR_: flag year
    • FLAG_CONDI: flag condition
    • LOADD1: address number
    • HIADD1 (type: esriFieldTypeInteger, alias: HIADD1, SQL Type: sqlTypeOther, nullable: true, editable: true)
    • STREET1: street name
    • LOADD2:
    • HIADD2 (type: esriFieldTypeString, alias: HIADD2, SQL Type: sqlTypeOther, length: 80, nullable: true, editable: true)
    • STREET2 (type: esriFieldTypeString, alias: STREET2, SQL Type: sqlTypeOther, length: 80, nullable: true, editable: true)
    • ZIPCODE: zip code
    • AKA: building name
    • USE_LOCATO
    • TEMP (type: esriFieldTypeString, alias: TEMP, SQL Type: sqlTypeOther, length: 80, nullable: true, editable: true)
    • SPID (type: esriFieldTypeInteger, alias: SPID, SQL Type: sqlTypeOther, nullable: true, editable: true)
    • Zone (type: esriFieldTypeString, alias: Zone, SQL Type: sqlTypeOther, length: 60, nullable: true, editable: true)
    • F7_2SqMile (type: esriFieldTypeString, alias: F7_2SqMile, SQL Type: sqlTypeOther, length: 10, nullable: true, editable: true)
    • Shape_Leng (type: esriFieldTypeDouble, alias: Shape_Leng, SQL Type: sqlTypeOther, nullable: true, editable: true)
    • PARKING*: parking adjacency
    • OCCUPANCY*: occupied or not
    • BuildingType* : building type
    • TotalBusinessSpace*: available business space in this building
    • NonEmptySpace*: non-empty business space in this building
    • CHECK_*
    • FOLLOWUP*: need followup or not
    • GlobalID*
    • PropmMana*: property manager
    Notes: field with * means it came from other source or field research done by Tian Xie in Aug, 2018

    --- Original source retains full ownership of the source dataset ---

  11. d

    B2B Data Cleansing Services - Verified Records - Updated Every 30 Days

    • datarade.ai
    Updated Jan 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thomson Data (2022). B2B Data Cleansing Services - Verified Records - Updated Every 30 Days [Dataset]. https://datarade.ai/data-products/thomson-data-hr-data-reach-hr-professionals-across-the-world-thomson-data
    Explore at:
    .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Jan 8, 2022
    Dataset authored and provided by
    Thomson Data
    Area covered
    Palau, Eritrea, Denmark, Panama, Bulgaria, Finland, Czech Republic, Zimbabwe, Andorra, Micronesia (Federated States of)
    Description

    At Thomson Data, we help businesses clean up and manage messy B2B databases to ensure they are up-to-date, correct, and detailed. We believe your sales development representatives and marketing representatives should focus on building meaningful relationships with prospects, not scrubbing through bad data.

    Here are the key steps involved in our B2B data cleansing process:

    1. Data Auditing: We begin with a thorough audit of the database to identify errors, gaps, and inconsistencies, which majorly revolve around identifying outdated, incomplete, and duplicate information.

    2. Data Standardization: Ensuring consistency in the data records is one of our prime services; it includes standardizing job titles, addresses, and company names. It ensures that they can be easily shared and used by different teams.

    3. Data Deduplication: Another way we improve efficiency is by removing all duplicate records. Data deduplication is important in a large B2B dataset as multiple records from the same company may exist in the database.

    4. Data Enrichment: After the first three steps, we enrich your data, fill in the missing details, and then enhance the database with up-to-date records. This is the step that ensures the database is valuable, providing insights that are actionable and complete.

    What are the Key Benefits of Keeping the Data Clean with Thomson Data’s B2B Data Cleansing Service? Once you understand the benefits of our data cleansing service, it will entice you to optimize your data management practices, and it will additionally help you stay competitive in today’s data-driven market.

    Here are some advantages of maintaining a clean database with Thomson Data:

    1. Better ROI for your Sales and Marketing Campaigns: Our clean data will magnify your precise targeting, enabling you to strategize for effective campaigns, increased conversion rate, and ROI.

    2. Compliant with Data Regulations:
      The B2B data cleansing services we provide are compliant to global data norms.

    3. Streamline Operations: Your efforts are directed in the right channel when your data is clean and accurate, as your team doesn’t have to spend their valuable time fixing errors.

    To summarize, we would again bring your attention to how accurate data is essential for driving sales and marketing in a B2B environment. It enhances your business prowess in the avenues of decision-making and customer relationships. Therefore, it is better to have a proactive approach toward B2B data cleansing service and outsource our offerings to stay competitive by unlocking the full potential of your data.

    Send us a request and we will be happy to assist you.

  12. LinkedIn Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Updated Dec 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2021). LinkedIn Datasets [Dataset]. https://brightdata.com/products/datasets/linkedin
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Dec 17, 2021
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Unlock the full potential of LinkedIn data with our extensive dataset that combines profiles, company information, and job listings into one powerful resource for business decision-making, strategic hiring, competitive analysis, and market trend insights. This all-encompassing dataset is ideal for professionals, recruiters, analysts, and marketers aiming to enhance their strategies and operations across various business functions. Dataset Features

    Profiles: Dive into detailed public profiles featuring names, titles, positions, experience, education, skills, and more. Utilize this data for talent sourcing, lead generation, and investment signaling, with a refresh rate ensuring up to 30 million records per month. Companies: Access comprehensive company data including ID, country, industry, size, number of followers, website details, subsidiaries, and posts. Tailored subsets by industry or region provide invaluable insights for CRM enrichment, competitive intelligence, and understanding the startup ecosystem, updated monthly with up to 40 million records. Job Listings: Explore current job opportunities detailed with job titles, company names, locations, and employment specifics such as seniority levels and employment functions. This dataset includes direct application links and real-time application numbers, serving as a crucial tool for job seekers and analysts looking to understand industry trends and the job market dynamics.

    Customizable Subsets for Specific Needs Our LinkedIn dataset offers the flexibility to tailor the dataset according to your specific business requirements. Whether you need comprehensive insights across all data points or are focused on specific segments like job listings, company profiles, or individual professional details, we can customize the dataset to match your needs. This modular approach ensures that you get only the data that is most relevant to your objectives, maximizing efficiency and relevance in your strategic applications. Popular Use Cases

    Strategic Hiring and Recruiting: Track talent movement, identify growth opportunities, and enhance your recruiting efforts with targeted data. Market Analysis and Competitive Intelligence: Gain a competitive edge by analyzing company growth, industry trends, and strategic opportunities. Lead Generation and CRM Enrichment: Enrich your database with up-to-date company and professional data for targeted marketing and sales strategies. Job Market Insights and Trends: Leverage detailed job listings for a nuanced understanding of employment trends and opportunities, facilitating effective job matching and market analysis. AI-Driven Predictive Analytics: Utilize AI algorithms to analyze large datasets for predicting industry shifts, optimizing business operations, and enhancing decision-making processes based on actionable data insights.

    Whether you are mapping out competitive landscapes, sourcing new talent, or analyzing job market trends, our LinkedIn dataset provides the tools you need to succeed. Customize your access to fit specific needs, ensuring that you have the most relevant and timely data at your fingertips.

  13. California Streams

    • data.ca.gov
    • data.cnra.ca.gov
    • +6more
    Updated Sep 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2023). California Streams [Dataset]. https://data.ca.gov/dataset/california-streams
    Explore at:
    arcgis geoservices rest api, kml, geojson, csv, zip, htmlAvailable download formats
    Dataset updated
    Sep 13, 2023
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Description

    Notes: As of June 2020 this dataset has been static for several years. Recent versions of NHD High Res may be more detailed than this dataset for some areas, while this dataset may still be more detailed than NHD High Res in other areas. This dataset is considered authoritative as used by CDFW for particular tracking purposes but may not be current or comprehensive for all streams in the state.

    National Hydrography Dataset (NHD) high resolution NHDFlowline features for California were originally dissolved on common GNIS_ID or StreamLevel* attributes and routed from mouth to headwater in meters. The results are measured polyline features representing entire streams. Routes on these streams are measured upstream, i.e., the measure at the mouth of a stream is zero and at the upstream end the measure matches the total length of the stream feature. Using GIS tools, a user of this dataset can retrieve the distance in meters upstream from the mouth at any point along a stream feature.** CA_Streams_v3 Update Notes: This version includes over 200 stream modifications and additions resulting from requests for updating from CDFW staff and others***. New locator fields from the USGS Watershed Boundary Dataset (WBD) have been added for v3 to enhance user's ability to search for or extract subsets of California Streams by hydrologic area. *See the Source Citation section of this metadata for further information on NHD, WBD, NHDFlowline, GNIS_ID and StreamLevel. **See the Data Quality section of this metadata for further explanation of stream feature development. ***Some current NHD data has not yet been included in CA_Streams. The effort to synchronize CA_Streams with NHD is ongoing.

  14. a

    ACLED Conflict and Demonstrations Event Data

    • hub.arcgis.com
    • cacgeoportal.com
    Updated May 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). ACLED Conflict and Demonstrations Event Data [Dataset]. https://hub.arcgis.com/maps/1bacc9e3d30f4383af61c12cbf0401d8
    Explore at:
    Dataset updated
    May 23, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    Area covered
    Description

    The Armed Conflict Location & Event Data Project (ACLED) is a US-registered non-profit whose mission is to provide the highest quality real-time data on political violence and demonstrations globally. The information collected includes the type of event, its date, the location, the actors involved, a brief narrative summary, and any reported fatalities. ACLED users rely on our robust global dataset to support decision-making around policy and programming, accurately analyze political and country risk, support operational security planning, and improve supply chain management.ACLED’s transparent methodology, expert team composed of 250 individuals speaking more than 70 languages, real-time coding system, and weekly update schedule are unrivaled in the field of data collection on conflict and disorder. Global Coverage: We track political violence, demonstrations, and strategic developments around the world, covering more than 240 countries and territories.Published Weekly: Our data are collected in real time and published weekly. It is the only dataset of its kind to provide such a high update frequency, with peer datasets most often updating monthly or yearly.Historical Data: Our dataset contains at least two full years of data for all countries and territories, with more extensive coverage available for multiple regions.Experienced Researchers: Our data are coded by experienced researchers with local, country, and regional expertise and language skills.Thorough Data Collection and Sourcing: Pulling from traditional media, reports, local partner data, and verified new media, ACLED uses a tailor-made sourcing methodology for individual regions/countries.Extensive Review Process: Our data go through an exhaustive multi-stage quality assurance process to ensure their accuracy and reliability. This process includes both manual and automated error checking and contextual review.Clean, Standardized, and Validated: Our data can be easily connected with internal dashboards through our API or downloaded through the Data Export Tool on our website.Resources Available on ESRI’s Living AtlasACLED data are available through the Living Atlas for the most recent 12 month period. The data are mapped to the centroid of first administrative divisions (“admin1”) within countries (e.g., states, districts, provinces) and aggregated by month. Variables in the data include:The number of events per admin1-month, disaggregated by event type (protests, riots, battles, violence against civilians, explosions/remote violence, and strategic developments)A conservative estimate of reported fatalities per admin1-monthThe total number of distinct violent actors active in the corresponding admin1 for each monthThis Living Atlas item is a Web Map, which provides a pre-configured view of ACLED event data in a few layers:ACLED Event Counts layer: events per admin1-month, styled by predominant event type for each location.ACLED Violent Actors layer: the number of distinct violent actors per admin1-month.ACLED Fatality Estimates layer: the estimated number of fatalities from political violence per admin1-month.These layers are based on the ACLED Conflict and Demonstrations Event Data Feature Layer, which has the same data but only a basic default styling that is similar to the Event Counts layer. The Web Map layers are configured with a time-slider component to account for the multiple months of data per admin1 unit. These indicators are also available in the ACLED Conflict and Demonstrations Data Key Indicators Group Layer, which includes the same preconfigured layers but without the time-slider component or background layers.Resources Available on the ACLED WebsiteThe fully disaggregated dataset is available for download on ACLED's website including:Date (day, month, year)Actors, associated actors, and actor typesLocation information (ADMIN1, ADMIN2, ADMIN3, location and geo coordinates)A conservative fatality estimateDisorder type, event types, and sub-event typesTags further categorizing the data A notes column providing a narrative of the event For more information, please see the ACLED Codebook.To explore ACLED’s full dataset, please register on the ACLED Access Portal, following the instructions available in this Access Guide. Upon registration, you’ll receive access to ACLED data on a limited basis. Commercial users have access to 3 free data downloads company-wide with access to up to one year of historical data. Public sector users have access to 6 downloads of up to three years of historical data organization-wide. To explore options for extended access, please reach out to our Access Team (access@acleddata.com).With an ACLED license, users can also leverage ACLED’s interactive Global Dashboard and check in for weekly data updates and analysis tracking key political violence and protest trends around the world. ACLED also has several analytical tools available such as our Early Warning Dashboard, Conflict Alert System (CAST), and Conflict Index Dashboard.

  15. M

    State Forest Statutory Boundaries and Management Units

    • gisdata.mn.gov
    • data.wu.ac.at
    fgdb, gpkg, html +2
    Updated Jul 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2025). State Forest Statutory Boundaries and Management Units [Dataset]. https://gisdata.mn.gov/dataset/bdry-state-forest
    Explore at:
    fgdb, jpeg, gpkg, shp, htmlAvailable download formats
    Dataset updated
    Jul 12, 2025
    Dataset provided by
    Natural Resources Department
    Description

    This layer file consists of three related datasets:
    - Statutory boundary polygons of State Forests
    - Lands managed by the Division of Forestry within the statutory boundaries, known as Management Units
    - Lands managed by the Division of Forestry outside of the statutory boundaries, known as Other Forestry Lands

    State Forests - Statutory Boundaries:
    This theme shows the boundaries of those areas of Minnesota that have been legislatively designated as State Forests ( http://www.dnr.state.mn.us/state_forests/index.html )

    Minnesota's 58 state forests were established to produce timber and other forest crops, provide outdoor recreation, protect watersheds, and perpetuate rare and distinctive species of native flora and fauna. The mapped boundaries are based on legislative/statutory language and are described in broad terms based on legal descriptions. Private or other ownerships included inside a State Forest boundary are typically NOT identified in legislative language and subsequently are NOT mapped in this layer. It is important to note that these data do not represent public ownership. State Forest boundaries often include private land and should not be used to determine ownership. Ownership information can be found in State Surface Interests Administered by MNDNR or by Counties ( https://gisdata.mn.gov/dataset/plan-stateland-dnrcounty ) and the GAP Stewardship 2008 layer ( http://gisdata.mn.gov/dataset/plan-gap-stewardship-2008 ).

    Data has been updated during 2009 by the MNDNR Forest Resource Assessment office.

    State Forests - Management Units
    This theme shows the land owned and managed by the Division of Forestry within the Statutory Boundaries. The shapes were derived mostly from county parcel data, where available, and from plat maps and other ownership resources. This data presents an approximate location of the land ownership and is intended for cartographic purposes only. It is not survey quality and should never be used to resolve land ownership disputes.

    State Forests - Other Forest Lands
    This theme shows State Forest lands outside of the State Forest Statutory Boundaries. It was derived from MNDNR's Land Records System PLS40 data layer. Sub-40 shapes are not represented. Partial PLS40 ownership is represented as a whole PLS40. This data is not survey quality and should never be used to resolve land ownership disputes.

  16. d

    HUN AWRA-L simulation nodes_v01

    • data.gov.au
    • cloud.csiss.gmu.edu
    • +2more
    zip
    Updated Apr 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2022). HUN AWRA-L simulation nodes_v01 [Dataset]. https://data.gov.au/data/dataset/ae5129b2-bc29-4317-b72c-fe554fe7d315
    Explore at:
    zip(20669)Available download formats
    Dataset updated
    Apr 13, 2022
    Dataset authored and provided by
    Bioregional Assessment Program
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract

    The dataset was derived by the Bioregional Assessment Programme from multiple source datasets. The source datasets are identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.

    This dataset is a subset for the Hunter of a shapefile that shows geographical locations and other characteristics (see below) of streamflow gauging stations and also includes additional simulation nodes.

    There are 3 files that have been extracted from the Hydstra database to aid in identifying sites in each bioregion and the type of data collected from each.

    the 3 files are:

    Site - lists all sites available in Hydstra from data providers. The data provider is listed in the #Station as _xxx. For example, sites in NSW are _77, QLD are _66.

    Some sites do not have locational information and will not be able to be plotted.

    Period - the period table lists all the variables that are recorded at each site and the period of record.

    Variable - the variable table shows variable codes and names which can be linked to the period table.

    Purpose

    Locations are used as pour points in roder to define reach areas for Macquaire-Tuggerrah Lake basin where only AWRA-L modelling is taken.

    Dataset History

    Subset of data for the Hunter that was extracted from the Bureau's hydstra system and includes all gauges where data has been received from the lead water agency of each jurisdiction. Simulation nodes were added in locations in which the model will provide simulated streamflow.

    There are 3 files that have been extracted from the Hydstra database to aid in identifying sites in each bioregion and the type of data collected from each.

    the 3 files are:

    Site - lists all sites available in Hydstra from data providers. The data provider is listed in the #Station as _xxx. For example, sites in NSW are _77, QLD are _66.

    Some sites do not have locational information and will not be able to be plotted.

    Period - the period table lists all the variables that are recorded at each site and the period of record.

    Variable - the variable table shows variable codes and names which can be linked to the period table.

    Dataset Citation

    Bioregional Assessment Programme (XXXX) HUN AWRA-L simulation nodes_v01. Bioregional Assessment Derived Dataset. Viewed 13 March 2019, http://data.bioregionalassessments.gov.au/dataset/ae5129b2-bc29-4317-b72c-fe554fe7d315.

    Dataset Ancestors

  17. Omaha Lead Study data

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Apr 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2022). Omaha Lead Study data [Dataset]. https://catalog.data.gov/dataset/omaha-lead-study-data
    Explore at:
    Dataset updated
    Apr 21, 2022
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Area covered
    Omaha
    Description

    We linked information on SLL at residential properties with children’s BLLs, grouping children based on whether they had pre- and/or post-remediation BLLs. Our data includes PII and we have a data use agreement that was negotiated between the Douglas County Health Department and the U.S. Environmental Protection Agency. This agreement states that, “Upon completion of this work described herein, all Restricted Data records shall be destroyed or returned … within 30 days of the completion of the work. In addition, the Institutional Review Board (IRB) protocol (UNC-IRB No. 15-1629) further outlines how the confidentiality of the data will be protected during analysis. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Please contact Ellen Kirrane at kirrane.ellen@epa.gov. Format: Data is in tabular format. This dataset is associated with the following publication: Ye, D., J. Brown, D. Umbach, J. Adams, W. Thayer, M. Follansbee, and E. Kirrane. Estimating the effects of soil remediation on children’s blood lead near a former lead smelter in Omaha Nebraska, U.S.. ENVIRONMENTAL HEALTH PERSPECTIVES. National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA, 130(3): 037008 1-17, (2022).

  18. Temperature and precipitation gridded data for global and regional domains...

    • cds.climate.copernicus.eu
    • cds-stable-bopen.copernicus-climate.eu
    netcdf
    Updated Apr 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). Temperature and precipitation gridded data for global and regional domains derived from in-situ and satellite observations [Dataset]. http://doi.org/10.24381/cds.11dedf0c
    Explore at:
    netcdfAvailable download formats
    Dataset updated
    Apr 9, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdf

    Time period covered
    Jan 1, 1750 - Jan 1, 2021
    Description

    This dataset provides high-resolution gridded temperature and precipitation observations from a selection of sources. Additionally the dataset contains daily global average near-surface temperature anomalies. All fields are defined on either daily or monthly frequency. The datasets are regularly updated to incorporate recent observations. The included data sources are commonly known as GISTEMP, Berkeley Earth, CPC and CPC-CONUS, CHIRPS, IMERG, CMORPH, GPCC and CRU, where the abbreviations are explained below. These data have been constructed from high-quality analyses of meteorological station series and rain gauges around the world, and as such provide a reliable source for the analysis of weather extremes and climate trends. The regular update cycle makes these data suitable for a rapid study of recently occurred phenomena or events. The NASA Goddard Institute for Space Studies temperature analysis dataset (GISTEMP-v4) combines station data of the Global Historical Climatology Network (GHCN) with the Extended Reconstructed Sea Surface Temperature (ERSST) to construct a global temperature change estimate. The Berkeley Earth Foundation dataset (BERKEARTH) merges temperature records from 16 archives into a single coherent dataset. The NOAA Climate Prediction Center datasets (CPC and CPC-CONUS) define a suite of unified precipitation products with consistent quantity and improved quality by combining all information sources available at CPC and by taking advantage of the optimal interpolation (OI) objective analysis technique. The Climate Hazards Group InfraRed Precipitation with Station dataset (CHIRPS-v2) incorporates 0.05° resolution satellite imagery and in-situ station data to create gridded rainfall time series over the African continent, suitable for trend analysis and seasonal drought monitoring. The Integrated Multi-satellitE Retrievals dataset (IMERG) by NASA uses an algorithm to intercalibrate, merge, and interpolate “all'' satellite microwave precipitation estimates, together with microwave-calibrated infrared (IR) satellite estimates, precipitation gauge analyses, and potentially other precipitation estimators over the entire globe at fine time and space scales for the Tropical Rainfall Measuring Mission (TRMM) and its successor, Global Precipitation Measurement (GPM) satellite-based precipitation products. The Climate Prediction Center morphing technique dataset (CMORPH) by NOAA has been created using precipitation estimates that have been derived from low orbiter satellite microwave observations exclusively. Then, geostationary IR data are used as a means to transport the microwave-derived precipitation features during periods when microwave data are not available at a location. The Global Precipitation Climatology Centre dataset (GPCC) is a centennial product of monthly global land-surface precipitation based on the ~80,000 stations world-wide that feature record durations of 10 years or longer. The data coverage per month varies from ~6,000 (before 1900) to more than 50,000 stations. The Climatic Research Unit dataset (CRU v4) features an improved interpolation process, which delivers full traceability back to station measurements. The station measurements of temperature and precipitation are public, as well as the gridded dataset and national averages for each country. Cross-validation was performed at a station level, and the results have been published as a guide to the accuracy of the interpolation. This catalogue entry complements the E-OBS record in many aspects, as it intends to provide high-resolution gridded meteorological observations at a global rather than continental scale. These data may be suitable as a baseline for model comparisons or extreme event analysis in the CMIP5 and CMIP6 dataset.

  19. n

    Data from: Using machine learning to model nontraditional spatial dependence...

    • data.niaid.nih.gov
    • search.dataone.org
    • +2more
    zip
    Updated Jul 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Narmadha Mohankumar; Trevor Hefley (2021). Using machine learning to model nontraditional spatial dependence in occupancy data [Dataset]. http://doi.org/10.5061/dryad.4xgxd259g
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 21, 2021
    Dataset provided by
    Kansas State University
    Authors
    Narmadha Mohankumar; Trevor Hefley
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Spatial models for occupancy data are used to estimate and map the true presence of a species, which may depend on biotic and abiotic factors as well as spatial autocorrelation. Traditionally researchers have accounted for spatial autocorrelation in occupancy data by using a correlated normally distributed site-level random effect, which might be incapable of modeling nontraditional spatial dependence such as discontinuities and abrupt transitions. Machine learning approaches have the potential to model nontraditional spatial dependence, but these approaches do not account for observer errors such as false absences. By combining the flexibility of Bayesian hierarchal modeling and machine learning approaches, we present a general framework to model occupancy data that accounts for both traditional and nontraditional spatial dependence as well as false absences. We demonstrate our framework using six synthetic occupancy data sets and two real data sets. Our results demonstrate how to model both traditional and nontraditional spatial dependence in occupancy data which enables a broader class of spatial occupancy models that can be used to improve predictive accuracy and model adequacy.

    Methods The file 'Serengeti.csv' includes Thomson’s gazelle data used in our study. The original data file is obtained from Hepler et al. (2018), who reported the presence and absence of Thomson’s gazelle at 195 sites within Serengeti National Park, Tanzania. The sites were sampled using a network of 179 motion-sensitive and thermally activated cameras.

    The file 'Sugarglider.csv' includes sugar glider data that is used in our study. The original data file is obtained from Stojanovic (2019), who reported the presence and absence of sugar gliders. The data were collected during four or five site visits made to 100 sites in the Southern Forest region of Tasmania.

    The zip file 'Serengeti.zip' includes the associated shapefile for the sampling grid in Serengeti National Park, Tanzania where Thomson’s gazelle data were collected.

    The zip file 'Sugarglider.zip' includes the associated shapefile for the Southern Forest region of Tasmania where the sugar glider data were collected.

  20. n

    FOI-01783 - Datasets - Open Data Portal

    • opendata.nhsbsa.net
    Updated Mar 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). FOI-01783 - Datasets - Open Data Portal [Dataset]. https://opendata.nhsbsa.net/dataset/foi-01783
    Explore at:
    Dataset updated
    Mar 13, 2024
    Description

    A copy of the information is attached. Please read the below notes to ensure correct understanding of the data. We have provided the data for Wales only. This is due to the Provider Assurance team advising us that England's 2022/2023 data has not been finalised. This data is anticipated to be ready by end the of April and we would therefore ask you to resubmit your request for the England data at a later date. Data refers to contracts in Wales as shown on Compass. Data refers to Units of Dental Activity (UDA ) and Units of Orthodontic Activity (UOA ) metrics and activity as shown on Compass. Reporting Year: The financial year which the activity/contracted services relate to - to be used for year-end reporting. Contract Number: This is a unique 10-character number which identifies a contract. Provider Name: The name of the provider. Commissioner Name: This is the name of the Commissioning Organisation. This a generic term used to denote health bodies, either Area Teams in England or Health Boards in Wales. Also known as Primary Care Organisations (PCOs). UDA Financial Value (22/23): The total value associated with the contracted units of general activity for the 22/23 reporting year, as entered on Compass. UDA Performance Target (22/23): The contracted units of general dental activity to be achieved for the 22/23 reporting year. This figure is taken directly from the Compass system. UDA Delivered (22/23): The total number of UDA achieved in the 22/23 reporting year. UDA Undelivered (22/23): The total number of UDA not achieved within the UDA Performance Target, in the 22/23 reporting year (UDA Performance Target - UDA Delivered). UDA Value (22/23): Total UDA Financial Value divided by the UDA Performance Target, for the 22/23 reporting year. Clawback Total (To Date): The total value of all clawbacks on Compass associated with the contract, as of April 2023. The clawbacks have taken place under the payment codes UPS_2223, UPS_2223_C and UPS_2223_O. The clawback payments refer to Year-End activity from the 22/23 reporting year.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Graham Smith (2024). State of Open Data 2024: Springer Nature DAS analysis quantitative data [Dataset]. http://doi.org/10.6084/m9.figshare.27886320.v1
Organization logoOrganization logo

State of Open Data 2024: Springer Nature DAS analysis quantitative data

Explore at:
xlsxAvailable download formats
Dataset updated
Nov 28, 2024
Dataset provided by
figshare
Figsharehttp://figshare.com/
Authors
Graham Smith
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Raw data supporting the Springer Nature Data Availability Statement (DAS) analysis in the State of Open Data 2024. SOOD_2024_special_analysis_DAS_SN.xlsx contains the DAS, DOI, publication date, DAS categories and related country by Insitution of any author.SOOD 2024_DAS_analysis_sharing.xlsx contains the summary data by country and data sharing type.Utilizing the Dimensions database, we identified articles containing key DAS identifiers such as “Data Availability Statement” or “Availability of Data and Materials” within their full text. Digital Object Identifiers (DOIs) of these articles were collected and matched against Springer Nature’s XML database to extract the DAS for each article. The extracted DAS were categorized into specific sharing types using text and data matching terms. For statements indicating that data are publicly available in a repository, we matched against a predefined list of repository identifiers, names, and URLs. The DAS were classified into the following categories:1. Data are available from the author on request. 2. Data are included in the manuscript or its supplementary material. 3. Some or all of the data are publicly available, for example in a repository.4. Figure source data are included with the manuscript. 5. Data availability is not applicable.6. Data are declared as not available by the author.7. Data available online but not in a repository.These categories are non-exclusive: more than one can apply to any one article. Publications outside the 2019–2023 range and non-article publication types (e.g., book chapters) that were initially included in the Dimensions search results were excluded from the final dataset. Articles were included in the final analysis after applying the exclusion criteria. Upon processing, it was found that only 370 results were returned for Botswana across the five-year period; due to this low number, Botswana was not included in the DAS focused country-level analysis. This analysis does not assess the accuracy of the DAS in the context of each individual article. There was no manual verification of the categories applied; as a result, terms used out of context could have led to misclassification. Approximately 5% of articles remained unclassified following text and data matching due to these limitations.

Search
Clear search
Close search
Google apps
Main menu