Facebook
Twitterhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.htmlhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
Replication pack, FSE2018 submission #164: ------------------------------------------
**Working title:** Ecosystem-Level Factors Affecting the Survival of Open-Source Projects: A Case Study of the PyPI Ecosystem **Note:** link to data artifacts is already included in the paper. Link to the code will be included in the Camera Ready version as well. Content description =================== - **ghd-0.1.0.zip** - the code archive. This code produces the dataset files described below - **settings.py** - settings template for the code archive. - **dataset_minimal_Jan_2018.zip** - the minimally sufficient version of the dataset. This dataset only includes stats aggregated by the ecosystem (PyPI) - **dataset_full_Jan_2018.tgz** - full version of the dataset, including project-level statistics. It is ~34Gb unpacked. This dataset still doesn't include PyPI packages themselves, which take around 2TB. - **build_model.r, helpers.r** - R files to process the survival data (`survival_data.csv` in **dataset_minimal_Jan_2018.zip**, `common.cache/survival_data.pypi_2008_2017-12_6.csv` in **dataset_full_Jan_2018.tgz**) - **Interview protocol.pdf** - approximate protocol used for semistructured interviews. - LICENSE - text of GPL v3, under which this dataset is published - INSTALL.md - replication guide (~2 pages)
Replication guide ================= Step 0 - prerequisites ---------------------- - Unix-compatible OS (Linux or OS X) - Python interpreter (2.7 was used; Python 3 compatibility is highly likely) - R 3.4 or higher (3.4.4 was used, 3.2 is known to be incompatible) Depending on detalization level (see Step 2 for more details): - up to 2Tb of disk space (see Step 2 detalization levels) - at least 16Gb of RAM (64 preferable) - few hours to few month of processing time Step 1 - software ---------------- - unpack **ghd-0.1.0.zip**, or clone from gitlab: git clone https://gitlab.com/user2589/ghd.git git checkout 0.1.0 `cd` into the extracted folder. All commands below assume it as a current directory. - copy `settings.py` into the extracted folder. Edit the file: * set `DATASET_PATH` to some newly created folder path * add at least one GitHub API token to `SCRAPER_GITHUB_API_TOKENS` - install docker. For Ubuntu Linux, the command is `sudo apt-get install docker-compose` - install libarchive and headers: `sudo apt-get install libarchive-dev` - (optional) to replicate on NPM, install yajl: `sudo apt-get install yajl-tools` Without this dependency, you might get an error on the next step, but it's safe to ignore. - install Python libraries: `pip install --user -r requirements.txt` . - disable all APIs except GitHub (Bitbucket and Gitlab support were not yet implemented when this study was in progress): edit `scraper/init.py`, comment out everything except GitHub support in `PROVIDERS`. Step 2 - obtaining the dataset ----------------------------- The ultimate goal of this step is to get output of the Python function `common.utils.survival_data()` and save it into a CSV file: # copy and paste into a Python console from common import utils survival_data = utils.survival_data('pypi', '2008', smoothing=6) survival_data.to_csv('survival_data.csv') Since full replication will take several months, here are some ways to speedup the process: ####Option 2.a, difficulty level: easiest Just use the precomputed data. Step 1 is not necessary under this scenario. - extract **dataset_minimal_Jan_2018.zip** - get `survival_data.csv`, go to the next step ####Option 2.b, difficulty level: easy Use precomputed longitudinal feature values to build the final table. The whole process will take 15..30 minutes. - create a folder `
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains 1,004 labeled images from the classic NES game "Duck Hunt" (1984), specifically prepared for YOLO (You Only Look Once) object detection training. The dataset includes sprites of the iconic hunting dog and ducks in various states, augmented to provide a balanced and comprehensive training set for computer vision models.
Perfect for: - Object detection model training - Computer vision research - Retro gaming AI projects - YOLO algorithm benchmarking - Educational purposes
| Metric | Value |
|---|---|
| Total Images | 1,004 |
| Dataset Size | 12 MB |
| Image Format | PNG |
| Annotation Format | YOLO (.txt) |
| Classes | 4 |
| Train/Val Split | 711/260 (73%/27%) |
| Class ID | Class Name | Count | Description |
|---|---|---|---|
| 0 | dog | 252 | The hunting dog in various poses (jumping, laughing, sniffing, etc.) |
| 1 | duck_dead | 256 | Dead ducks (both black and red variants) |
| 2 | duck_shot | 248 | Ducks in the moment of being shot |
| 3 | duck_flying | 248 | Flying ducks in all directions (left, right, diagonal) |
yolo_dataset_augmented/
├── images/
│ ├── train/ # 711 training images
│ └── val/ # 260 validation images
├── labels/
│ ├── train/ # 711 YOLO annotation files
│ └── val/ # 260 YOLO annotation files
├── classes.txt # Class names mapping
├── dataset.yaml # YOLO configuration file
└── augmented_dataset_stats.json # Detailed statistics
The original 47 images were enhanced using advanced data augmentation techniques to create a balanced dataset:
{
'rotation_range': (-15, 15), # Small rotations for game sprites
'brightness_range': (0.7, 1.3), # Brightness variations
'contrast_range': (0.8, 1.2), # Contrast adjustments
'saturation_range': (0.8, 1.2), # Color saturation
'noise_intensity': 0.02, # Gaussian noise
'horizontal_flip_prob': 0.5, # 50% chance horizontal flip
'scaling_range': (0.8, 1.2), # Scale variations
}
from ultralytics import YOLO
# Load and train
model = YOLO('yolov8n.pt') # Load pretrained model
results = model.train(data='dataset.yaml', epochs=100, imgsz=640)
# Validate
metrics = model.val()
# Predict
results = model('path/to/test/image.png')
import torch
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import os
class DuckHuntDataset(Dataset):
def _init_(self, images_dir, labels_dir, transform=None):
self.images_dir = images_dir
self.labels_dir = labels_dir
self.transform = transform
self.images = os.listdir(images_dir)
def _len_(self):
return len(self.images)
def _getitem_(self, idx):
img_path = os.path.join(self.images_dir, self.images[idx])
label_path = os.path.join(self.labels_dir,
self.images[idx].replace('.png', '.txt'))
image = Image.open(img_path)
# Load YOLO annotations
with open(label_path, 'r') as f:
labels = f.readlines()
if self.transform:
image = self.transform(image)
return image, labels
# Usage
dataset = DuckHuntDataset('images/train', 'labels/train')
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
Each .txt file contains one line per object:
class_id center_x center_y width height
Example annotation:
0 0.492 0.403 0.212 0.315
Where values are normalized (0-1) relative to image dimensions.
This dataset is based on sprites from the iconic 1984 NES game "Duck Hunt," one of the most recognizable video games in history. The game featured:
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset is related to sklearn library in python.
we have 1796 sample image.
classes of data = 0 1 2 3 ... 7 8 9
image size = 64 -> (8,8)
you can import this datasets from :
from sklearn.datasets import load_digits dataset = load_digits() x = datasets.data y = datasets.target
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Author: Andrew J. FeltonDate: 5/5/2024
This R project contains the primary code and data (following pre-processing in python) used for data production, manipulation, visualization, and analysis and figure production for the study entitled:
"Global estimates of the storage and transit time of water through vegetation"
Please note that 'turnover' and 'transit' are used interchangeably in this project.
Data information:
The data folder contains key data sets used for analysis. In particular:
"data/turnover_from_python/updated/annual/multi_year_average/average_annual_turnover.nc" contains a global array summarizing five year (2016-2020) averages of annual transit, storage, canopy transpiration, and number of months of data. This is the core dataset for the analysis; however, each folder has much more data, including a dataset for each year of the analysis. Data are also available is separate .csv files for each land cover type. Oterh data can be found for the minimum, monthly, and seasonal transit time found in their respective folders. These data were produced using the python code found in the "supporting_code" folder given the ease of working with .nc and EASE grid in the xarray python module. R was used primarily for data visualization purposes. The remaining files in the "data" and "data/supporting_data"" folder primarily contain ground-based estimates of storage and transit found in public databases or through a literature search, but have been extensively processed and filtered here.
Python scripts can be found in the "supporting_code" folder.
Each R script in this project has a particular function:
01_start.R: This script loads the R packages used in the analysis, sets thedirectory, and imports custom functions for the project. You can also load in the main transit time (turnover) datasets here using the source() function.
02_functions.R: This script contains the custom function for this analysis, primarily to work with importing the seasonal transit data. Load this using the source() function in the 01_start.R script.
03_generate_data.R: This script is not necessary to run and is primarilyfor documentation. The main role of this code was to import and wranglethe data needed to calculate ground-based estimates of aboveground water storage.
04_annual_turnover_storage_import.R: This script imports the annual turnover andstorage data for each landcover type. You load in these data from the 01_start.R scriptusing the source() function.
05_minimum_turnover_storage_import.R: This script imports the minimum turnover andstorage data for each landcover type. Minimum is defined as the lowest monthlyestimate.You load in these data from the 01_start.R scriptusing the source() function.
06_figures_tables.R: This is the main workhouse for figure/table production and supporting analyses. This script generates the key figures and summary statistics used in the study that then get saved in the manuscript_figures folder. Note that allmaps were produced using Python code found in the "supporting_code"" folder.
Facebook
TwitterDataset Card for Python-DPO
This dataset is the larger version of Python-DPO dataset and has been created using Argilla.
Load with datasets
To load this dataset with datasets, you'll just need to install datasets as pip install datasets --upgrade and then use the following code: from datasets import load_dataset
ds = load_dataset("NextWealth/Python-DPO")
Data Fields
Each data instance contains:
instruction: The problem description/requirements chosen_code:… See the full description on the dataset page: https://huggingface.co/datasets/NextWealth/Python-DPO-Large.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Multimodal Vision-Audio-Language Dataset is a large-scale dataset for multimodal learning. It contains 2M video clips with corresponding audio and a textual description of the visual and auditory content. The dataset is an ensemble of existing datasets and fills the gap of missing modalities. Details can be found in the attached report. Annotation The annotation files are provided as Parquet files. They can be read using Python and the pandas and pyarrow library. The split into train, validation and test set follows the split of the original datasets. Installation
pip install pandas pyarrow Example
import pandas as pddf = pd.read_parquet('annotation_train.parquet', engine='pyarrow')print(df.iloc[0])
dataset AudioSet filename train/---2_BBVHAA.mp3 captions_visual [a man in a black hat and glasses.] captions_auditory [a man speaks and dishes clank.] tags [Speech] Description The annotation file consists of the following fields:filename: Name of the corresponding file (video or audio file)dataset: Source dataset associated with the data pointcaptions_visual: A list of captions related to the visual content of the video. Can be NaN in case of no visual contentcaptions_auditory: A list of captions related to the auditory content of the videotags: A list of tags, classifying the sound of a file. It can be NaN if no tags are provided Data files The raw data files for most datasets are not released due to licensing issues. They must be downloaded from the source. However, due to missing files, we provide them on request. Please contact us at schaumloeffel@em.uni-frankfurt.de
Facebook
TwitterDolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('dolma', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
Facebook
TwitterSCAN tasks with various splits.
SCAN is a set of simple language-driven navigation tasks for studying compositional learning and zero-shot generalization.
Most splits are described at https://github.com/brendenlake/SCAN. For the MCD splits please see https://arxiv.org/abs/1912.09713.pdf.
Basic usage:
data = tfds.load('scan/length')
More advanced example:
import tensorflow_datasets as tfds
from tensorflow_datasets.datasets.scan import scan_dataset_builder
data = tfds.load(
'scan',
builder_kwargs=dict(
config=scan_dataset_builder.ScanConfig(
name='simple_p8', directory='simple_split/size_variations')))
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('scan', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
Facebook
TwitterWikipedia - Image/Caption Matching Kaggle Competition.
This competition is organized by the Research team at the Wikimedia Foundation in collaboration with Google Research and a few external collaborators. This competition is based on the WIT dataset published by Google Research as detailed in thisSIGIR paper.
In this competition, you’ll build a model that automatically retrieves the text closest to an image. Specifically, you'll train your model to associate given images with article titles or complex captions, in multiple languages. The best models will account for the semantic granularity of Wikipedia images. If successful, you'll be contributing to the accessibility of the largest online encyclopedia. The millions of Wikipedia readers and edietors will be able to more easily understand, search, and describe media at scale. As a result, you’ll contribute to an open model to improve learning for all.
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('wit_kaggle', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
https://storage.googleapis.com/tfds-data/visualization/fig/wit_kaggle-train_with_extended_features-1.0.2.png" alt="Visualization" width="500px">
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General
For more details and the most up-to-date information please consult our project page: https://kainmueller-lab.github.io/fisbe.
Summary
A new dataset for neuron instance segmentation in 3d multicolor light microscopy data of fruit fly brains
30 completely labeled (segmented) images
71 partly labeled images
altogether comprising ∼600 expert-labeled neuron instances (labeling a single neuron takes between 30-60 min on average, yet a difficult one can take up to 4 hours)
To the best of our knowledge, the first real-world benchmark dataset for instance segmentation of long thin filamentous objects
A set of metrics and a novel ranking score for respective meaningful method benchmarking
An evaluation of three baseline methods in terms of the above metrics and score
Abstract
Instance segmentation of neurons in volumetric light microscopy images of nervous systems enables groundbreaking research in neuroscience by facilitating joint functional and morphological analyses of neural circuits at cellular resolution. Yet said multi-neuron light microscopy data exhibits extremely challenging properties for the task of instance segmentation: Individual neurons have long-ranging, thin filamentous and widely branching morphologies, multiple neurons are tightly inter-weaved, and partial volume effects, uneven illumination and noise inherent to light microscopy severely impede local disentangling as well as long-range tracing of individual neurons. These properties reflect a current key challenge in machine learning research, namely to effectively capture long-range dependencies in the data. While respective methodological research is buzzing, to date methods are typically benchmarked on synthetic datasets. To address this gap, we release the FlyLight Instance Segmentation Benchmark (FISBe) dataset, the first publicly available multi-neuron light microscopy dataset with pixel-wise annotations. In addition, we define a set of instance segmentation metrics for benchmarking that we designed to be meaningful with regard to downstream analyses. Lastly, we provide three baselines to kick off a competition that we envision to both advance the field of machine learning regarding methodology for capturing long-range data dependencies, and facilitate scientific discovery in basic neuroscience.
Dataset documentation:
We provide a detailed documentation of our dataset, following the Datasheet for Datasets questionnaire:
FISBe Datasheet
Our dataset originates from the FlyLight project, where the authors released a large image collection of nervous systems of ~74,000 flies, available for download under CC BY 4.0 license.
Files
fisbe_v1.0_{completely,partly}.zip
contains the image and ground truth segmentation data; there is one zarr file per sample, see below for more information on how to access zarr files.
fisbe_v1.0_mips.zip
maximum intensity projections of all samples, for convenience.
sample_list_per_split.txt
a simple list of all samples and the subset they are in, for convenience.
view_data.py
a simple python script to visualize samples, see below for more information on how to use it.
dim_neurons_val_and_test_sets.json
a list of instance ids per sample that are considered to be of low intensity/dim; can be used for extended evaluation.
Readme.md
general information
How to work with the image files
Each sample consists of a single 3d MCFO image of neurons of the fruit fly.For each image, we provide a pixel-wise instance segmentation for all separable neurons.Each sample is stored as a separate zarr file (zarr is a file storage format for chunked, compressed, N-dimensional arrays based on an open-source specification.").The image data ("raw") and the segmentation ("gt_instances") are stored as two arrays within a single zarr file.The segmentation mask for each neuron is stored in a separate channel.The order of dimensions is CZYX.
We recommend to work in a virtual environment, e.g., by using conda:
conda create -y -n flylight-env -c conda-forge python=3.9conda activate flylight-env
How to open zarr files
Install the python zarr package:
pip install zarr
Opened a zarr file with:
import zarrraw = zarr.open(, mode='r', path="volumes/raw")seg = zarr.open(, mode='r', path="volumes/gt_instances")
Zarr arrays are read lazily on-demand.Many functions that expect numpy arrays also work with zarr arrays.Optionally, the arrays can also explicitly be converted to numpy arrays.
How to view zarr image files
We recommend to use napari to view the image data.
Install napari:
pip install "napari[all]"
Save the following Python script:
import zarr, sys, napari
raw = zarr.load(sys.argv[1], mode='r', path="volumes/raw")gts = zarr.load(sys.argv[1], mode='r', path="volumes/gt_instances")
viewer = napari.Viewer(ndisplay=3)for idx, gt in enumerate(gts): viewer.add_labels( gt, rendering='translucent', blending='additive', name=f'gt_{idx}')viewer.add_image(raw[0], colormap="red", name='raw_r', blending='additive')viewer.add_image(raw[1], colormap="green", name='raw_g', blending='additive')viewer.add_image(raw[2], colormap="blue", name='raw_b', blending='additive')napari.run()
Execute:
python view_data.py /R9F03-20181030_62_B5.zarr
Metrics
S: Average of avF1 and C
avF1: Average F1 Score
C: Average ground truth coverage
clDice_TP: Average true positives clDice
FS: Number of false splits
FM: Number of false merges
tp: Relative number of true positives
For more information on our selected metrics and formal definitions please see our paper.
Baseline
To showcase the FISBe dataset together with our selection of metrics, we provide evaluation results for three baseline methods, namely PatchPerPix (ppp), Flood Filling Networks (FFN) and a non-learnt application-specific color clustering from Duan et al..For detailed information on the methods and the quantitative results please see our paper.
License
The FlyLight Instance Segmentation Benchmark (FISBe) dataset is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.
Citation
If you use FISBe in your research, please use the following BibTeX entry:
@misc{mais2024fisbe, title = {FISBe: A real-world benchmark dataset for instance segmentation of long-range thin filamentous structures}, author = {Lisa Mais and Peter Hirsch and Claire Managan and Ramya Kandarpa and Josef Lorenz Rumberger and Annika Reinke and Lena Maier-Hein and Gudrun Ihrke and Dagmar Kainmueller}, year = 2024, eprint = {2404.00130}, archivePrefix ={arXiv}, primaryClass = {cs.CV} }
Acknowledgments
We thank Aljoscha Nern for providing unpublished MCFO images as well as Geoffrey W. Meissner and the entire FlyLight Project Team for valuablediscussions.P.H., L.M. and D.K. were supported by the HHMI Janelia Visiting Scientist Program.This work was co-funded by Helmholtz Imaging.
Changelog
There have been no changes to the dataset so far.All future change will be listed on the changelog page.
Contributing
If you would like to contribute, have encountered any issues or have any suggestions, please open an issue for the FISBe dataset in the accompanying github repository.
All contributions are welcome!
Facebook
TwitterQuestion Answering in Context is a dataset for modeling, understanding, and participating in information seeking dialog. Data instances consist of an interactive dialog between two crowd workers: (1) a student who poses a sequence of freeform questions to learn as much as possible about a hidden Wikipedia text, and (2) a teacher who answers the questions by providing short excerpts (spans) from the text. QuAC introduces challenges not found in existing machine comprehension datasets: its questions are often more open-ended, unanswerable, or only meaningful within the dialog context.
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('quac', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data used in the various stage two experiments in: "Comparing Clustering Approaches for Smart Meter Time Series: Investigating the Influence of Dataset Properties on Performance". This includes datasets with varied characteristics.All datasets are stored in a dict with tuples of (time series array, class labels). To access data in python:import picklefilename = "dataset.txt"with open(filename, 'rb') as f: data = pickle.load(f)
Facebook
TwitterQuestion generation using squad dataset using data splits described in 'Neural Question Generation from Text: A Preliminary Study' (Zhou et al, 2017) and 'Learning to Ask: Neural Question Generation for Reading Comprehension' (Du et al, 2017).
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('squad_question_generation', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
Facebook
TwitterReal dataset of 14 long horizon manipulation tasks. A mix of human play data and single robot arm data performing the same tasks.
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('mimic_play', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The CIFAR-10 and CIFAR-100 datasets are labeled subsets of the 80 million tiny images dataset. CIFAR-10 and CIFAR-100 were created by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. (Sadly, the 80 million tiny images dataset has been thrown into the memory hole by its authors. Spotting the doublethink which was used to justify its erasure is left as an exercise for the reader.)
The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.
The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another. Between them, the training batches contain exactly 5000 images from each class.
The classes are completely mutually exclusive. There is no overlap between automobiles and trucks. "Automobile" includes sedans, SUVs, things of that sort. "Truck" includes only big trucks. Neither includes pickup trucks.
Baseline results You can find some baseline replicable results on this dataset on the project page for cuda-convnet. These results were obtained with a convolutional neural network. Briefly, they are 18% test error without data augmentation and 11% with. Additionally, Jasper Snoek has a new paper in which he used Bayesian hyperparameter optimization to find nice settings of the weight decay and other hyperparameters, which allowed him to obtain a test error rate of 15% (without data augmentation) using the architecture of the net that got 18%.
Other results Rodrigo Benenson has collected results on CIFAR-10/100 and other datasets on his website; click here to view.
Dataset layout Python / Matlab versions I will describe the layout of the Python version of the dataset. The layout of the Matlab version is identical.
The archive contains the files data_batch_1, data_batch_2, ..., data_batch_5, as well as test_batch. Each of these files is a Python "pickled" object produced with cPickle. Here is a python2 routine which will open such a file and return a dictionary:
python
def unpickle(file):
import cPickle
with open(file, 'rb') as fo:
dict = cPickle.load(fo)
return dict
And a python3 version:
def unpickle(file):
import pickle
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
return dict
Loaded in this way, each of the batch files contains a dictionary with the following elements:
data -- a 10000x3072 numpy array of uint8s. Each row of the array stores a 32x32 colour image. The first 1024 entries contain the red channel values, the next 1024 the green, and the final 1024 the blue. The image is stored in row-major order, so that the first 32 entries of the array are the red channel values of the first row of the image.
labels -- a list of 10000 numbers in the range 0-9. The number at index i indicates the label of the ith image in the array data.
The dataset contains another file, called batches.meta. It too contains a Python dictionary object. It has the following entries: label_names -- a 10-element list which gives meaningful names to the numeric labels in the labels array described above. For example, label_names[0] == "airplane", label_names[1] == "automobile", etc. Binary version The binary version contains the files data_batch_1.bin, data_batch_2.bin, ..., data_batch_5.bin, as well as test_batch.bin. Each of these files is formatted as follows: <1 x label><3072 x pixel> ... <1 x label><3072 x pixel> In other words, the first byte is the label of the first image, which is a number in the range 0-9. The next 3072 bytes are the values of the pixels of the image. The first 1024 bytes are the red channel values, the next 1024 the green, and the final 1024 the blue. The values are stored in row-major order, so the first 32 bytes are the red channel values of the first row of the image.
Each file contains 10000 such 3073-byte "rows" of images, although there is nothing delimiting the rows. Therefore each file should be exactly 30730000 bytes long.
There is another file, called batches.meta.txt. This is an ASCII file that maps numeric labels in the range 0-9 to meaningful class names. It is merely a list of the 10 class names, one per row. The class name on row i corresponds to numeric label i.
The CIFAR-100 dataset This dataset is just like the CIFAR-10, except it has 100 classes containing 600 images each. There are 500 training images and 100 testing images per class. The 100 classes in the CIFAR-100 are grouped into 20 superclasses. Each image comes with a "fine" label (the class to which it belongs) and a "coarse" label (the superclass to which it belongs). Her...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The goal of this task is to train a model that can localize and classify each instance of Person and Car as accurately as possible.
from IPython.display import Markdown, display
display(Markdown("../input/Car-Person-v2-Roboflow/README.roboflow.txt"))
In this Notebook, I have processed the images with RoboFlow because in COCO formatted dataset was having different dimensions of image and Also data set was not splitted into different Format. To train a custom YOLOv7 model we need to recognize the objects in the dataset. To do so I have taken the following steps:
Image Credit - jinfagang
!git clone https://github.com/WongKinYiu/yolov7 # Downloading YOLOv7 repository and installing requirements
%cd yolov7
!pip install -qr requirements.txt
!pip install -q roboflow
!wget "https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt"
import os
import glob
import wandb
import torch
from roboflow import Roboflow
from kaggle_secrets import UserSecretsClient
from IPython.display import Image, clear_output, display # to display images
print(f"Setup complete. Using torch {torch._version_} ({torch.cuda.get_device_properties(0).name if torch.cuda.is_available() else 'CPU'})")
https://camo.githubusercontent.com/dd842f7b0be57140e68b2ab9cb007992acd131c48284eaf6b1aca758bfea358b/68747470733a2f2f692e696d6775722e636f6d2f52557469567a482e706e67">
I will be integrating W&B for visualizations and logging artifacts and comparisons of different models!
try:
user_secrets = UserSecretsClient()
wandb_api_key = user_secrets.get_secret("wandb_api")
wandb.login(key=wandb_api_key)
anonymous = None
except:
wandb.login(anonymous='must')
print('To use your W&B account,
Go to Add-ons -> Secrets and provide your W&B access token. Use the Label name as WANDB.
Get your W&B access token from here: https://wandb.ai/authorize')
wandb.init(project="YOLOvR",name=f"7. YOLOv7-Car-Person-Custom-Run-7")
https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/615627e5824c9c6195abfda9_computer-vision-cycle.png" alt="">
In order to train our custom model, we need to assemble a dataset of representative images with bounding box annotations around the objects that we want to detect. And we need our dataset to be in YOLOv7 format.
In Roboflow, We can choose between two paths:
https://raw.githubusercontent.com/Owaiskhan9654/Yolo-V7-Custom-Dataset-Train-on-Kaggle/main/Roboflow.PNG" alt="">
user_secrets = UserSecretsClient()
roboflow_api_key = user_secrets.get_secret("roboflow_api")
rf = Roboflow(api_key=roboflow_api_key)
project = rf.workspace("owais-ahmad").project("custom-yolov7-on-kaggle-on-custom-dataset-rakiq")
dataset = project.version(2).download("yolov7")
Here, I am able to pass a number of arguments: - img: define input image size - batch: determine
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
The Free-living Food Intake Cycle (FreeFIC) dataset was created by the Multimedia Understanding Group towards the investigation of in-the-wild eating behavior. This is achieved by recording the subjects’ meals as a small part part of their everyday life, unscripted, activities. The FreeFIC dataset contains the (3D) acceleration and orientation velocity signals ((6) DoF) from (22) in-the-wild sessions provided by (12) unique subjects. All sessions were recorded using a commercial smartwatch ((6) using the Huawei Watch 2™ and the MobVoi TicWatch™ for the rest) while the participants performed their everyday activities. In addition, FreeFIC also contains the start and end moments of each meal session as reported by the participants.
Description
FreeFIC includes (22) in-the-wild sessions that belong to (12) unique subjects. Participants were instructed to wear the smartwatch to the hand of their preference well ahead before any meal and continue to wear it throughout the day until the battery is depleted. In addition, we followed a self-report labeling model, meaning that the ground truth is provided from the participant by documenting the start and end moments of their meals to the best of their abilities as well as the hand they wear the smartwatch on. The total duration of the (22) recordings sums up to (112.71) hours, with a mean duration of (5.12) hours. Additional data statistics can be obtained by executing the provided python script stats_dataset.py. Furthermore, the accompanying python script viz_dataset.py will visualize the IMU signals and ground truth intervals for each of the recordings. Information on how to execute the Python scripts can be found below.
$ python stats_dataset.py
$ python viz_dataset.py
FreeFIC is also tightly related to Food Intake Cycle (FIC), a dataset we created in order to investigate the in-meal eating behavior. More information about FIC can be found here and here.
Publications
If you plan to use the FreeFIC dataset or any of the resources found in this page, please cite our work:
@article{kyritsis2020data,
title={A Data Driven End-to-end Approach for In-the-wild Monitoring of Eating Behavior Using Smartwatches},
author={Kyritsis, Konstantinos and Diou, Christos and Delopoulos, Anastasios},
journal={IEEE Journal of Biomedical and Health Informatics},
year={2020},
publisher={IEEE}}
@inproceedings{kyritsis2017automated,
title={Detecting Meals In the Wild Using the Inertial Data of a Typical Smartwatch},
author={Kyritsis, Konstantinos and Diou, Christos and Delopoulos, Anastasios},
booktitle={2019 41th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)},
year={2019},
organization={IEEE}}
Technical details
We provide the FreeFIC dataset as a pickle. The file can be loaded using Python in the following way:
import pickle as pkl import numpy as np
with open('./FreeFIC_FreeFIC-heldout.pkl','rb') as fh: dataset = pkl.load(fh)
The dataset variable in the snipet above is a dictionary with (5) keys. Namely:
'subject_id'
'session_id'
'signals_raw'
'signals_proc'
'meal_gt'
The contents under a specific key can be obtained by:
sub = dataset['subject_id'] # for the subject id ses = dataset['session_id'] # for the session id raw = dataset['signals_raw'] # for the raw IMU signals proc = dataset['signals_proc'] # for the processed IMU signals gt = dataset['meal_gt'] # for the meal ground truth
The sub, ses, raw, proc and gt variables in the snipet above are lists with a length equal to (22). Elements across all lists are aligned; e.g., the (3)rd element of the list under the 'session_id' key corresponds to the (3)rd element of the list under the 'signals_proc' key.
sub: list Each element of the sub list is a scalar (integer) that corresponds to the unique identifier of the subject that can take the following values: ([1, 2, 3, 4, 13, 14, 15, 16, 17, 18, 19, 20]). It should be emphasized that the subjects with ids (15, 16, 17, 18, 19) and (20) belong to the held-out part of the FreeFIC dataset (more information can be found in ( )the publication titled "A Data Driven End-to-end Approach for In-the-wild Monitoring of Eating Behavior Using Smartwatches" by Kyritsis et al). Moreover, the subject identifier in FreeFIC is in-line with the subject identifier in the FIC dataset (more info here and here); i.e., FIC’s subject with id equal to (2) is the same person as FreeFIC’s subject with id equal to (2).
ses: list Each element of this list is a scalar (integer) that corresponds to the unique identifier of the session that can range between (1) and (5). It should be noted that not all subjects have the same number of sessions.
raw: list Each element of this list is dictionary with the 'acc' and 'gyr' keys. The data under the 'acc' key is a (N_{acc} \times 4) numpy.ndarray that contains the timestamps in seconds (first column) and the (3D) raw accelerometer measurements in (g) (second, third and forth columns - representing the (x, y ) and (z) axis, respectively). The data under the 'gyr' key is a (N_{gyr} \times 4) numpy.ndarray that contains the timestamps in seconds (first column) and the (3D) raw gyroscope measurements in ({degrees}/{second})(second, third and forth columns - representing the (x, y ) and (z) axis, respectively). All sensor streams are transformed in such a way that reflects all participants wearing the smartwatch at the same hand with the same orientation, thusly achieving data uniformity. This transformation is in par with the signals in the FIC dataset (more info here and here). Finally, the length of the raw accelerometer and gyroscope numpy.ndarrays is different ((N_{acc} eq N_{gyr})). This behavior is predictable and is caused by the Android platform.
proc: list Each element of this list is an (M\times7) numpy.ndarray that contains the timestamps, (3D) accelerometer and gyroscope measurements for each meal. Specifically, the first column contains the timestamps in seconds, the second, third and forth columns contain the (x,y) and (z) accelerometer values in (g) and the fifth, sixth and seventh columns contain the (x,y) and (z) gyroscope values in ({degrees}/{second}). Unlike elements in the raw list, processed measurements (in the proc list) have a constant sampling rate of (100) Hz and the accelerometer/gyroscope measurements are aligned with each other. In addition, all sensor streams are transformed in such a way that reflects all participants wearing the smartwatch at the same hand with the same orientation, thusly achieving data uniformity. This transformation is in par with the signals in the FIC dataset (more info here and here). No other preprocessing is performed on the data; e.g., the acceleration component due to the Earth's gravitational field is present at the processed acceleration measurements. The potential researcher can consult the article "A Data Driven End-to-end Approach for In-the-wild Monitoring of Eating Behavior Using Smartwatches" by Kyritsis et al. on how to further preprocess the IMU signals (i.e., smooth and remove the gravitational component).
meal_gt: list Each element of this list is a (K\times2) matrix. Each row represents the meal intervals for the specific in-the-wild session. The first column contains the timestamps of the meal start moments whereas the second one the timestamps of the meal end moments. All timestamps are in seconds. The number of meals (K) varies across recordings (e.g., a recording exist where a participant consumed two meals).
Ethics and funding
Informed consent, including permission for third-party access to anonymised data, was obtained from all subjects prior to their engagement in the study. The work has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 727688 - BigO: Big data against childhood obesity.
Contact
Any inquiries regarding the FreeFIC dataset should be addressed to:
Dr. Konstantinos KYRITSIS
Multimedia Understanding Group (MUG) Department of Electrical & Computer Engineering Aristotle University of Thessaloniki University Campus, Building C, 3rd floor Thessaloniki, Greece, GR54124
Tel: +30 2310 996359, 996365 Fax: +30 2310 996398 E-mail: kokirits [at] mug [dot] ee [dot] auth [dot] gr
Facebook
TwitterData model and generic query templates for translating and integrating a set of related CSV event logs into a single event graph for as used in https://dx.doi.org/10.1007/s13740-021-00122-1
Provides input data for 5 datasets (BPIC14, BPIC15, BPIC16, BPIC17, BPIC19)
Provides Python scripts to prepare and import each dataset into a Neo4j database instance through Cypher queries, representing behavioral information not globally (as in an event log), but locally per entity and per relation between entities.
Provides Python scripts to retrieve event data from a Neo4j database instance and render it using Graphviz dot.
The data model and queries are described in detail in: Stefan Esser, Dirk Fahland: Multi-Dimensional Event Data in Graph Databases (2020) https://arxiv.org/abs/2005.14552 and https://dx.doi.org/10.1007/s13740-021-00122-1
Fork the query code from Github: https://github.com/multi-dimensional-process-mining/graphdb-eventlogs
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A curated list of preprocessed & ready to use under a minute Human Activity Recognition datasets.
All the datasets are preprocessed in HDF5 format, created using the h5py python library. Scripts used for data preprocessing are provided as well (Load.ipynb and load_jordao.py)
Each HDF5 file contains at least the keys:
x a single array of size [sample count, temporal length, sensor channel count], contains the actual sensor data. Metadata contains the names of individual sensor channel count. All samples are zero-padded for constant length in the file, original lengths before padding available under the meta keys.
y a single array of size [sample count] with integer values for target classes (zero-based). Metadata contains the names of the target classes.
meta contain various metadata, depends on the dataset (original length before padding, subject no., trial no., etc.)
Usage example
import h5py
with h5py.File(f'data/waveglove_multi.h5', 'r') as h5f: x = h5f['x'] y = h5f['y']['class'] print(f'WaveGlove-multi: {x.shape[0]} samples') print(f'Sensor channels: {h5f["x"].attrs["channels"]}') print(f'Target classes: {h5f["y"].attrs["labels"]}') first_sample = x[0]
Current list of datasets:
WaveGlove-single (waveglove_single.h5)
WaveGlove-multi (waveglove_multi.h5)
uWave (uwave.h5)
OPPORTUNITY (opportunity.h5)
PAMAP2 (pamap2.h5)
SKODA (skoda.h5)
MHEALTH (non overlapping windows) (mhealth.h5)
Six datasets with all four predefined train/test folds as preprocessed by Jordao et al. originally in WearableSensorData (FNOW, LOSO, LOTO and SNOW prefixed .h5 files)
Facebook
TwitterAutoTrain Dataset for project: dataset-mentions
Dataset Description
This dataset has been automatically processed by AutoTrain for project dataset-mentions.
Languages
The BCP-47 code for the dataset's language is en.
Dataset Structure
Data Instances
A sample from this dataset looks as follows: [ { "text": " How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer =… See the full description on the dataset page: https://huggingface.co/datasets/davanstrien/autotrain-data-dataset-mentions.
Facebook
Twitterhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.htmlhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
Replication pack, FSE2018 submission #164: ------------------------------------------
**Working title:** Ecosystem-Level Factors Affecting the Survival of Open-Source Projects: A Case Study of the PyPI Ecosystem **Note:** link to data artifacts is already included in the paper. Link to the code will be included in the Camera Ready version as well. Content description =================== - **ghd-0.1.0.zip** - the code archive. This code produces the dataset files described below - **settings.py** - settings template for the code archive. - **dataset_minimal_Jan_2018.zip** - the minimally sufficient version of the dataset. This dataset only includes stats aggregated by the ecosystem (PyPI) - **dataset_full_Jan_2018.tgz** - full version of the dataset, including project-level statistics. It is ~34Gb unpacked. This dataset still doesn't include PyPI packages themselves, which take around 2TB. - **build_model.r, helpers.r** - R files to process the survival data (`survival_data.csv` in **dataset_minimal_Jan_2018.zip**, `common.cache/survival_data.pypi_2008_2017-12_6.csv` in **dataset_full_Jan_2018.tgz**) - **Interview protocol.pdf** - approximate protocol used for semistructured interviews. - LICENSE - text of GPL v3, under which this dataset is published - INSTALL.md - replication guide (~2 pages)
Replication guide ================= Step 0 - prerequisites ---------------------- - Unix-compatible OS (Linux or OS X) - Python interpreter (2.7 was used; Python 3 compatibility is highly likely) - R 3.4 or higher (3.4.4 was used, 3.2 is known to be incompatible) Depending on detalization level (see Step 2 for more details): - up to 2Tb of disk space (see Step 2 detalization levels) - at least 16Gb of RAM (64 preferable) - few hours to few month of processing time Step 1 - software ---------------- - unpack **ghd-0.1.0.zip**, or clone from gitlab: git clone https://gitlab.com/user2589/ghd.git git checkout 0.1.0 `cd` into the extracted folder. All commands below assume it as a current directory. - copy `settings.py` into the extracted folder. Edit the file: * set `DATASET_PATH` to some newly created folder path * add at least one GitHub API token to `SCRAPER_GITHUB_API_TOKENS` - install docker. For Ubuntu Linux, the command is `sudo apt-get install docker-compose` - install libarchive and headers: `sudo apt-get install libarchive-dev` - (optional) to replicate on NPM, install yajl: `sudo apt-get install yajl-tools` Without this dependency, you might get an error on the next step, but it's safe to ignore. - install Python libraries: `pip install --user -r requirements.txt` . - disable all APIs except GitHub (Bitbucket and Gitlab support were not yet implemented when this study was in progress): edit `scraper/init.py`, comment out everything except GitHub support in `PROVIDERS`. Step 2 - obtaining the dataset ----------------------------- The ultimate goal of this step is to get output of the Python function `common.utils.survival_data()` and save it into a CSV file: # copy and paste into a Python console from common import utils survival_data = utils.survival_data('pypi', '2008', smoothing=6) survival_data.to_csv('survival_data.csv') Since full replication will take several months, here are some ways to speedup the process: ####Option 2.a, difficulty level: easiest Just use the precomputed data. Step 1 is not necessary under this scenario. - extract **dataset_minimal_Jan_2018.zip** - get `survival_data.csv`, go to the next step ####Option 2.b, difficulty level: easy Use precomputed longitudinal feature values to build the final table. The whole process will take 15..30 minutes. - create a folder `