61 datasets found
  1. f

    UC_vs_US Statistic Analysis.xlsx

    • figshare.com
    xlsx
    Updated Jul 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    F. (Fabiano) Dalpiaz (2020). UC_vs_US Statistic Analysis.xlsx [Dataset]. http://doi.org/10.23644/uu.12631628.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 9, 2020
    Dataset provided by
    Utrecht University
    Authors
    F. (Fabiano) Dalpiaz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.

    Tagging scheme:
    Aligned (AL) - A concept is represented as a class in both models, either
    

    with the same name or using synonyms or clearly linkable names; Wrongly represented (WR) - A class in the domain expert model is incorrectly represented in the student model, either (i) via an attribute, method, or relationship rather than class, or (ii) using a generic term (e.g., user'' instead ofurban planner''); System-oriented (SO) - A class in CM-Stud that denotes a technical implementation aspect, e.g., access control. Classes that represent legacy system or the system under design (portal, simulator) are legitimate; Omitted (OM) - A class in CM-Expert that does not appear in any way in CM-Stud; Missing (MI) - A class in CM-Stud that does not appear in any way in CM-Expert.

    All the calculations and information provided in the following sheets
    

    originate from that raw data.

    Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
    

    including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.

    Sheet 3 (Size-Ratio):
    

    The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.

    Sheet 4 (Overall):
    

    Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.

    For sheet 4 as well as for the following four sheets, diverging stacked bar
    

    charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:

    Sheet 5 (By-Notation):
    

    Model correctness and model completeness is compared by notation - UC, US.

    Sheet 6 (By-Case):
    

    Model correctness and model completeness is compared by case - SIM, HOS, IFA.

    Sheet 7 (By-Process):
    

    Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.

    Sheet 8 (By-Grade):
    

    Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.

  2. E

    Health Statistic and Research Database

    • healthinformationportal.eu
    html
    Updated Feb 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Estonian National Institute for Health Development (2023). Health Statistic and Research Database [Dataset]. https://www.healthinformationportal.eu/health-information-sources/health-statistic-and-research-database
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Feb 23, 2023
    Dataset authored and provided by
    Estonian National Institute for Health Development
    Variables measured
    sex, title, topics, country, language, data_owners, description, contact_name, geo_coverage, contact_email, and 10 more
    Measurement technique
    Multiple sources
    Description

    The Health Statistics and Health Research Database is Estonian largest set of health-related statistics and survey results administrated by National Institute for Health Development. Use of the database is free of charge.

    The database consists of eight main areas divided into sub-areas. The data tables included in the sub-areas are assigned unique codes. The data tables presented in the database can be both viewed in the Internet environment, and downloaded using different file formats (.px, .xlsx, .csv, .json). You can download the detailed database user manual here (.pdf).

    The database is constantly updated with new data. Dates of updating the existing data tables and adding new data are provided in the release calendar. The date of the last update to each table is provided after the title of the table in the list of data tables.

    A contact person for each sub-area is provided under the "Definitions and Methodology" link of each sub-area, so you can ask additional information about the data published in the database. Contact this person for any further questions and data requests.

    Read more about publication of health statistics by National Institute for Health Development in Health Statistics Dissemination Principles.

  3. 2012 Quick Statistic Tables

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Sep 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Substance Abuse and Mental Health Services Administration (2025). 2012 Quick Statistic Tables [Dataset]. https://catalog.data.gov/dataset/2012-quick-statistic-tables
    Explore at:
    Dataset updated
    Sep 7, 2025
    Dataset provided by
    Substance Abuse and Mental Health Services Administrationhttps://www.samhsa.gov/
    Description

    The Quick Statistics tables for each state or jurisdiction are based on data from the Treatment Episode Data Set (TEDS), displaying data on substance abuse treatment admissions during 2012, by primary substance of abuse and selected characteristics.

  4. w

    Dataset of books called The Cambridge dictionary of statistics

    • workwithdata.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books called The Cambridge dictionary of statistics [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=book&fop0=%3D&fval0=The+Cambridge+dictionary+of+statistics
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about books. It has 4 rows and is filtered where the book is The Cambridge dictionary of statistics. It features 7 columns including author, publication date, language, and book publisher.

  5. Baseline Definition - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Jul 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2025). Baseline Definition - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/baseline-definition2
    Explore at:
    Dataset updated
    Jul 28, 2025
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    The primary objective from this project was to acquire historical shoreline information for all of the Northern Ireland coastline. Having this detailed understanding of the coast’s shoreline position and geometry over annual to decadal time periods is essential in any management of the coast.The historical shoreline analysis was based on all available Ordnance Survey maps and aerial imagery information. Analysis looked at position and geometry over annual to decadal time periods, providing a dynamic picture of how the coastline has changed since the start of the early 1800s.Once all datasets were collated, data was interrogated using the ArcGIS package – Digital Shoreline Analysis System (DSAS). DSAS is a software package which enables a user to calculate rate-of-change statistics from multiple historical shoreline positions. Rate-of-change was collected at 25m intervals and displayed both statistically and spatially allowing for areas of retreat/accretion to be identified at any given stretch of coastline.The DSAS software will produce the following rate-of-change statistics:Net Shoreline Movement (NSM) – the distance between the oldest and the youngest shorelines.Shoreline Change Envelope (SCE) – a measure of the total change in shoreline movement considering all available shoreline positions and reporting their distances, without reference to their specific dates.End Point Rate (EPR) – derived by dividing the distance of shoreline movement by the time elapsed between the oldest and the youngest shoreline positions.Linear Regression Rate (LRR) – determines a rate of change statistic by fitting a least square regression to all shorelines at specific transects.Weighted Linear Regression Rate (WLR) - calculates a weighted linear regression of shoreline change on each transect. It considers the shoreline uncertainty giving more emphasis on shorelines with a smaller error.The end product provided by Ulster University is an invaluable tool and digital asset that has helped to visualise shoreline change and assess approximate rates of historical change at any given coastal stretch on the Northern Ireland coast.

  6. g

    Statistical units base circuits – historical versions

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistical units base circuits – historical versions [Dataset]. https://gimi9.com/dataset/eu_02b6c97b-63da-4d46-9a70-6e9ef3442d54/
    Explore at:
    Description

    The Dataset series contains historical versions of the data set “Statistic Units Base Circuits” up to and including 1.1.2022 and does not contain the current version. Latest and current version is available in the entry “Statistic units basic circuits” and can be found here: https://kartkatalog.geonorge.no/metadata/statistiske-enheter-grunnkretser/51d279f8-e2be-4f5e-9f72-1a53f7535ec1 The data set shows the basic district division in Norway. Basic circuits are stable statistical units that were established in cooperation between the municipality and Statistics Norway (SSB). The Dataset series contains historical versions of the data set “Statistic Units Base Circuits” up to and including 1.1.2022 and does not contain the current version. Latest and current version is available in the entry “Statistic units basic circuits” and can be found here:https://kartkatalog.geonorge.no/metadata/statistiske-enheter-grunnkretser/51d279f8-e2be-4f5e-9f72-1a53f7535ec1 The data set shows the basic district division in Norway. Basic circuits are stable statistical units that were established in cooperation between the municipality and Statistics Norway (SSB). Latest and current version is available in the entry “Statistic units basic circuits” and can be found here:https://kartkatalog.geonorge.no/metadata/statistiske-enheter-grunnkretser/51d279f8-e2be-4f5e-9f72-1a53f7535ec1 The data set shows the basic district division in Norway. Basic circuits are stable statistical units that were established in cooperation between the municipality and Statistics Norway (SSB).The Dataset series contains historical versions of the data set “Statistic Units Base Circuits” up to and including 1.1.2022 and does not contain the current version. Latest and current version is available in the entry “Statistic units basic circuits” and can be found here: https://kartkatalog.geonorge.no/metadata/statistiske-enheter-grunnkretser/51d279f8-e2be-4f5e-9f72-1a53f7535ec1 The data set shows the basic district division in Norway. Basic circuits are stable statistical units that were established in cooperation between the municipality and Statistics Norway (SSB).The Dataset series contains historical versions of the data set “Statistic Units Base Circuits” up to and including 1.1.2022 and does not contain the current version. Latest and current version is available in the entry “Statistic units basic circuits” and can be found here: https://kartkatalog.geonorge.no/metadata/statistiske-enheter-grunnkretser/51d279f8-e2be-4f5e-9f72-1a53f7535ec1 The data set shows the basic district division in Norway.Basic circuits are stable statistical units that were established in cooperation between the municipality and Statistics Norway (SSB). https://kartkatalog.geonorge.no/metadata/statistiske-enheter-grunnkretser/51d279f8-e2be-4f5e-9f72-1a53f7535ec1 The data set shows the basic district division in Norway.Basic circuits are stable statistical units that were established in cooperation between the municipality and Statistics Norway (SSB).https://kartkatalog.geonorge.no/metadata/statistiske-enheter-grunnkretser/51d279f8-e2be-4f5e-9f72-1a53f7535ec1 The data set shows the basic district division in Norway. Basic circuits are stable statistical units that were established in cooperation between the municipality and Statistics Norway (SSB).

  7. Meta data and supporting documentation

    • catalog.data.gov
    Updated Nov 12, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Meta data and supporting documentation [Dataset]. https://catalog.data.gov/dataset/meta-data-and-supporting-documentation
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    We include a description of the data sets in the meta-data as well as sample code and results from a simulated data set. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: The R code is available on line here: https://github.com/warrenjl/SpGPCW. Format: Abstract The data used in the application section of the manuscript consist of geocoded birth records from the North Carolina State Center for Health Statistics, 2005-2008. In the simulation study section of the manuscript, we simulate synthetic data that closely match some of the key features of the birth certificate data while maintaining confidentiality of any actual pregnant women. Availability Due to the highly sensitive and identifying information contained in the birth certificate data (including latitude/longitude and address of residence at delivery), we are unable to make the data from the application section publicly available. However, we will make one of the simulated datasets available for any reader interested in applying the method to realistic simulated birth records data. This will also allow the user to become familiar with the required inputs of the model, how the data should be structured, and what type of output is obtained. While we cannot provide the application data here, access to the North Carolina birth records can be requested through the North Carolina State Center for Health Statistics and requires an appropriate data use agreement. Description Permissions: These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. File format: R workspace file. Metadata (including data dictionary) • y: Vector of binary responses (1: preterm birth, 0: control) • x: Matrix of covariates; one row for each simulated individual • z: Matrix of standardized pollution exposures • n: Number of simulated individuals • m: Number of exposure time periods (e.g., weeks of pregnancy) • p: Number of columns in the covariate design matrix • alpha_true: Vector of “true” critical window locations/magnitudes (i.e., the ground truth that we want to estimate). This dataset is associated with the following publication: Warren, J., W. Kong, T. Luben, and H. Chang. Critical Window Variable Selection: Estimating the Impact of Air Pollution on Very Preterm Birth. Biostatistics. Oxford University Press, OXFORD, UK, 1-30, (2019).

  8. Amount of data created, consumed, and stored 2010-2023, with forecasts to...

    • statista.com
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Amount of data created, consumed, and stored 2010-2023, with forecasts to 2028 [Dataset]. https://www.statista.com/statistics/871513/worldwide-data-created/
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2024
    Area covered
    Worldwide
    Description

    The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly, reaching *** zettabytes in 2024. Over the next five years up to 2028, global data creation is projected to grow to more than *** zettabytes. In 2020, the amount of data created and replicated reached a new high. The growth was higher than previously expected, caused by the increased demand due to the COVID-19 pandemic, as more people worked and learned from home and used home entertainment options more often. Storage capacity also growing Only a small percentage of this newly created data is kept though, as just * percent of the data produced and consumed in 2020 was saved and retained into 2021. In line with the strong growth of the data volume, the installed base of storage capacity is forecast to increase, growing at a compound annual growth rate of **** percent over the forecast period from 2020 to 2025. In 2020, the installed base of storage capacity reached *** zettabytes.

  9. Military Search and Rescue Monthly Statistic - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Apr 5, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2012). Military Search and Rescue Monthly Statistic - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/military_search_and_rescue_monthly_statistic
    Explore at:
    Dataset updated
    Apr 5, 2012
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Search and rescue statistics Source agency: Defence Designation: National Statistics Language: English Alternative title: SAR Monthly

  10. YouTube Videos and Channels Metadata

    • kaggle.com
    Updated Dec 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). YouTube Videos and Channels Metadata [Dataset]. https://www.kaggle.com/datasets/thedevastator/revealing-insights-from-youtube-video-and-channe
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 14, 2022
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Area covered
    YouTube
    Description

    YouTube Videos and Channels Metadata

    Analyze the statistical relation between videos and form a topic tree

    By VISHWANATH SESHAGIRI [source]

    About this dataset

    This dataset contains YouTube video and channel metadata to analyze the statistical relation between videos and form a topic tree. With 9 direct features, 13 more indirect features, it has all that you need to build a deep understanding of how videos are related – including information like total views per unit time, channel views, likes/subscribers ratio, comments/views ratio, dislikes/subscribers ratio etc. This data provides us with a unique opportunity to gain insights on topics such as subscriber count trends over time or calculating the impact of trends on subscriber engagement. We can develop powerful models that show us how different types of content drive viewership and identify the most popular styles or topics within YouTube's vast catalogue. Additionally this data offers an intriguing look into consumer behaviour as we can explore what drives people to watch specific videos at certain times or appreciate certain channels more than others - by analyzing things like likes per subscribers and dislikes per views ratios for example! Finally this dataset is completely open source with an easy-to-understand Github repo making it an invaluable resource for anyone looking to gain better insights into how their audience interacts with their content and how they might improve it in the future

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    How to Use This Dataset

    In general, it is important to understand each parameter in the data set before proceeding with analysis. The parameters included are totalviews/channelelapsedtime, channelViewCount, likes/subscriber, views/subscribers, subscriberCounts, dislikes/views comments/subscriberchannelCommentCounts,, likes/dislikes comments/views dislikes/ subscribers totviewes /totsubsvews /elapsedtime.

    To use this dataset for your own analysis:1) Review each parameter’s meaning and purpose in our dataset; 2) Get familiar with basic descriptive statistics such as mean median mode range; 3) Create visualizations or tables based on subsets of our data; 4) Understand correlations between different sets of variables or parameters; 5) Generate meaningful conclusions about specific channels or topics based on organized graph hierarchies or tables.; 6) Analyze trends over time for individual parameters as well as an aggregate reaction from all users when videos are released

    Research Ideas

    • Predicting the Relative Popularity of Videos: This dataset can be used to build a statistical model that can predict the relative popularity of videos based on various factors such as total views, channel viewers, likes/dislikes ratio, and comments/views ratio. This model could then be used to make recommendations and predict which videos are likely to become popular or go viral.

    • Creating Topic Trees: The dataset can also be used to create topic trees or taxonomies by analyzing the content of videos and looking at what topics they cover. For example, one could analyze the most popular YouTube channels in a specific subject area, group together those that discuss similar topics, and then build an organized tree structure around those topics in order to better understand viewer interests in that area.

    • Viewer Engagement Analysis: This dataset could also be used for viewer engagement analysis purposes by analyzing factors such as subscriber count, average time spent watching a video per user (elapsed time), comments made per view etc., so as to gain insights into how engaged viewers are with specific content or channels on YouTube. From this information it would be possible to optimize content strategy accordingly in order improve overall engagement rates across various types of video content and channel types

    Acknowledgements

    If you use this dataset in your research, please credit the original authors.

    Data Source

    License

    Unknown License - Please check the dataset description for more information.

    Columns

    File: YouTubeDataset_withChannelElapsed.csv | Column name | Description | |:----------------------------------|:-------------------------------------------------------| | totalviews/channelelapsedtime | Ratio of total views to channel elapsed time. (Ratio) | | channelViewCount | Total number of views for the channel. (Integer) | | likes/subscriber ...

  11. o

    Annual statistic for the procurement methods - Dataset - Open Government...

    • opendata.gov.jo
    Updated Nov 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Annual statistic for the procurement methods - Dataset - Open Government Data [Dataset]. https://opendata.gov.jo/dataset/annual-statistic-for-the-procurement-methods-1215-2020
    Explore at:
    Dataset updated
    Nov 22, 2021
    Description

    Statistics showing the number of tenders according to the procurement method in each year

  12. d

    Swedish energy statistic - Dataset - CE data hub

    • datahub.digicirc.eu
    Updated Jan 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Swedish energy statistic - Dataset - CE data hub [Dataset]. https://datahub.digicirc.eu/dataset/swedish-energy-statistic
    Explore at:
    Dataset updated
    Jan 26, 2022
    Area covered
    Sweden
    Description

    148 views (1 recent)

  13. 96 wells fluorescence reading and R code statistic for analysis

    • zenodo.org
    bin, csv, doc, pdf
    Updated Aug 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    JVD Molino; JVD Molino (2024). 96 wells fluorescence reading and R code statistic for analysis [Dataset]. http://doi.org/10.5281/zenodo.1119285
    Explore at:
    doc, csv, pdf, binAvailable download formats
    Dataset updated
    Aug 2, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    JVD Molino; JVD Molino
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview

    Data points present in this dataset were obtained following the subsequent steps: To assess the secretion efficiency of the constructs, 96 colonies from the selection plates were evaluated using the workflow presented in Figure Workflow. We picked transformed colonies and cultured in 400 μL TAP medium for 7 days in Deep-well plates (Corning Axygen®, No.: PDW500CS, Thermo Fisher Scientific Inc., Waltham, MA), covered with Breathe-Easy® (Sigma-Aldrich®). Cultivation was performed on a rotary shaker, set to 150 rpm, under constant illumination (50 μmol photons/m2s). Then 100 μL sample were transferred clear bottom 96-well plate (Corning Costar, Tewksbury, MA, USA) and fluorescence was measured using an Infinite® M200 PRO plate reader (Tecan, Männedorf, Switzerland). Fluorescence was measured at excitation 575/9 nm and emission 608/20 nm. Supernatant samples were obtained by spinning Deep-well plates at 3000 × g for 10 min and transferring 100 μL from each well to the clear bottom 96-well plate (Corning Costar, Tewksbury, MA, USA), followed by fluorescence measurement. To compare the constructs, R Statistic version 3.3.3 was used to perform one-way ANOVA (with Tukey's test), and to test statistical hypotheses, the significance level was set at 0.05. Graphs were generated in RStudio v1.0.136. The codes are deposit herein.

    Info

    ANOVA_Turkey_Sub.R -> code for ANOVA analysis in R statistic 3.3.3

    barplot_R.R -> code to generate bar plot in R statistic 3.3.3

    boxplotv2.R -> code to generate boxplot in R statistic 3.3.3

    pRFU_+_bk.csv -> relative supernatant mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii

    sup_+_bl.csv -> supernatant mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii

    sup_raw.csv -> supernatant mCherry fluorescence dataset of 96 colonies for each construct.

    who_+_bl2.csv -> whole culture mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii

    who_raw.csv -> whole culture mCherry fluorescence dataset of 96 colonies for each construct.

    who_+_Chlo.csv -> whole culture chlorophyll fluorescence dataset of 96 colonies for each construct.

    Anova_Output_Summary_Guide.pdf -> Explain the ANOVA files content

    ANOVA_pRFU_+_bk.doc -> ANOVA of relative supernatant mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii

    ANOVA_sup_+_bk.doc -> ANOVA of supernatant mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii

    ANOVA_who_+_bk.doc -> ANOVA of whole culture mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii

    ANOVA_Chlo.doc -> ANOVA of whole culture chlorophyll fluorescence of all constructs, plus average and standard deviation values.

    Consider citing our work.

    Molino JVD, de Carvalho JCM, Mayfield SP (2018) Comparison of secretory signal peptides for heterologous protein expression in microalgae: Expanding the secretion portfolio for Chlamydomonas reinhardtii. PLoS ONE 13(2): e0192433. https://doi.org/10.1371/journal. pone.0192433

  14. w

    Fire statistics data tables

    • gov.uk
    • s3.amazonaws.com
    Updated Sep 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Housing, Communities and Local Government (2025). Fire statistics data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/fire-statistics-data-tables
    Explore at:
    Dataset updated
    Sep 25, 2025
    Dataset provided by
    GOV.UK
    Authors
    Ministry of Housing, Communities and Local Government
    Description

    On 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.

    This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.

    MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/">Northern Ireland: Fire and Rescue Statistics.

    If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@communities.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.

    Related content

    Fire statistics guidance
    Fire statistics incident level datasets

    Incidents attended

    https://assets.publishing.service.gov.uk/media/686d2aa22557debd867cbe14/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 153 KB) Previous FIRE0101 tables

    https://assets.publishing.service.gov.uk/media/686d2ab52557debd867cbe15/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 2.19 MB) Previous FIRE0102 tables

    https://assets.publishing.service.gov.uk/media/686d2aca10d550c668de3c69/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 201 KB) Previous FIRE0103 tables

    https://assets.publishing.service.gov.uk/media/686d2ad92557debd867cbe16/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 492 KB) Previous FIRE0104 tables

    Dwelling fires attended

    https://assets.publishing.service.gov.uk/media/686d2af42cfe301b5fb6789f/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, 192 KB) Previous FIRE0201 tables

    <span class="gem

  15. f

    Data associated with manuscript

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    Updated Sep 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brousil, Matthew; Reganold, John P.; Bloom, Elias; Crowder, David W.; Northfield, Tobin D.; Illán, Javier Gutiérrez (2023). Data associated with manuscript [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000941779
    Explore at:
    Dataset updated
    Sep 3, 2023
    Authors
    Brousil, Matthew; Reganold, John P.; Bloom, Elias; Crowder, David W.; Northfield, Tobin D.; Illán, Javier Gutiérrez
    Description

    Data associated with main analysis and figures presented in manuscript titled: "Long-term organic farming and floral diversity promotes stability of bee communities in agroecosystems." Dataset titled: "Bloom_BetaDiverstiy_GPSPointsAndSiteCharacteristics_DataFinal.csv" are associated with the map of site locations shown in Figure 1. These data are also given in Table 2 (note no data are associated with Table 1). GPS points have been jittered to protect the identity of farmer collaborators. Exact locations are available upon request and after consideration by the lead author. No data are associated with Figure 2. The four datasets tilted: "Bloom_BetaDiversity_GeometricRemovalXXX_DataFinal.csv" are files associated with the geometric species removal analysis accompanying Figure 3, where XXX is the scale (local or landscape) and term (species loss or removal) (see manuscript for details). Column definitions include: SiteID - the site for which the statistic was generated (local level only); SiteID1 - the first site involved in the pairwise comparison which generated the statistic (landscape level only); SiteID2 - the second site involved in the pairwise comparison which generated the statistic (landscape level only); year1 - the year (e.g., 20XX) for which the sample was taken at the site given in SiteID1 which then generated the statistic (landscape level only); year2 - the year (e.g., 20XX) for which the sample was taken at the site given in SiteID2 which then generated the statistic (landscape level only); variable - species removed at random; sim (replacement) or sne (loss) - the statistic with no species removed; value - the statistics with the species removed; vec - the color relating the number of species removed (see Figure 3 caption for column species number relationships). The dataset title: "Bloom_BetaDiverstiy_SADS_DataFinal.xlsx" contains three sheets each associated with a sample year (2014, 2015, 2016). Within each sheet are the vectors of abundance values and species names used to create species abundance models plotted in Figure 4. The datasets titled: "Bloom_BetaDiverstiy_LocalLevelRegressions_DataFinal.csv" and "Bloom_BetaDiverstiy_LandscapeLevelRegressions_DataFinal" contain statistics used to create Figure 5. The column name definitions that have not been previously given are as follows: detlaaic - difference in species abundance model fit (for local level); Years.Since.Transition - years since transitioning to organic farming scaled to enhance regression model fitting; sor - the overall Sorenson's beta diversity term for bees across years or sites (depends on scale see file name); sim - the species replacement term from the additive partition of Sorenson's beta diversity for bees across years or sites (depends on scale see file name); nes - the species loss term from the additive partition of Sorenson's beta diversity for bees across years or sites (depends on scale see file name); X.sor/X.sim/S.nes - where X is l and p for landscape and plant beta diversity for each term at the site across years or sites (depends on scale see file name); diff_years - differences in times since transitions to organic agriculture scaled to enhance regression model fitting (landscape level only); diff_do_new - difference in species abundance model fit (for landscape level); p.all - multiplication of the p.sim and l.nes terms for plotting the interaction shown in Figure 5d. The dataset titled: "Bloom_BetaDiverstiy_Jackknife_DataFinal.xlsx" contains 6 sheets corresponding to Figure 6 panels "a-f" in linear order. Column definitions include: pvalue - the pvalue found when the variable was removed from the site by variable matrix and used to create the histograms; variable - the variable that was removed from the site by variable matrix. Variables can be bee species, landscape classes, or plants given by their unique common name. The final 3 datasets are titled: "Bloom_BetaDiverstiy_BeeSiteXSpeciesMatrix_DataFinal.csv", "Bloom_BetaDiverstiy_LandscapeSiteXClassMatrix_DataFinal.csv", and "Bloom_BetaDiverstiy_PlantSiteXCommonNameMatrix_DataFinal.csv." These datasets contain the matrices used to generate these bee, landscape, and plant beta diversity metrics used for our analysis.

  16. d

    International Data Base

    • dknet.org
    • neuinfo.org
    • +2more
    Updated Jan 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). International Data Base [Dataset]. http://identifiers.org/RRID:SCR_013139
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    A computerized data set of demographic, economic and social data for 227 countries of the world. Information presented includes population, health, nutrition, mortality, fertility, family planning and contraceptive use, literacy, housing, and economic activity data. Tabular data are broken down by such variables as age, sex, and urban/rural residence. Data are organized as a series of statistical tables identified by country and table number. Each record consists of the data values associated with a single row of a given table. There are 105 tables with data for 208 countries. The second file is a note file, containing text of notes associated with various tables. These notes provide information such as definitions of categories (i.e. urban/rural) and how various values were calculated. The IDB was created in the U.S. Census Bureau''s International Programs Center (IPC) to help IPC staff meet the needs of organizations that sponsor IPC research. The IDB provides quick access to specialized information, with emphasis on demographic measures, for individual countries or groups of countries. The IDB combines data from country sources (typically censuses and surveys) with IPC estimates and projections to provide information dating back as far as 1950 and as far ahead as 2050. Because the IDB is maintained as a research tool for IPC sponsor requirements, the amount of information available may vary by country. As funding and research activity permit, the IPC updates and expands the data base content. Types of data include: * Population by age and sex * Vital rates, infant mortality, and life tables * Fertility and child survivorship * Migration * Marital status * Family planning Data characteristics: * Temporal: Selected years, 1950present, projected demographic data to 2050. * Spatial: 227 countries and areas. * Resolution: National population, selected data by urban/rural * residence, selected data by age and sex. Sources of data include: * U.S. Census Bureau * International projects (e.g., the Demographic and Health Survey) * United Nations agencies Links: * ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/08490

  17. d

    Department of Labor, Office of Research (Current Employment Statistics NSA...

    • catalog.data.gov
    • data.ct.gov
    • +4more
    Updated Aug 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2024). Department of Labor, Office of Research (Current Employment Statistics NSA 1990 - Current) [Dataset]. https://catalog.data.gov/dataset/department-of-labor-office-of-research-current-employment-statistics-nsa-1990-current
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset provided by
    data.ct.gov
    Description

    Historical Employment Statistics 1990 - current. The Current Employment Statistics (CES) more information program provides the most current estimates of nonfarm employment, hours, and earnings data by industry (place of work) for the nation as a whole, all states, and most major metropolitan areas. The CES survey is a federal-state cooperative endeavor in which states develop state and sub-state data using concepts, definitions, and technical procedures prescribed by the Bureau of Labor Statistics (BLS). Estimates produced by the CES program include both full- and part-time jobs. Excluded are self-employment, as well as agricultural and domestic positions. In Connecticut, more than 4,000 employers are surveyed each month to determine the number of the jobs in the State. For more information please visit us at http://www1.ctdol.state.ct.us/lmi/ces/default.asp.

  18. N

    Montvale, NJ Population Breakdown by Gender and Age Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Montvale, NJ Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/8e269bd6-c989-11ee-9145-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 19, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Montvale, New Jersey
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Montvale by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Montvale. The dataset can be utilized to understand the population distribution of Montvale by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Montvale. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Montvale.

    Key observations

    Largest age group (population): Male # 35-39 years (610) | Female # 45-49 years (437). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Montvale population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Montvale is shown in the following column.
    • Population (Female): The female population in the Montvale is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Montvale for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Montvale Population by Gender. You can refer the same here

  19. Kenya - Wheat production statistic - Dataset - SODMA Open Data Portal

    • sodma-dev.okfn.org
    Updated Jul 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    sodma-dev.okfn.org (2025). Kenya - Wheat production statistic - Dataset - SODMA Open Data Portal [Dataset]. https://sodma-dev.okfn.org/dataset/kenya-wheat-production-statistic
    Explore at:
    Dataset updated
    Jul 18, 2025
    Dataset provided by
    Somali Disaster Management Agencyhttps://sodma.gov.so/
    Open Knowledge Foundationhttp://okfn.org/
    Area covered
    Kenya
    Description

    This coverage shows the total wheat production statistics by province in Kenya between 1986 and 1990 published in 1998 by the Food and Agriculture Organization of the United Nations (FAO) at a scale of 1:1000,000.

  20. d

    Descriptive statistic dataset about evaluation and publication delay in...

    • datos.gob.es
    Updated Mar 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agencia Estatal Consejo Superior de Investigaciones Científicas (2022). Descriptive statistic dataset about evaluation and publication delay in Ibero-American scientific journals (2018-2020) [Dataset]. https://datos.gob.es/en/catalogo/ea0020951-conjunto-de-datos-estadisticos-descriptivos-sobre-los-periodos-de-demora-de-evaluacion-y-publicacion-de-revistas-cientificas-iberoamericanas-2018-2020
    Explore at:
    Dataset updated
    Mar 18, 2022
    Dataset authored and provided by
    Agencia Estatal Consejo Superior de Investigaciones Científicas
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Descriptive statistical data of the review, acceptance and publication dates of a sample of 21890 articles from 326 Ibero-American scientific journals from all subject areas and countries included in the Latindex Catalogue 2.0 and published between 2018 and 2020. Number of cases, average, median, mode, maximum and standard deviation of the evaluation, publication and total days, disaggregated by document type, periodicity, subject area and country are included in the dataset. Also data about the number of journals by subject area and country used to build the analysed sample database are included.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
F. (Fabiano) Dalpiaz (2020). UC_vs_US Statistic Analysis.xlsx [Dataset]. http://doi.org/10.23644/uu.12631628.v1

UC_vs_US Statistic Analysis.xlsx

Explore at:
xlsxAvailable download formats
Dataset updated
Jul 9, 2020
Dataset provided by
Utrecht University
Authors
F. (Fabiano) Dalpiaz
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.

Tagging scheme:
Aligned (AL) - A concept is represented as a class in both models, either

with the same name or using synonyms or clearly linkable names; Wrongly represented (WR) - A class in the domain expert model is incorrectly represented in the student model, either (i) via an attribute, method, or relationship rather than class, or (ii) using a generic term (e.g., user'' instead ofurban planner''); System-oriented (SO) - A class in CM-Stud that denotes a technical implementation aspect, e.g., access control. Classes that represent legacy system or the system under design (portal, simulator) are legitimate; Omitted (OM) - A class in CM-Expert that does not appear in any way in CM-Stud; Missing (MI) - A class in CM-Stud that does not appear in any way in CM-Expert.

All the calculations and information provided in the following sheets

originate from that raw data.

Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,

including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.

Sheet 3 (Size-Ratio):

The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.

Sheet 4 (Overall):

Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.

For sheet 4 as well as for the following four sheets, diverging stacked bar

charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:

Sheet 5 (By-Notation):

Model correctness and model completeness is compared by notation - UC, US.

Sheet 6 (By-Case):

Model correctness and model completeness is compared by case - SIM, HOS, IFA.

Sheet 7 (By-Process):

Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.

Sheet 8 (By-Grade):

Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.

Search
Clear search
Close search
Google apps
Main menu