Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.
Tagging scheme:
Aligned (AL) - A concept is represented as a class in both models, either
with the same name or using synonyms or clearly linkable names;
Wrongly represented (WR) - A class in the domain expert model is
incorrectly represented in the student model, either (i) via an attribute,
method, or relationship rather than class, or
(ii) using a generic term (e.g., user'' instead of
urban
planner'');
System-oriented (SO) - A class in CM-Stud that denotes a technical
implementation aspect, e.g., access control. Classes that represent legacy
system or the system under design (portal, simulator) are legitimate;
Omitted (OM) - A class in CM-Expert that does not appear in any way in
CM-Stud;
Missing (MI) - A class in CM-Stud that does not appear in any way in
CM-Expert.
All the calculations and information provided in the following sheets
originate from that raw data.
Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.
Sheet 3 (Size-Ratio):
The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.
Sheet 4 (Overall):
Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.
For sheet 4 as well as for the following four sheets, diverging stacked bar
charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:
Sheet 5 (By-Notation):
Model correctness and model completeness is compared by notation - UC, US.
Sheet 6 (By-Case):
Model correctness and model completeness is compared by case - SIM, HOS, IFA.
Sheet 7 (By-Process):
Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.
Sheet 8 (By-Grade):
Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.
The Health Statistics and Health Research Database is Estonian largest set of health-related statistics and survey results administrated by National Institute for Health Development. Use of the database is free of charge.
The database consists of eight main areas divided into sub-areas. The data tables included in the sub-areas are assigned unique codes. The data tables presented in the database can be both viewed in the Internet environment, and downloaded using different file formats (.px, .xlsx, .csv, .json). You can download the detailed database user manual here (.pdf).
The database is constantly updated with new data. Dates of updating the existing data tables and adding new data are provided in the release calendar. The date of the last update to each table is provided after the title of the table in the list of data tables.
A contact person for each sub-area is provided under the "Definitions and Methodology" link of each sub-area, so you can ask additional information about the data published in the database. Contact this person for any further questions and data requests.
Read more about publication of health statistics by National Institute for Health Development in Health Statistics Dissemination Principles.
The Quick Statistics tables for each state or jurisdiction are based on data from the Treatment Episode Data Set (TEDS), displaying data on substance abuse treatment admissions during 2012, by primary substance of abuse and selected characteristics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 4 rows and is filtered where the book is The Cambridge dictionary of statistics. It features 7 columns including author, publication date, language, and book publisher.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The primary objective from this project was to acquire historical shoreline information for all of the Northern Ireland coastline. Having this detailed understanding of the coast’s shoreline position and geometry over annual to decadal time periods is essential in any management of the coast.The historical shoreline analysis was based on all available Ordnance Survey maps and aerial imagery information. Analysis looked at position and geometry over annual to decadal time periods, providing a dynamic picture of how the coastline has changed since the start of the early 1800s.Once all datasets were collated, data was interrogated using the ArcGIS package – Digital Shoreline Analysis System (DSAS). DSAS is a software package which enables a user to calculate rate-of-change statistics from multiple historical shoreline positions. Rate-of-change was collected at 25m intervals and displayed both statistically and spatially allowing for areas of retreat/accretion to be identified at any given stretch of coastline.The DSAS software will produce the following rate-of-change statistics:Net Shoreline Movement (NSM) – the distance between the oldest and the youngest shorelines.Shoreline Change Envelope (SCE) – a measure of the total change in shoreline movement considering all available shoreline positions and reporting their distances, without reference to their specific dates.End Point Rate (EPR) – derived by dividing the distance of shoreline movement by the time elapsed between the oldest and the youngest shoreline positions.Linear Regression Rate (LRR) – determines a rate of change statistic by fitting a least square regression to all shorelines at specific transects.Weighted Linear Regression Rate (WLR) - calculates a weighted linear regression of shoreline change on each transect. It considers the shoreline uncertainty giving more emphasis on shorelines with a smaller error.The end product provided by Ulster University is an invaluable tool and digital asset that has helped to visualise shoreline change and assess approximate rates of historical change at any given coastal stretch on the Northern Ireland coast.
The Dataset series contains historical versions of the data set “Statistic Units Base Circuits” up to and including 1.1.2022 and does not contain the current version. Latest and current version is available in the entry “Statistic units basic circuits” and can be found here: https://kartkatalog.geonorge.no/metadata/statistiske-enheter-grunnkretser/51d279f8-e2be-4f5e-9f72-1a53f7535ec1 The data set shows the basic district division in Norway. Basic circuits are stable statistical units that were established in cooperation between the municipality and Statistics Norway (SSB). The Dataset series contains historical versions of the data set “Statistic Units Base Circuits” up to and including 1.1.2022 and does not contain the current version. Latest and current version is available in the entry “Statistic units basic circuits” and can be found here:https://kartkatalog.geonorge.no/metadata/statistiske-enheter-grunnkretser/51d279f8-e2be-4f5e-9f72-1a53f7535ec1 The data set shows the basic district division in Norway. Basic circuits are stable statistical units that were established in cooperation between the municipality and Statistics Norway (SSB). Latest and current version is available in the entry “Statistic units basic circuits” and can be found here:https://kartkatalog.geonorge.no/metadata/statistiske-enheter-grunnkretser/51d279f8-e2be-4f5e-9f72-1a53f7535ec1 The data set shows the basic district division in Norway. Basic circuits are stable statistical units that were established in cooperation between the municipality and Statistics Norway (SSB).The Dataset series contains historical versions of the data set “Statistic Units Base Circuits” up to and including 1.1.2022 and does not contain the current version. Latest and current version is available in the entry “Statistic units basic circuits” and can be found here: https://kartkatalog.geonorge.no/metadata/statistiske-enheter-grunnkretser/51d279f8-e2be-4f5e-9f72-1a53f7535ec1 The data set shows the basic district division in Norway. Basic circuits are stable statistical units that were established in cooperation between the municipality and Statistics Norway (SSB).The Dataset series contains historical versions of the data set “Statistic Units Base Circuits” up to and including 1.1.2022 and does not contain the current version. Latest and current version is available in the entry “Statistic units basic circuits” and can be found here: https://kartkatalog.geonorge.no/metadata/statistiske-enheter-grunnkretser/51d279f8-e2be-4f5e-9f72-1a53f7535ec1 The data set shows the basic district division in Norway.Basic circuits are stable statistical units that were established in cooperation between the municipality and Statistics Norway (SSB). https://kartkatalog.geonorge.no/metadata/statistiske-enheter-grunnkretser/51d279f8-e2be-4f5e-9f72-1a53f7535ec1 The data set shows the basic district division in Norway.Basic circuits are stable statistical units that were established in cooperation between the municipality and Statistics Norway (SSB).https://kartkatalog.geonorge.no/metadata/statistiske-enheter-grunnkretser/51d279f8-e2be-4f5e-9f72-1a53f7535ec1 The data set shows the basic district division in Norway. Basic circuits are stable statistical units that were established in cooperation between the municipality and Statistics Norway (SSB).
We include a description of the data sets in the meta-data as well as sample code and results from a simulated data set. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: The R code is available on line here: https://github.com/warrenjl/SpGPCW. Format: Abstract The data used in the application section of the manuscript consist of geocoded birth records from the North Carolina State Center for Health Statistics, 2005-2008. In the simulation study section of the manuscript, we simulate synthetic data that closely match some of the key features of the birth certificate data while maintaining confidentiality of any actual pregnant women. Availability Due to the highly sensitive and identifying information contained in the birth certificate data (including latitude/longitude and address of residence at delivery), we are unable to make the data from the application section publicly available. However, we will make one of the simulated datasets available for any reader interested in applying the method to realistic simulated birth records data. This will also allow the user to become familiar with the required inputs of the model, how the data should be structured, and what type of output is obtained. While we cannot provide the application data here, access to the North Carolina birth records can be requested through the North Carolina State Center for Health Statistics and requires an appropriate data use agreement. Description Permissions: These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. File format: R workspace file. Metadata (including data dictionary) • y: Vector of binary responses (1: preterm birth, 0: control) • x: Matrix of covariates; one row for each simulated individual • z: Matrix of standardized pollution exposures • n: Number of simulated individuals • m: Number of exposure time periods (e.g., weeks of pregnancy) • p: Number of columns in the covariate design matrix • alpha_true: Vector of “true” critical window locations/magnitudes (i.e., the ground truth that we want to estimate). This dataset is associated with the following publication: Warren, J., W. Kong, T. Luben, and H. Chang. Critical Window Variable Selection: Estimating the Impact of Air Pollution on Very Preterm Birth. Biostatistics. Oxford University Press, OXFORD, UK, 1-30, (2019).
The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly, reaching *** zettabytes in 2024. Over the next five years up to 2028, global data creation is projected to grow to more than *** zettabytes. In 2020, the amount of data created and replicated reached a new high. The growth was higher than previously expected, caused by the increased demand due to the COVID-19 pandemic, as more people worked and learned from home and used home entertainment options more often. Storage capacity also growing Only a small percentage of this newly created data is kept though, as just * percent of the data produced and consumed in 2020 was saved and retained into 2021. In line with the strong growth of the data volume, the installed base of storage capacity is forecast to increase, growing at a compound annual growth rate of **** percent over the forecast period from 2020 to 2025. In 2020, the installed base of storage capacity reached *** zettabytes.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Search and rescue statistics Source agency: Defence Designation: National Statistics Language: English Alternative title: SAR Monthly
By VISHWANATH SESHAGIRI [source]
This dataset contains YouTube video and channel metadata to analyze the statistical relation between videos and form a topic tree. With 9 direct features, 13 more indirect features, it has all that you need to build a deep understanding of how videos are related – including information like total views per unit time, channel views, likes/subscribers ratio, comments/views ratio, dislikes/subscribers ratio etc. This data provides us with a unique opportunity to gain insights on topics such as subscriber count trends over time or calculating the impact of trends on subscriber engagement. We can develop powerful models that show us how different types of content drive viewership and identify the most popular styles or topics within YouTube's vast catalogue. Additionally this data offers an intriguing look into consumer behaviour as we can explore what drives people to watch specific videos at certain times or appreciate certain channels more than others - by analyzing things like likes per subscribers and dislikes per views ratios for example! Finally this dataset is completely open source with an easy-to-understand Github repo making it an invaluable resource for anyone looking to gain better insights into how their audience interacts with their content and how they might improve it in the future
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
How to Use This Dataset
In general, it is important to understand each parameter in the data set before proceeding with analysis. The parameters included are totalviews/channelelapsedtime, channelViewCount, likes/subscriber, views/subscribers, subscriberCounts, dislikes/views comments/subscriberchannelCommentCounts,, likes/dislikes comments/views dislikes/ subscribers totviewes /totsubsvews /elapsedtime.
To use this dataset for your own analysis:1) Review each parameter’s meaning and purpose in our dataset; 2) Get familiar with basic descriptive statistics such as mean median mode range; 3) Create visualizations or tables based on subsets of our data; 4) Understand correlations between different sets of variables or parameters; 5) Generate meaningful conclusions about specific channels or topics based on organized graph hierarchies or tables.; 6) Analyze trends over time for individual parameters as well as an aggregate reaction from all users when videos are released
Predicting the Relative Popularity of Videos: This dataset can be used to build a statistical model that can predict the relative popularity of videos based on various factors such as total views, channel viewers, likes/dislikes ratio, and comments/views ratio. This model could then be used to make recommendations and predict which videos are likely to become popular or go viral.
Creating Topic Trees: The dataset can also be used to create topic trees or taxonomies by analyzing the content of videos and looking at what topics they cover. For example, one could analyze the most popular YouTube channels in a specific subject area, group together those that discuss similar topics, and then build an organized tree structure around those topics in order to better understand viewer interests in that area.
Viewer Engagement Analysis: This dataset could also be used for viewer engagement analysis purposes by analyzing factors such as subscriber count, average time spent watching a video per user (elapsed time), comments made per view etc., so as to gain insights into how engaged viewers are with specific content or channels on YouTube. From this information it would be possible to optimize content strategy accordingly in order improve overall engagement rates across various types of video content and channel types
If you use this dataset in your research, please credit the original authors.
License
Unknown License - Please check the dataset description for more information.
File: YouTubeDataset_withChannelElapsed.csv | Column name | Description | |:----------------------------------|:-------------------------------------------------------| | totalviews/channelelapsedtime | Ratio of total views to channel elapsed time. (Ratio) | | channelViewCount | Total number of views for the channel. (Integer) | | likes/subscriber ...
Statistics showing the number of tenders according to the procurement method in each year
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overview
Data points present in this dataset were obtained following the subsequent steps: To assess the secretion efficiency of the constructs, 96 colonies from the selection plates were evaluated using the workflow presented in Figure Workflow. We picked transformed colonies and cultured in 400 μL TAP medium for 7 days in Deep-well plates (Corning Axygen®, No.: PDW500CS, Thermo Fisher Scientific Inc., Waltham, MA), covered with Breathe-Easy® (Sigma-Aldrich®). Cultivation was performed on a rotary shaker, set to 150 rpm, under constant illumination (50 μmol photons/m2s). Then 100 μL sample were transferred clear bottom 96-well plate (Corning Costar, Tewksbury, MA, USA) and fluorescence was measured using an Infinite® M200 PRO plate reader (Tecan, Männedorf, Switzerland). Fluorescence was measured at excitation 575/9 nm and emission 608/20 nm. Supernatant samples were obtained by spinning Deep-well plates at 3000 × g for 10 min and transferring 100 μL from each well to the clear bottom 96-well plate (Corning Costar, Tewksbury, MA, USA), followed by fluorescence measurement. To compare the constructs, R Statistic version 3.3.3 was used to perform one-way ANOVA (with Tukey's test), and to test statistical hypotheses, the significance level was set at 0.05. Graphs were generated in RStudio v1.0.136. The codes are deposit herein.
Info
ANOVA_Turkey_Sub.R -> code for ANOVA analysis in R statistic 3.3.3
barplot_R.R -> code to generate bar plot in R statistic 3.3.3
boxplotv2.R -> code to generate boxplot in R statistic 3.3.3
pRFU_+_bk.csv -> relative supernatant mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii
sup_+_bl.csv -> supernatant mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii
sup_raw.csv -> supernatant mCherry fluorescence dataset of 96 colonies for each construct.
who_+_bl2.csv -> whole culture mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii
who_raw.csv -> whole culture mCherry fluorescence dataset of 96 colonies for each construct.
who_+_Chlo.csv -> whole culture chlorophyll fluorescence dataset of 96 colonies for each construct.
Anova_Output_Summary_Guide.pdf -> Explain the ANOVA files content
ANOVA_pRFU_+_bk.doc -> ANOVA of relative supernatant mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii
ANOVA_sup_+_bk.doc -> ANOVA of supernatant mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii
ANOVA_who_+_bk.doc -> ANOVA of whole culture mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii
ANOVA_Chlo.doc -> ANOVA of whole culture chlorophyll fluorescence of all constructs, plus average and standard deviation values.
Consider citing our work.
Molino JVD, de Carvalho JCM, Mayfield SP (2018) Comparison of secretory signal peptides for heterologous protein expression in microalgae: Expanding the secretion portfolio for Chlamydomonas reinhardtii. PLoS ONE 13(2): e0192433. https://doi.org/10.1371/journal. pone.0192433
On 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.
This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.
MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/">Northern Ireland: Fire and Rescue Statistics.
If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@communities.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.
Fire statistics guidance
Fire statistics incident level datasets
https://assets.publishing.service.gov.uk/media/686d2aa22557debd867cbe14/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 153 KB) Previous FIRE0101 tables
https://assets.publishing.service.gov.uk/media/686d2ab52557debd867cbe15/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 2.19 MB) Previous FIRE0102 tables
https://assets.publishing.service.gov.uk/media/686d2aca10d550c668de3c69/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 201 KB) Previous FIRE0103 tables
https://assets.publishing.service.gov.uk/media/686d2ad92557debd867cbe16/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 492 KB) Previous FIRE0104 tables
https://assets.publishing.service.gov.uk/media/686d2af42cfe301b5fb6789f/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, 192 KB) Previous FIRE0201 tables
<span class="gem
Data associated with main analysis and figures presented in manuscript titled: "Long-term organic farming and floral diversity promotes stability of bee communities in agroecosystems." Dataset titled: "Bloom_BetaDiverstiy_GPSPointsAndSiteCharacteristics_DataFinal.csv" are associated with the map of site locations shown in Figure 1. These data are also given in Table 2 (note no data are associated with Table 1). GPS points have been jittered to protect the identity of farmer collaborators. Exact locations are available upon request and after consideration by the lead author. No data are associated with Figure 2. The four datasets tilted: "Bloom_BetaDiversity_GeometricRemovalXXX_DataFinal.csv" are files associated with the geometric species removal analysis accompanying Figure 3, where XXX is the scale (local or landscape) and term (species loss or removal) (see manuscript for details). Column definitions include: SiteID - the site for which the statistic was generated (local level only); SiteID1 - the first site involved in the pairwise comparison which generated the statistic (landscape level only); SiteID2 - the second site involved in the pairwise comparison which generated the statistic (landscape level only); year1 - the year (e.g., 20XX) for which the sample was taken at the site given in SiteID1 which then generated the statistic (landscape level only); year2 - the year (e.g., 20XX) for which the sample was taken at the site given in SiteID2 which then generated the statistic (landscape level only); variable - species removed at random; sim (replacement) or sne (loss) - the statistic with no species removed; value - the statistics with the species removed; vec - the color relating the number of species removed (see Figure 3 caption for column species number relationships). The dataset title: "Bloom_BetaDiverstiy_SADS_DataFinal.xlsx" contains three sheets each associated with a sample year (2014, 2015, 2016). Within each sheet are the vectors of abundance values and species names used to create species abundance models plotted in Figure 4. The datasets titled: "Bloom_BetaDiverstiy_LocalLevelRegressions_DataFinal.csv" and "Bloom_BetaDiverstiy_LandscapeLevelRegressions_DataFinal" contain statistics used to create Figure 5. The column name definitions that have not been previously given are as follows: detlaaic - difference in species abundance model fit (for local level); Years.Since.Transition - years since transitioning to organic farming scaled to enhance regression model fitting; sor - the overall Sorenson's beta diversity term for bees across years or sites (depends on scale see file name); sim - the species replacement term from the additive partition of Sorenson's beta diversity for bees across years or sites (depends on scale see file name); nes - the species loss term from the additive partition of Sorenson's beta diversity for bees across years or sites (depends on scale see file name); X.sor/X.sim/S.nes - where X is l and p for landscape and plant beta diversity for each term at the site across years or sites (depends on scale see file name); diff_years - differences in times since transitions to organic agriculture scaled to enhance regression model fitting (landscape level only); diff_do_new - difference in species abundance model fit (for landscape level); p.all - multiplication of the p.sim and l.nes terms for plotting the interaction shown in Figure 5d. The dataset titled: "Bloom_BetaDiverstiy_Jackknife_DataFinal.xlsx" contains 6 sheets corresponding to Figure 6 panels "a-f" in linear order. Column definitions include: pvalue - the pvalue found when the variable was removed from the site by variable matrix and used to create the histograms; variable - the variable that was removed from the site by variable matrix. Variables can be bee species, landscape classes, or plants given by their unique common name. The final 3 datasets are titled: "Bloom_BetaDiverstiy_BeeSiteXSpeciesMatrix_DataFinal.csv", "Bloom_BetaDiverstiy_LandscapeSiteXClassMatrix_DataFinal.csv", and "Bloom_BetaDiverstiy_PlantSiteXCommonNameMatrix_DataFinal.csv." These datasets contain the matrices used to generate these bee, landscape, and plant beta diversity metrics used for our analysis.
A computerized data set of demographic, economic and social data for 227 countries of the world. Information presented includes population, health, nutrition, mortality, fertility, family planning and contraceptive use, literacy, housing, and economic activity data. Tabular data are broken down by such variables as age, sex, and urban/rural residence. Data are organized as a series of statistical tables identified by country and table number. Each record consists of the data values associated with a single row of a given table. There are 105 tables with data for 208 countries. The second file is a note file, containing text of notes associated with various tables. These notes provide information such as definitions of categories (i.e. urban/rural) and how various values were calculated. The IDB was created in the U.S. Census Bureau''s International Programs Center (IPC) to help IPC staff meet the needs of organizations that sponsor IPC research. The IDB provides quick access to specialized information, with emphasis on demographic measures, for individual countries or groups of countries. The IDB combines data from country sources (typically censuses and surveys) with IPC estimates and projections to provide information dating back as far as 1950 and as far ahead as 2050. Because the IDB is maintained as a research tool for IPC sponsor requirements, the amount of information available may vary by country. As funding and research activity permit, the IPC updates and expands the data base content. Types of data include: * Population by age and sex * Vital rates, infant mortality, and life tables * Fertility and child survivorship * Migration * Marital status * Family planning Data characteristics: * Temporal: Selected years, 1950present, projected demographic data to 2050. * Spatial: 227 countries and areas. * Resolution: National population, selected data by urban/rural * residence, selected data by age and sex. Sources of data include: * U.S. Census Bureau * International projects (e.g., the Demographic and Health Survey) * United Nations agencies Links: * ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/08490
Historical Employment Statistics 1990 - current. The Current Employment Statistics (CES) more information program provides the most current estimates of nonfarm employment, hours, and earnings data by industry (place of work) for the nation as a whole, all states, and most major metropolitan areas. The CES survey is a federal-state cooperative endeavor in which states develop state and sub-state data using concepts, definitions, and technical procedures prescribed by the Bureau of Labor Statistics (BLS). Estimates produced by the CES program include both full- and part-time jobs. Excluded are self-employment, as well as agricultural and domestic positions. In Connecticut, more than 4,000 employers are surveyed each month to determine the number of the jobs in the State. For more information please visit us at http://www1.ctdol.state.ct.us/lmi/ces/default.asp.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Montvale by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Montvale. The dataset can be utilized to understand the population distribution of Montvale by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Montvale. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Montvale.
Key observations
Largest age group (population): Male # 35-39 years (610) | Female # 45-49 years (437). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Montvale Population by Gender. You can refer the same here
This coverage shows the total wheat production statistics by province in Kenya between 1986 and 1990 published in 1998 by the Food and Agriculture Organization of the United Nations (FAO) at a scale of 1:1000,000.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Descriptive statistical data of the review, acceptance and publication dates of a sample of 21890 articles from 326 Ibero-American scientific journals from all subject areas and countries included in the Latindex Catalogue 2.0 and published between 2018 and 2020. Number of cases, average, median, mode, maximum and standard deviation of the evaluation, publication and total days, disaggregated by document type, periodicity, subject area and country are included in the dataset. Also data about the number of journals by subject area and country used to build the analysed sample database are included.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.
Tagging scheme:
Aligned (AL) - A concept is represented as a class in both models, either
with the same name or using synonyms or clearly linkable names;
Wrongly represented (WR) - A class in the domain expert model is
incorrectly represented in the student model, either (i) via an attribute,
method, or relationship rather than class, or
(ii) using a generic term (e.g., user'' instead of
urban
planner'');
System-oriented (SO) - A class in CM-Stud that denotes a technical
implementation aspect, e.g., access control. Classes that represent legacy
system or the system under design (portal, simulator) are legitimate;
Omitted (OM) - A class in CM-Expert that does not appear in any way in
CM-Stud;
Missing (MI) - A class in CM-Stud that does not appear in any way in
CM-Expert.
All the calculations and information provided in the following sheets
originate from that raw data.
Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.
Sheet 3 (Size-Ratio):
The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.
Sheet 4 (Overall):
Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.
For sheet 4 as well as for the following four sheets, diverging stacked bar
charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:
Sheet 5 (By-Notation):
Model correctness and model completeness is compared by notation - UC, US.
Sheet 6 (By-Case):
Model correctness and model completeness is compared by case - SIM, HOS, IFA.
Sheet 7 (By-Process):
Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.
Sheet 8 (By-Grade):
Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.