5 datasets found
  1. FHIR Definitions Data Package

    • johnsnowlabs.com
    csv
    Updated Jan 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Snow Labs (2021). FHIR Definitions Data Package [Dataset]. https://www.johnsnowlabs.com/marketplace/fhir-definitions-data-package/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 20, 2021
    Dataset authored and provided by
    John Snow Labs
    Description

    Fast Healthcare Interoperability Resources (FHIR) is an interoperability standard for electronic exchange of healthcare information. FHIR was developed by Health Level Seven International (HL7), a not-for-profit organization accredited by the American National Standards Institute that develops and provides frameworks and standards for the sharing, integration and retrieval of clinical health data and other electronic health information.

  2. FAIRness score for each repository (mean and SD).

    • plos.figshare.com
    xls
    Updated Nov 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmad Sofi-Mahmudi; Eero Raittio; Yeganeh Khazaei; Javed Ashraf; Falk Schwendicke; Sergio E. Uribe; David Moher (2024). FAIRness score for each repository (mean and SD). [Dataset]. http://doi.org/10.1371/journal.pone.0313991.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Nov 18, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Ahmad Sofi-Mahmudi; Eero Raittio; Yeganeh Khazaei; Javed Ashraf; Falk Schwendicke; Sergio E. Uribe; David Moher
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundAccording to the FAIR principles (Findable, Accessible, Interoperable, and Reusable), scientific research data should be findable, accessible, interoperable, and reusable. The COVID-19 pandemic has led to massive research activities and an unprecedented number of topical publications in a short time. However, no evaluation has assessed whether this COVID-19-related research data has complied with FAIR principles (or FAIRness).ObjectiveOur objective was to investigate the availability of open data in COVID-19-related research and to assess compliance with FAIRness.MethodsWe conducted a comprehensive search and retrieved all open-access articles related to COVID-19 from journals indexed in PubMed, available in the Europe PubMed Central database, published from January 2020 through June 2023, using the metareadr package. Using rtransparent, a validated automated tool, we identified articles with links to their raw data hosted in a public repository. We then screened the link and included those repositories that included data specifically for their pertaining paper. Subsequently, we automatically assessed the adherence of the repositories to the FAIR principles using FAIRsFAIR Research Data Object Assessment Service (F-UJI) and rfuji package. The FAIR scores ranged from 1–22 and had four components. We reported descriptive analysis for each article type, journal category, and repository. We used linear regression models to find the most influential factors on the FAIRness of data.Results5,700 URLs were included in the final analysis, sharing their data in a general-purpose repository. The mean (standard deviation, SD) level of compliance with FAIR metrics was 9.4 (4.88). The percentages of moderate or advanced compliance were as follows: Findability: 100.0%, Accessibility: 21.5%, Interoperability: 46.7%, and Reusability: 61.3%. The overall and component-wise monthly trends were consistent over the follow-up. Reviews (9.80, SD = 5.06, n = 160), articles in dental journals (13.67, SD = 3.51, n = 3) and Harvard Dataverse (15.79, SD = 3.65, n = 244) had the highest mean FAIRness scores, whereas letters (7.83, SD = 4.30, n = 55), articles in neuroscience journals (8.16, SD = 3.73, n = 63), and those deposited in GitHub (4.50, SD = 0.13, n = 2,152) showed the lowest scores. Regression models showed that the repository was the most influential factor on FAIRness scores (R2 = 0.809).ConclusionThis paper underscored the potential for improvement across all facets of FAIR principles, specifically emphasizing Interoperability and Reusability in the data shared within general repositories during the COVID-19 pandemic.

  3. G

    Data Reference Standard on Countries, Territories and Geographic areas

    • open.canada.ca
    • ouvert.canada.ca
    csv
    Updated Mar 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Global Affairs Canada (2025). Data Reference Standard on Countries, Territories and Geographic areas [Dataset]. https://open.canada.ca/data/dataset/cac6fd9f-594a-4bcd-bf17-10295812d4c5
    Explore at:
    csvAvailable download formats
    Dataset updated
    Mar 4, 2025
    Dataset provided by
    Global Affairs Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    This reference data provides a standard list of values for all Countries, Territories and Geographic areas. This list is intended to standardize the way Countries, Territories and Geographic areas are described in datasets to enable data interoperability and improve data quality. The data dictionary explains what each column means in the list.

  4. e

    New Zealand Regional Councils

    • gisinschools.eagle.co.nz
    Updated Nov 10, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS in Schools - Teaching Materials - New Zealand (2016). New Zealand Regional Councils [Dataset]. https://gisinschools.eagle.co.nz/items/d8937f1974c748b0a0b7d69306518a0a
    Explore at:
    Dataset updated
    Nov 10, 2016
    Dataset authored and provided by
    GIS in Schools - Teaching Materials - New Zealand
    Area covered
    Cook Strait
    Description

    The region is the top tier of local government in New Zealand. There are 16 regions of New Zealand (Part 1 of Schedule 2 of the Local Government Act 2002). Eleven are governed by an elected regional council, while five are governed by territorial authorities (the second tier of local government) who also perform the functions of a regional council and thus are known as unitary authorities. These unitary authorities are Auckland Council, Nelson City Council, Gisborne, Tasman, and Marlborough District Councils. The Chatham Islands Council also perform some of the functions of a regional council, but is not strictly a unitary authority. Unitary authorities act as regional councils for the purposes of a wide range of Acts and regulations. Regional council areas are based on water catchment areas. Regional councils are responsible for the administration of many environmental and public transport matters.Regional Councils were established in 1989 after the abolition of the 22 local government regions. The local government act 2002, requires the boundaries of regions to confirm as far as possible to one or more water catchments. When determining regional boundaries, the local Government commission gave consideration to regional communities of interest when selecting water catchments to included in a region. It also considered factors such as natural resource management, land use planning and environmental matters. Some regional boundaries are conterminous with territorial authority boundaries but there are many exceptions. An example is Taupo District, which is split between four regions, although most of its area falls within the Waikato Region. Where territorial local authorities straddle regional council boundaries, the affected area have been statistically defined in complete area units. Generally regional councils contain complete territorial authorities. The unitary authority of the Auckland Council was formed in 2010, under the Local Government (Tamaki Makarau Reorganisation) Act 2009, replacing the Auckland Regional Council and seven territorial authorities.The seaward boundary of any costal regional council is the twelve mile New Zealand territorial limit. Regional councils are defined at meshblock and area unit level.Regional Councils included in the 2013 digital pattern are:Regional Council CodeRegional Council Name01Northland Region02Auckland Region03Waikato Region04Bay of Plenty Region05Gisborne Region06Hawke's Bay Region07Taranaki Region08Manawatu-Wanganui Region09Wellington Region12West Coast Region13Canterbury Region14Otago Region15Southland Region16Tasman Region17Nelson Region18Marlborough Region99Area Outside RegionAs at 1stJuly 2007, Digital Boundary data became freely available.Deriving of Output FilesThe original vertices delineating the meshblock boundary pattern were digitised in 1991 from 1:5,000 scale urban maps and 1:50,000 scale rural maps. The magnitude of error of the original digital points would have been in the range of +/- 10 metres in urban areas and +/- 25 metres in rural areas. Where meshblock boundaries coincide with cadastral boundaries the magnitude of error will be within the range of 1–5 metres in urban areas and 5 - 20 metres in rural areas. This being the estimated magnitude of error of Landonline.The creation of high definition and generalised meshblock boundaries for the 2013 digital pattern and the dissolving of these meshblocks into other geographies/boundaries were completed within Statistics New Zealand using ESRI's ArcGIS desktop suite and the Data Interoperability extension with the following process: 1. Import data and all attribute fields into an ESRI File Geodatabase from LINZ as a shapefile2. Run geometry checks and repairs.3. Run Topology Checks on all data (Must Not Have Gaps, Must Not Overlap), detailed below.4. Generalise the meshblock layers to a 1m tolerance to create generalised dataset. 5. Clip the high definition and generalised meshblock layers to the coastline using land water codes.6. Dissolve all four meshblock datasets (clipped and unclipped, for both generalised and high definition versions) to higher geographies to create the following output data layers: Area Unit, Territorial Authorities, Regional Council, Urban Areas, Community Boards, Territorial Authority Subdivisions, Wards Constituencies and Maori Constituencies for the four datasets. 7. Complete a frequency analysis to determine that each code only has a single record.8. Re-run topology checks for overlaps and gaps.9. Export all created datasets into MapInfo and Shapefile format using the Data Interoperability extension to create 3 output formats for each file. 10. Quality Assurance and rechecking of delivery files.The High Definition version is similar to how the layer exists in Landonline with a couple of changes to fix topology errors identified in topology checking. The following quality checks and steps were applied to the meshblock pattern:Translation of ESRI Shapefiles to ESRI geodatabase datasetThe meshblock dataset was imported into the ESRI File Geodatabase format, required to run the ESRI topology checks. Topology rules were set for each of the layers. Topology ChecksA tolerance of 0.1 cm was applied to the data, which meant that the topology engine validating the data saw any vertex closer than this distance as the same location. A default topology rule of “Must Be Larger than Cluster Tolerance” is applied to all data – this would highlight where any features with a width less than 0.1cm exist. No errors were found for this rule.Three additional topology rules were applied specifically within each of the layers in the ESRI geodatabase – namely “Must Not Overlap”, “Must Not Have Gaps” and “"Area Boundary Must Be Covered By Boundary Of (Meshblock)”. These check that a layer forms a continuous coverage over a surface, that any given point on that surface is only assigned to a single category, and that the dissolved boundaries are identical to the parent meshblock boundaries.Topology Checks Results: There were no errors in either the gap or overlap checks.GeneralisingTo create the generalised Meshblock layer the “Simplify Polygon” geoprocessing tool was used in ArcGIS, with the following parameters:Simplification Algorithm: POINT_REMOVEMaximum Allowable Offset: 1 metreMinimum Area: 1 square metreHandling Topological Errors: RESOLVE_ERRORSClipping of Layers to CoastlineThe processed feature class was then clipped to the coastline. The coastline was defined as features within the supplied Land2013 with codes and descriptions as follows:11- Island – Included12- Mainland – Included21- Inland Water – Included22- Inlet – Excluded23- Oceanic –Excluded33- Other – Included.Features were clipped using the Data Interoperability extension, attribute filter tool. The attribute filter was used on both the generalised and high definition meshblock datasets creating four meshblock layers. Each meshblock dataset also contained all higher geographies and land-water data as attributes. Note: Meshblock 0017001 which is classified as island, was excluded from the clipped meshblock layers, as most of this meshblock is oceanic. Dissolve meshblocks to higher geographiesStatistics New Zealand then dissolved the ESRI meshblock feature classes to the higher geographies, for both the full and clipped dataset, generalised and high definition datasets. To dissolve the higher geographies, a model was built using the dissolver, aggregator and sorter tools, with each output set to include geography code and names within the Data Interoperability extension. Export to MapInfo Format and ShapfilesThe data was exported to MapInfo and Shapefile format using ESRI's Data Interoperability extension Translation tool. Quality Assurance and rechecking of delivery filesThe feature counts of all files were checked to ensure all layers had the correct number of features. This included checking that all multipart features had translated correctly in the new file.

  5. f

    Definition of concept coverage scores for ASSESS CT manual annotation.

    • plos.figshare.com
    xls
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jose Antonio Miñarro-Giménez; Catalina Martínez-Costa; Daniel Karlsson; Stefan Schulz; Kirstine Rosenbeck Gøeg (2023). Definition of concept coverage scores for ASSESS CT manual annotation. [Dataset]. http://doi.org/10.1371/journal.pone.0209547.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Jose Antonio Miñarro-Giménez; Catalina Martínez-Costa; Daniel Karlsson; Stefan Schulz; Kirstine Rosenbeck Gøeg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Definition of concept coverage scores for ASSESS CT manual annotation.

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
John Snow Labs (2021). FHIR Definitions Data Package [Dataset]. https://www.johnsnowlabs.com/marketplace/fhir-definitions-data-package/
Organization logo

FHIR Definitions Data Package

FHIR Resources And Data Types;Electronic Health Records Exchange Through FHIR

Explore at:
csvAvailable download formats
Dataset updated
Jan 20, 2021
Dataset authored and provided by
John Snow Labs
Description

Fast Healthcare Interoperability Resources (FHIR) is an interoperability standard for electronic exchange of healthcare information. FHIR was developed by Health Level Seven International (HL7), a not-for-profit organization accredited by the American National Standards Institute that develops and provides frameworks and standards for the sharing, integration and retrieval of clinical health data and other electronic health information.

Search
Clear search
Close search
Google apps
Main menu