100+ datasets found
  1. d

    Innovating the Data Ecosystem: An Update of the Federal Big Data Research...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated May 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCO NITRD (2025). Innovating the Data Ecosystem: An Update of the Federal Big Data Research and Development Strategic Plan [Dataset]. https://catalog.data.gov/dataset/innovating-the-data-ecosystem-an-update-of-the-federal-big-data-research-and-development-s
    Explore at:
    Dataset updated
    May 14, 2025
    Dataset provided by
    NCO NITRD
    Description

    This document, Innovating the Data Ecosystem: An Update of The Federal Big Data Research and Development Strategic Plan, updates the 2016 Federal Big Data Research and Development Strategic Plan. This plan updates the vision and strategies on the research and development needs for big data laid out in the 2016 Strategic Plan through the six strategies areas (enhance the reusability and integrity of data; enable innovative, user-driven data science; develop and enhance the robustness of the federated ecosystem; prioritize privacy, ethics, and security; develop necessary expertise and diverse talent; and enhance U.S. leadership in the international context) to enhance data value and reusability and responsiveness to federal policies on data sharing and management.

  2. D

    Data Mining Tools Market Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Feb 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Data Mining Tools Market Report [Dataset]. https://www.marketresearchforecast.com/reports/data-mining-tools-market-1722
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Feb 3, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Mining Tools Market size was valued at USD 1.01 USD billion in 2023 and is projected to reach USD 1.99 USD billion by 2032, exhibiting a CAGR of 10.2 % during the forecast period. The growing adoption of data-driven decision-making and the increasing need for business intelligence are major factors driving market growth. Data mining refers to filtering, sorting, and classifying data from larger datasets to reveal subtle patterns and relationships, which helps enterprises identify and solve complex business problems through data analysis. Data mining software tools and techniques allow organizations to foresee future market trends and make business-critical decisions at crucial times. Data mining is an essential component of data science that employs advanced data analytics to derive insightful information from large volumes of data. Businesses rely heavily on data mining to undertake analytics initiatives in the organizational setup. The analyzed data sourced from data mining is used for varied analytics and business intelligence (BI) applications, which consider real-time data analysis along with some historical pieces of information. Recent developments include: May 2023 – WiMi Hologram Cloud Inc. introduced a new data interaction system developed by combining neural network technology and data mining. Using real-time interaction, the system can offer reliable and safe information transmission., May 2023 – U.S. Data Mining Group, Inc., operating in bitcoin mining site, announced a hosting contract to deploy 150,000 bitcoins in partnership with major companies such as TeslaWatt, Sphere 3D, Marathon Digital, and more. The company is offering industry turn-key solutions for curtailment, accounting, and customer relations., April 2023 – Artificial intelligence and single-cell biotech analytics firm, One Biosciences, launched a single cell data mining algorithm called ‘MAYA’. The algorithm is for cancer patients to detect therapeutic vulnerabilities., May 2022 – Europe-based Solarisbank, a banking-as-a-service provider, announced its partnership with Snowflake to boost its cloud data strategy. Using the advanced cloud infrastructure, the company can enhance data mining efficiency and strengthen its banking position.. Key drivers for this market are: Increasing Focus on Customer Satisfaction to Drive Market Growth. Potential restraints include: Requirement of Skilled Technical Resources Likely to Hamper Market Growth. Notable trends are: Incorporation of Data Mining and Machine Learning Solutions to Propel Market Growth.

  3. f

    Orange dataset table

    • figshare.com
    xlsx
    Updated Mar 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rui Simões (2022). Orange dataset table [Dataset]. http://doi.org/10.6084/m9.figshare.19146410.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 4, 2022
    Dataset provided by
    figshare
    Authors
    Rui Simões
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The complete dataset used in the analysis comprises 36 samples, each described by 11 numeric features and 1 target. The attributes considered were caspase 3/7 activity, Mitotracker red CMXRos area and intensity (3 h and 24 h incubations with both compounds), Mitosox oxidation (3 h incubation with the referred compounds) and oxidation rate, DCFDA fluorescence (3 h and 24 h incubations with either compound) and oxidation rate, and DQ BSA hydrolysis. The target of each instance corresponds to one of the 9 possible classes (4 samples per class): Control, 6.25, 12.5, 25 and 50 µM for 6-OHDA and 0.03, 0.06, 0.125 and 0.25 µM for rotenone. The dataset is balanced, it does not contain any missing values and data was standardized across features. The small number of samples prevented a full and strong statistical analysis of the results. Nevertheless, it allowed the identification of relevant hidden patterns and trends.

    Exploratory data analysis, information gain, hierarchical clustering, and supervised predictive modeling were performed using Orange Data Mining version 3.25.1 [41]. Hierarchical clustering was performed using the Euclidean distance metric and weighted linkage. Cluster maps were plotted to relate the features with higher mutual information (in rows) with instances (in columns), with the color of each cell representing the normalized level of a particular feature in a specific instance. The information is grouped both in rows and in columns by a two-way hierarchical clustering method using the Euclidean distances and average linkage. Stratified cross-validation was used to train the supervised decision tree. A set of preliminary empirical experiments were performed to choose the best parameters for each algorithm, and we verified that, within moderate variations, there were no significant changes in the outcome. The following settings were adopted for the decision tree algorithm: minimum number of samples in leaves: 2; minimum number of samples required to split an internal node: 5; stop splitting when majority reaches: 95%; criterion: gain ratio. The performance of the supervised model was assessed using accuracy, precision, recall, F-measure and area under the ROC curve (AUC) metrics.

  4. o

    Indigenous data analysis methods for research

    • osf.io
    url
    Updated Jun 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nina Sivertsen; Tahlia Johnson; Annette Briley; Shanamae Davies; Tara Struck; Larissa Taylor; Susan Smith; Megan Cooper; Jaclyn Davey (2024). Indigenous data analysis methods for research [Dataset]. http://doi.org/10.17605/OSF.IO/VNZD9
    Explore at:
    urlAvailable download formats
    Dataset updated
    Jun 12, 2024
    Dataset provided by
    Center For Open Science
    Authors
    Nina Sivertsen; Tahlia Johnson; Annette Briley; Shanamae Davies; Tara Struck; Larissa Taylor; Susan Smith; Megan Cooper; Jaclyn Davey
    Description

    Objective: The objective of this review is to identify what is known about Indigenous data analysis methods for research. Introduction: Understanding Indigenous data analyses methods for research is crucial in health research with Indigenous participants, to support culturally appropriate interpretation of research data, and culturally inclusive analyses in cross-cultural research teams. Inclusion Criteria: This review will consider primary research studies that report on Indigenous data analysis methods for research. Method: Medline (via Ovid SP), PsycINFO (via Ovid SP), Web of Science (Clarivate Analytics), Scopus (Elsevier), Cumulated Index to Nursing and Allied Health Literature CINAHL (EBSCOhost), ProQuest Central, ProQuest Social Sciences Premium (Clarivate) will be searched. ProQuest (Theses and Dissertations) will be searched for unpublished material. Studies published from inception onwards and written in English will be assessed for inclusion. Studies meeting the inclusion criteria will be assessed for methodological quality and data will be extracted.

  5. P

    Pharmaceutical Data Analysis Platform Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Pharmaceutical Data Analysis Platform Report [Dataset]. https://www.datainsightsmarket.com/reports/pharmaceutical-data-analysis-platform-1455681
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The pharmaceutical data analysis platform market is experiencing robust growth, driven by the increasing volume of healthcare data, the need for advanced analytics to accelerate drug discovery and development, and the rising demand for personalized medicine. The market, estimated at $5 billion in 2025, is projected to grow at a compound annual growth rate (CAGR) of 15% from 2025 to 2033, reaching approximately $15 billion by 2033. This expansion is fueled by several key trends, including the adoption of cloud-based solutions for enhanced scalability and accessibility, the integration of artificial intelligence (AI) and machine learning (ML) for improved data analysis and predictive modeling, and the growing focus on regulatory compliance and data security. Major players like Quest Diagnostics, IQVIA, and Accenture are driving innovation through strategic partnerships and the development of sophisticated analytical tools. However, market growth faces certain restraints. High initial investment costs for implementing these platforms, the need for specialized expertise in data science and analytics, and concerns regarding data privacy and security can hinder broader adoption. Nevertheless, the substantial benefits of improved drug development efficiency, enhanced patient outcomes, and cost optimization are expected to outweigh these challenges, leading to sustained market growth. Segmentation within the market includes solutions based on cloud, on-premise, and hybrid deployment models, as well as specialized applications for clinical trials, regulatory affairs, and drug safety. Geographic regions are witnessing varying levels of adoption, with North America and Europe currently dominating the market, though the Asia-Pacific region is expected to show significant growth in the coming years due to increasing investment in healthcare infrastructure and technological advancements.

  6. Technologies used in big data analysis 2015

    • statista.com
    Updated Jul 29, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2015). Technologies used in big data analysis 2015 [Dataset]. https://www.statista.com/statistics/491267/big-data-technologies-used/
    Explore at:
    Dataset updated
    Jul 29, 2015
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Dec 2014 - Feb 2015
    Area covered
    Worldwide, Europe, North America
    Description

    This graph presents the results of a survey, conducted by BARC in 2014/15, into the current and planned use of technology for the analysis of big data. At the beginning of 2015, ** percent of respondents indicated that their company was already using a big data analytical appliance for big data.

  7. Big Data Analysis Platform Market Report | Global Forecast From 2025 To 2033...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Big Data Analysis Platform Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-big-data-analysis-platform-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Big Data Analysis Platform Market Outlook



    The global market size for Big Data Analysis Platforms is projected to grow from USD 35.5 billion in 2023 to an impressive USD 110.7 billion by 2032, reflecting a CAGR of 13.5%. This substantial growth can be attributed to the increasing adoption of data-driven decision-making processes across various industries, the rapid proliferation of IoT devices, and the ever-growing volumes of data generated globally.



    One of the primary growth factors for the Big Data Analysis Platform market is the escalating need for businesses to derive actionable insights from complex and voluminous datasets. With the advent of technologies such as artificial intelligence and machine learning, organizations are increasingly leveraging big data analytics to enhance their operational efficiency, customer experience, and competitiveness. The ability to process vast amounts of data quickly and accurately is proving to be a game-changer, enabling businesses to make more informed decisions, predict market trends, and optimize their supply chains.



    Another significant driver is the rise of digital transformation initiatives across various sectors. Companies are increasingly adopting digital technologies to improve their business processes and meet changing customer expectations. Big Data Analysis Platforms are central to these initiatives, providing the necessary tools to analyze and interpret data from diverse sources, including social media, customer transactions, and sensor data. This trend is particularly pronounced in sectors such as retail, healthcare, and BFSI (banking, financial services, and insurance), where data analytics is crucial for personalizing customer experiences, managing risks, and improving operational efficiencies.



    Moreover, the growing adoption of cloud computing is significantly influencing the market. Cloud-based Big Data Analysis Platforms offer several advantages over traditional on-premises solutions, including scalability, flexibility, and cost-effectiveness. Businesses of all sizes are increasingly turning to cloud-based analytics solutions to handle their data processing needs. The ability to scale up or down based on demand, coupled with reduced infrastructure costs, makes cloud-based solutions particularly appealing to small and medium-sized enterprises (SMEs) that may not have the resources to invest in extensive on-premises infrastructure.



    Data Science and Machine-Learning Platforms play a pivotal role in the evolution of Big Data Analysis Platforms. These platforms provide the necessary tools and frameworks for processing and analyzing vast datasets, enabling organizations to uncover hidden patterns and insights. By integrating data science techniques with machine learning algorithms, businesses can automate the analysis process, leading to more accurate predictions and efficient decision-making. This integration is particularly beneficial in sectors such as finance and healthcare, where the ability to quickly analyze complex data can lead to significant competitive advantages. As the demand for data-driven insights continues to grow, the role of data science and machine-learning platforms in enhancing big data analytics capabilities is becoming increasingly critical.



    From a regional perspective, North America currently holds the largest market share, driven by the presence of major technology companies, high adoption rates of advanced technologies, and substantial investments in data analytics infrastructure. Europe and the Asia Pacific regions are also experiencing significant growth, fueled by increasing digitalization efforts and the rising importance of data analytics in business strategy. The Asia Pacific region, in particular, is expected to witness the highest CAGR during the forecast period, propelled by rapid economic growth, a burgeoning middle class, and increasing internet and smartphone penetration.



    Component Analysis



    The Big Data Analysis Platform market can be broadly categorized into three components: Software, Hardware, and Services. The software segment includes analytics software, data management software, and visualization tools, which are crucial for analyzing and interpreting large datasets. This segment is expected to dominate the market due to the continuous advancements in analytics software and the increasing need for sophisticated data analysis tools. Analytics software enables organizations to process and analyze data from multiple sources,

  8. c

    Global Data Analysis Software Market Report 2025 Edition, Market Size,...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated Apr 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2025). Global Data Analysis Software Market Report 2025 Edition, Market Size, Share, CAGR, Forecast, Revenue [Dataset]. https://www.cognitivemarketresearch.com/data-analysis-software-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Apr 15, 2025
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    Global Data Analysis Software market size 2025 is $72.3 Billion whereas according out published study it will reach to $169.815 Billion by 2033. Data Analysis Software market will be growing at a CAGR of 11.264% during 2025 to 2033.

  9. Tools used for data-driven marketing worldwide 2020

    • statista.com
    Updated Dec 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Tools used for data-driven marketing worldwide 2020 [Dataset]. https://www.statista.com/statistics/264163/tools-for-data-analysis-used-worldwide/
    Explore at:
    Dataset updated
    Dec 10, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    During a 2019/2020 survey carried out among marketers with global responsibility for media and programmatic, 43 percent stated that they used a customer data platform with agency license and execution; 24 percent said they did not used a CDP at all.

  10. Data from: A Sensitivity Analysis of Methodological Variables Associated...

    • catalog.data.gov
    • data.nist.gov
    Updated Dec 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Standards and Technology (2023). A Sensitivity Analysis of Methodological Variables Associated with Microbiome Measurements [Dataset]. https://catalog.data.gov/dataset/a-sensitivity-analysis-of-methodological-variables-associated-with-microbiome-measurements-83f38
    Explore at:
    Dataset updated
    Dec 15, 2023
    Dataset provided by
    National Institute of Standards and Technologyhttp://www.nist.gov/
    Description

    This repository provides the raw data, analysis code, and results generated during a systematic evaluation of the impact of selected experimental protocol choices on the metagenomic sequencing analysis of microbiome samples. Briefly, a full factorial experimental design was implemented varying biological sample (n=5), operator (n=2), lot (n=2), extraction kit (n=2), 16S variable region (n=2), and reference database (n=3), and the main effects were calculated and compared between parameters (bias effects) and samples (real biological differences). A full description of the effort is provided in the associated publication.

  11. i

    Data and analysis of the avatar surveys

    • ieee-dataport.org
    Updated Jul 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ines Miguel Alonso (2024). Data and analysis of the avatar surveys [Dataset]. https://ieee-dataport.org/documents/data-and-analysis-avatar-surveys
    Explore at:
    Dataset updated
    Jul 9, 2024
    Authors
    Ines Miguel Alonso
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data and analysis of the surveys to study the users' opinion about the presence of an avatar during a learning experience in Mixed Reality. Also there are demographic data and the open questions collected. This data was used in the paper Evaluating the Effectiveness of Avatar-Based Collaboration in XR for Pump Station Training Scenarios for the GeCon 2024 Conference.

  12. D

    Data Analysis Application Solution Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Analysis Application Solution Report [Dataset]. https://www.datainsightsmarket.com/reports/data-analysis-application-solution-1439900
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    May 23, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Analysis Application Solution market is experiencing robust growth, driven by the increasing volume and complexity of data generated across industries. The market, estimated at $15 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching an estimated $45 billion by 2033. This expansion is fueled by several key factors, including the rising adoption of cloud-based solutions offering scalability and cost-effectiveness, the growing need for real-time data analytics to support faster decision-making, and the increasing demand for advanced analytics techniques like machine learning and AI to extract deeper insights from data. Furthermore, the market is segmented by deployment (cloud, on-premise), application (business intelligence, data visualization, predictive analytics), and industry (BFSI, healthcare, retail, manufacturing). The competitive landscape is dynamic, with established players like SAP, Microsoft, and Qlik alongside emerging innovative companies like BigID and Collibra vying for market share through continuous product development and strategic partnerships. The major restraints on market growth include the high initial investment costs associated with implementing data analysis solutions, the need for skilled professionals to manage and interpret the data, and concerns around data security and privacy. However, these challenges are being addressed by the development of user-friendly interfaces, affordable cloud-based options, and enhanced data security measures. The market is also witnessing several trends, such as the increasing adoption of self-service analytics tools, empowering business users to perform their own data analysis, and the growing integration of data analysis solutions with other business applications to streamline workflows. The geographical distribution of the market reflects a strong presence in North America and Europe, with significant growth potential in emerging markets like Asia-Pacific. The presence of companies like Sterlite Technologies and Aparavi indicates a growing focus on the development of specialized data analytics applications targeting niche market segments.

  13. t

    Ecommerce Analytics Reports: Decision-Driven Data Analysis & Conventions...

    • thegood.com
    html
    Updated Dec 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Good (2024). Ecommerce Analytics Reports: Decision-Driven Data Analysis & Conventions That Mean More Than Benchmarks [Dataset]. https://thegood.com/insights/ecommerce-google-analytics-reports/
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Dec 4, 2024
    Dataset authored and provided by
    The Good
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The first step in any new digital experience optimization program is to build a strong understanding of the digital journey. The reason is pretty simple. Whether it’s a software registration experience or an ecommerce path to purchase, our goal is always to identify challenges and present a clear roadmap to address them. But we first […]

  14. student-performance-data

    • kaggle.com
    Updated Jun 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muhammad Azam (2025). student-performance-data [Dataset]. http://doi.org/10.34740/kaggle/dsv/12160820
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 14, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Muhammad Azam
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Student Performance Data

    This dataset provides insights into various factors influencing the academic performance of students. It is curated for use in educational research, data analytics projects, and predictive modeling. The data reflects a combination of personal, familial, and academic-related variables gathered through observation or survey.

    The dataset includes a diverse range of students and captures key characteristics such as study habits, family background, school attendance, and overall performance. It is well-suited for exploring correlations, visualizing trends, and training machine learning models related to academic outcomes.

    Highlights:

    Clean, structured format suitable for immediate use Designed for beginner to intermediate-level data analysis Valuable for classification, regression, and data storytelling projects

    File Format:

    Type: CSV (Comma-Separated Values) Encoding: UTF-8 Structure: Each row represents a student record

    Applications

    Student performance prediction Educational policy planning Identification of performance gaps and influencing factors Exploratory data analysis and visualization

  15. M

    AI-Powered Data Analysis in Audits Market Vast Growth at 18.4%

    • scoop.market.us
    Updated Jul 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market.us Scoop (2025). AI-Powered Data Analysis in Audits Market Vast Growth at 18.4% [Dataset]. https://scoop.market.us/ai-powered-data-analysis-in-audits-market-news/
    Explore at:
    Dataset updated
    Jul 2, 2025
    Dataset authored and provided by
    Market.us Scoop
    License

    https://scoop.market.us/privacy-policyhttps://scoop.market.us/privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    Global
    Description

    Introduction

    The global AI-powered data analysis in audits market is set for significant growth, expected to reach USD 45.75 Billion by 2034, up from USD 8.45 Billion in 2024, growing at a robust CAGR of 18.4% during the forecast period from 2025 to 2034.

    The increasing adoption of artificial intelligence (AI) in audit processes is transforming how businesses perform audits by enabling more efficient, accurate, and faster data analysis. AI-driven audit tools are improving risk management, fraud detection, compliance, and data validation, making it an essential tool for modern businesses in various industries, including finance, healthcare, and government.

    https://sp-ao.shortpixel.ai/client/to_auto,q_lossy,ret_img,w_1216/https://market.us/wp-content/uploads/2025/06/AI-Powered-Data-Analysis-in-Audits-Market-Size.png" alt="">
  16. Z

    Monthly Data Analysis

    • data.niaid.nih.gov
    Updated Feb 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Beltrán Antolín (2025). Monthly Data Analysis [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_14833731
    Explore at:
    Dataset updated
    Feb 7, 2025
    Dataset authored and provided by
    David Beltrán Antolín
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Análisis mensual de datos, incluyendo tendencias y patrones clave.

  17. D

    Data Analysis Services Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Analysis Services Report [Dataset]. https://www.datainsightsmarket.com/reports/data-analysis-services-1989313
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    May 26, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Analysis Services market is experiencing robust growth, driven by the exponential increase in data volume and the rising demand for data-driven decision-making across various industries. The market, estimated at $150 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching an impressive $450 billion by 2033. This expansion is fueled by several key factors, including the increasing adoption of cloud-based analytics platforms, the growing need for advanced analytics techniques like machine learning and AI, and the rising focus on data security and compliance. The market is segmented by service type (e.g., predictive analytics, descriptive analytics, prescriptive analytics), industry vertical (e.g., healthcare, finance, retail), and deployment model (cloud, on-premise). Key players like IBM, Accenture, Microsoft, and SAS Institute are investing heavily in research and development, expanding their service portfolios, and pursuing strategic partnerships to maintain their market leadership. The competitive landscape is characterized by both large established players and emerging niche providers offering specialized solutions. The market's growth trajectory is influenced by various trends, including the increasing adoption of big data technologies, the growing prevalence of self-service analytics tools empowering business users, and the rise of specialized data analysis service providers catering to specific industry needs. However, certain restraints, such as the lack of skilled data analysts, data security concerns, and the high cost of implementation and maintenance of advanced analytics solutions, could potentially hinder market growth. Addressing these challenges through investments in data literacy programs, enhanced security measures, and flexible pricing models will be crucial for sustaining the market's momentum and unlocking its full potential. Overall, the Data Analysis Services market presents a significant opportunity for companies offering innovative solutions and expertise in this rapidly evolving landscape.

  18. f

    Data from: Additive Hazards Regression Analysis of Massive Interval-Censored...

    • tandf.figshare.com
    pdf
    Updated May 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peiyao Huang; Shuwei Li; Xinyuan Song (2025). Additive Hazards Regression Analysis of Massive Interval-Censored Data via Data Splitting [Dataset]. http://doi.org/10.6084/m9.figshare.27103243.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 12, 2025
    Dataset provided by
    Taylor & Francis
    Authors
    Peiyao Huang; Shuwei Li; Xinyuan Song
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    With the rapid development of data acquisition and storage space, massive datasets exhibited with large sample size emerge increasingly and make more advanced statistical tools urgently need. To accommodate such big volume in the analysis, a variety of methods have been proposed in the circumstances of complete or right censored survival data. However, existing development of big data methodology has not attended to interval-censored outcomes, which are ubiquitous in cross-sectional or periodical follow-up studies. In this work, we propose an easily implemented divide-and-combine approach for analyzing massive interval-censored survival data under the additive hazards model. We establish the asymptotic properties of the proposed estimator, including the consistency and asymptotic normality. In addition, the divide-and-combine estimator is shown to be asymptotically equivalent to the full-data-based estimator obtained from analyzing all data together. Simulation studies suggest that, relative to the full-data-based approach, the proposed divide-and-combine approach has desirable advantage in terms of computation time, making it more applicable to large-scale data analysis. An application to a set of interval-censored data also demonstrates the practical utility of the proposed method.

  19. Space Data Analytics Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Space Data Analytics Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/space-data-analytics-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Space Data Analytics Market Outlook



    The global space data analytics market size was valued at approximately $3.2 billion in 2023 and is projected to reach around $11.8 billion by 2032, reflecting a robust CAGR of 15.6% over the forecast period. Driven by the increasing deployment of satellites and growing advancements in machine learning and data analytics technologies, the market is poised for substantial growth. The convergence of these technologies allows for more efficient data collection, processing, and utilization, which fuels the demand for space data analytics across various sectors.



    The primary growth factor for the space data analytics market is the exponential increase in satellite deployments. Governments and private entities are launching satellites for diverse purposes such as communication, navigation, earth observation, and scientific research. This surge in satellite launches generates vast amounts of data that require sophisticated analytical tools to process and interpret. Consequently, the need for advanced analytics solutions to convert raw satellite data into actionable insights is driving the market forward. Additionally, advancements in artificial intelligence (AI) and machine learning (ML) are enhancing the capabilities of space data analytics, making them more accurate and efficient.



    Another significant growth driver is the escalating demand for real-time data and analytics in various industries. Sectors such as agriculture, defense, and environmental monitoring increasingly rely on satellite data for applications like precision farming, border surveillance, and climate change assessment. The ability to obtain real-time data from satellites and analyze it promptly allows organizations to make informed decisions swiftly, thereby improving operational efficiency and outcomes. Furthermore, the growing awareness about the advantages of space data analytics in proactive decision-making is expanding its adoption across multiple sectors.



    Moreover, international collaborations and government initiatives aimed at space exploration and satellite launches are propelling the market. Many countries are investing heavily in space missions and satellite projects, creating a fertile ground for the space data analytics market to thrive. These investments are accompanied by supportive regulatory frameworks and funding for research and development, further encouraging innovation and growth in the sector. Additionally, the commercialization of space activities and the emergence of private space enterprises are opening new avenues for market expansion.



    Artificial Intelligence in Space is revolutionizing the way we approach space exploration and data analysis. By integrating AI technologies with space missions, scientists and researchers can process vast amounts of data more efficiently and accurately. This integration allows for real-time decision-making and predictive analytics, which are crucial for successful space missions. AI's ability to learn and adapt makes it an invaluable tool for navigating the complex and unpredictable environment of space. As AI continues to evolve, its applications in space exploration are expected to expand, offering new possibilities for understanding our universe and enhancing the capabilities of space data analytics.



    From a regional perspective, North America holds the largest market share due to the presence of leading space agencies, like NASA, and prominent private space companies, such as SpaceX and Blue Origin. Europe follows closely, driven by robust investments in space research and development by the European Space Agency (ESA). The Asia Pacific region is expected to witness the fastest growth rate, attributed to increasing satellite launches by countries like China and India, alongside growing investments in space technology and analytics within the region.



    Component Analysis



    The space data analytics market can be segmented by component into software, hardware, and services. The software segment commands a significant share of the market due to the development of sophisticated analytics tools and platforms. These software solutions are crucial for processing and interpreting the vast amounts of data collected from satellites. Advanced algorithms and AI-powered analytics enable users to extract meaningful insights from raw data, driving the adoption of these solutions across various sectors. The continuous innovation in software capabilities, such as enhanced visualization t

  20. Dunham's Data: Katherine Dunham and Digital Methods for Dance Historical...

    • icpsr.umich.edu
    Updated May 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bench, Harmony; Elswit, Kate (2025). Dunham's Data: Katherine Dunham and Digital Methods for Dance Historical Inquiry, Personnel Check-In, 1937-1962 [Dataset]. http://doi.org/10.3886/ICPSR38544.v3
    Explore at:
    Dataset updated
    May 15, 2025
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Bench, Harmony; Elswit, Kate
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38544/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38544/terms

    Time period covered
    1937 - 1962
    Area covered
    Latin America, Caribbean, North Africa, United Kingdom, South America, Europe
    Description

    The Check-In Dataset is the second public-use dataset in the Dunham's Data series, a unique data collection created by Kate Elswit (Royal Central School of Speech and Drama, University of London) and Harmony Bench (The Ohio State University) to explore questions and problems that make the analysis and visualization of data meaningful for dance history through the case study of choreographer Katherine Dunham. The Check-In Dataset accounts for the comings and goings of Dunham's nearly 200 dancers, drummers, and singers and discerns who among them were working in the studio and theatre together over the years from 1937 to 1962. As with the Everyday Itinerary Dataset, the first public-use dataset from Dunham's Data, data on check-ins come from scattered sources. Due to information available, it has a greater level of ambiguity as many dates are approximated in order to achieve accurate chronological sequence. By showing who shared time and space together, the Check-In Dataset can be used to trace potential lines of transmission of embodied knowledge within and beyond the Dunham Company. Dunham's Data: Digital Methods for Dance Historical Inquiry is funded by the United Kingdom Arts and Humanities Research Council (AHRC AH/R012989/1, 2018-2022) and is part of a larger suite of ongoing digital collaborations by Bench and Elswit, Movement on the Move. The Dunham's Data team also includes digital humanities postdoctoral research assistant Antonio Jiménez-Mavillard and dance history postdoctoral research assistants Takiyah Nur Amin and Tia-Monique Uzor. For more information about Dunham's Data, please see the Dunham's Data website. Also, visit the Dunham's Data research blog to view the interactive visualizations based on the Dunham's Data.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
NCO NITRD (2025). Innovating the Data Ecosystem: An Update of the Federal Big Data Research and Development Strategic Plan [Dataset]. https://catalog.data.gov/dataset/innovating-the-data-ecosystem-an-update-of-the-federal-big-data-research-and-development-s

Innovating the Data Ecosystem: An Update of the Federal Big Data Research and Development Strategic Plan

Explore at:
Dataset updated
May 14, 2025
Dataset provided by
NCO NITRD
Description

This document, Innovating the Data Ecosystem: An Update of The Federal Big Data Research and Development Strategic Plan, updates the 2016 Federal Big Data Research and Development Strategic Plan. This plan updates the vision and strategies on the research and development needs for big data laid out in the 2016 Strategic Plan through the six strategies areas (enhance the reusability and integrity of data; enable innovative, user-driven data science; develop and enhance the robustness of the federated ecosystem; prioritize privacy, ethics, and security; develop necessary expertise and diverse talent; and enhance U.S. leadership in the international context) to enhance data value and reusability and responsiveness to federal policies on data sharing and management.

Search
Clear search
Close search
Google apps
Main menu