Facebook
TwitterThe Kresge early childhood interactive map contains data relating to early childhood and education. It is meant to help stakeholders better understand the early childhood landscape better.
Facebook
TwitterTRACE-A_Merge_Data is merge data files created from data collected onboard the DC-8 aircraft during the Transport and Atmospheric Chemistry near the Equator - Atlantic (TRACE-A) suborbital campaign. Data collection for this product is complete.The TRACE-A mission was a part of NASA’s Global Tropospheric Experiment (GTE) – an assemblage of missions conducted from 1983-2001 with various research goals and objectives. TRACE-A was conducted in the Atlantic from September 21 to October 24, 1992. TRACE-A had the objective of determining the cause and source of the high concentrations of ozone that accumulated over the Atlantic Ocean between southern Africa and South America from August to October. NASA partnered with the Brazilian Space Agency (INPE) to accomplish this goal. The NASA DC-8 aircraft and ozonesondes were utilized during TRACE-A to collect the necessary data. The DC-8 was equipped with 19 instruments. A few instruments on the DC-8 include the Differential Absorption Lidar (DIAL), the Laser-Induced Fluorescence, the O3-NO Ethylene/Forward Scattering Spectrometer, the Modified Licor, and the DACOM IR Laser Spectrometer. The DIAL was responsible for a variety of measurements, which include Nadir IR aerosols, Nadir UV aerosols, Zenith IR aerosols, Zenith VS aerosols, ozone, and ozone column. The Laser-Induced Fluorescence instrument collected measurements on NxOy in the atmosphere. Measurements of ozone were recorded by the O3-NO Ethylene/Forward Scattering Spectrometer while the Modified Licor recorded CO2. Finally, the DACOM IR Laser Spectrometer gathered an assortment of data points, including CO, O3, N2O, CH4, and CO2. Ozonesondes played a role in data collection for TRACE-A along with the DC-8 aircraft. The sondes were dropped from the DC-8 aircraft in order to gather data on ozone, temperature, and atmospheric pressure.
Facebook
TwitterThis dataset was created by Saram Hai
Facebook
TwitterTRACE-P_Merge_Data is the merge data files created from data collected during during the Transport and Chemical Evolution over the Pacific (TRACE-P) suborbital campaign. Data collection for this product is complete.The NASA TRACE-P mission was a part of NASA’s Global Tropospheric Experiment (GTE) – an assemblage of missions conducted from 1983-2001 with various research goals and objectives. TRACE-P was a multi-organizational campaign with NASA, the National Center for Atmospheric Research (NCAR), and several US universities. TRACE-P deployed its payloads in the Pacific between the months of March and April 2001 with the goal of studying the air chemistry emerging from Asia to the western Pacific. Along with this, TRACE-P had the objective studying the chemical evolution of the air as it moved away from Asia. In order to accomplish its goals, the NASA DC-8 aircraft and NASA P-3B aircraft were deployed, each equipped with various instrumentation. TRACE-P also relied on ground sites, and satellites to collect data. The DC-8 aircraft was equipped with 19 instruments in total while the P-3B boasted 21 total instruments. Some instruments on the DC-8 include the Nephelometer, the GCMS, the Nitric Oxide Chemiluminescence, the Differential Absorption Lidar (DIAL), and the Dual Channel Collectors and Fluorometers, HPLC. The Nephelometer was utilized to gather data on various wavelengths including aerosol scattering (450, 550, 700nm), aerosol absorption (565nm), equivalent BC mass, and air density ratio. The GCMS was responsible for capturing a multitude of compounds in the atmosphere, some of which include CH4, CH3CHO, CH3Br, CH3Cl, CHBr3, and C2H6O. DIAL was used for a variety of measurements, some of which include aerosol wavelength dependence (1064/587nm), IR aerosol scattering ratio (1064nm), tropopause heights and ozone columns, visible aerosol scattering ratio, composite tropospheric ozone cross-sections, and visible aerosol depolarization. Finally, the Dual Channel Collectors and Fluorometers, HPLC collected data on H2O2, CH3OOH, and CH2O in the atmosphere. The P-3B aircraft was equipped with various instruments for TRACE-P, some of which include the MSA/CIMS, the Non-dispersive IR Spectrometer, the PILS-Ion Chromatograph, and the Condensation particle counter and Pulse Height Analysis (PHA). The MSA/CIMS measured OH, H2SO4, MSA, and HNO3. The Non-dispersive IR Spectrometer took measurements on CO2 in the atmosphere. The PILS-Ion Chromatograph recorded measurements of compounds and elements in the atmosphere, including sodium, calcium, potassium, magnesium, chloride, NH4, NO3, and SO4. Finally, the Condensation particle counter and PHA was used to gather data on total UCN, UCN 3-8nm, and UCN 3-4nm. Along with the aircrafts, ground stations measured air quality from China along with C2H2, C2H6, CO, and HCN. Finally, satellites imagery was used to collect a multitude of data, some of the uses were to observe the history of lightning flashes, SeaWiFS cloud imagery, 8-day exposure to TOMS aerosols, and SeaWiFS aerosol optical thickness. The imagery was used to best aid in planning for the aircraft deployment.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This file contains select * from, select as name from as join as on inner join, right outer join, is null, left outer join, union of left and right, select from union, union all, cross join
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Data Merge is a dataset for object detection tasks - it contains Artilary Missile Radar annotations for 2,708 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
select
a.name as employess_name,
a.role as employess_role,
b.name as department_name
from
employees-table as a
inner join
departments-table as b
on
a.department_id = b.department_id
Facebook
TwitterCAMP2Ex_Merge_Data are pre-generated aircraft merge data files created utilizing data collected during the Clouds, Aerosol and Monsoon Processes-Philippines Experiment (CAMP2Ex) NASA field study. Data collection for this product is complete. CAMP2Ex was a NASA field study, with three main science objectives: aerosol effect on cloud microphysical and optical properties, aerosol and cloud influence on radiation as well as radiative feedback, and meteorology effect on aerosol distribution and aerosol-cloud interactions. Research on these three main objectives requires a comprehensive characterization of aerosol, cloud, and precipitation properties, as well as the associated meteorological and radiative parameters. Trace gas tracers are also needed for airmass type analysis to characterize the role of anthropogenic and natural aerosols. To deliver these observations, CAMP2Ex utilized a combination of remote sensing and in-situ measurements. NASA’s P-3B aircraft was equipped with a suite of in-situ instruments to conduct measurements of aerosol and cloud properties, trace gases, meteorological parameters, and radiative fluxes. The P-3B was also equipped passive remote sensors (i.e. lidar, polarimeter, radar, and radiometers). A second aircraft, the SPEC Learjet 35A, was primarily dedicated to measuring detailed cloud microphysical properties. The sampling strategy designed for CAMP2Ex coordinated flight plans for both aircraft to maximize the science return. The P-3B was used primarily to conduct remote sensing measurements of cloud and precipitation structure and aerosol layers and vertical profiles of atmospheric state variable, while the Learjet flew below the P-3B to obtain the detailed cloud microphysical properties. During the 2019 field deployment in the vicinity of the Philippines, completed from August 20-October 10, the P-3B conducted 19 science flights and the SPEC Learjet conducted 11 flights. Ground-based aerosol observations were also recorded in 2018 and 2019. CAMP2Ex was completed in partnership with Philippine research and operational weather communities. Measurements completed during CAMP2EX provide a 4-D observational view of the environment of the Philippines and its neighboring waters in terms of microphysical, hydrological, dynamical, thermodynamical and radiative properties of the environment, targeting the environment of shallow cumulus and cumulus congestus clouds.
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
🇺🇸 미국 English This is a test of the Publishing API metadata update.
Facebook
TwitterThis dataset is updated monthly based on the Assessor data of GEOPIN and TAXBILL. It is a full polygon dataset of the parcels with both GEOPIN and TAXBILL attached. This allows users to join to tabular data based on either field.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Data Merge Up 2 is a dataset for semantic segmentation tasks - it contains Cardboard H3Yh annotations for 3,453 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterARISE_Merge_Data_1 is the Arctic Radiation - IceBridge Sea & Ice Experiment (ARISE) 2014 pre-generated aircraft (C-130) merge data files. This product is a result of a joint effort of the Radiation Sciences, Cryospheric Sciences and Airborne Sciences programs of the Earth Science Division in NASA's Science Mission Directorate in Washington. Data collection is complete.ARISE was NASA's first Arctic airborne campaign designed to take simultaneous measurements of ice, clouds and the levels of incoming and outgoing radiation, the balance of which determined the degree of climate warming. Over the past few decades, an increase in global temperatures led to decreased Arctic summer sea ice. Typically, Arctic sea ice reflects sunlight from the Earth. However, a loss of sea ice means there is more open water to absorb heat from the sun, enhancing warming in the region. More open water can also cause the release of more moisture into the atmosphere. This additional moisture could affect cloud formation and the exchange of heat from Earth’s surface to space. Conducted during the peak of summer ice melt (August 28, 2014-October 1, 2014), ARISE was designed to study and collect data on thinning sea ice, measure cloud and atmospheric properties in the Arctic, and to address questions about the relationship between retreating sea ice and the Arctic climate. During the campaign, instruments on NASA’s C-130 aircraft conducted measurements of spectral and broadband radiative flux profiles, quantified surface characteristics, cloud properties, and atmospheric state parameters under a variety of Arctic atmospheric and surface conditions (e.g. open water, sea ice, and land ice). When possible, C-130 flights were coordinated to fly under satellite overpasses. The primary aerial focus of ARISE was over Arctic sea ice and open water, with minor coverage over Greenland land ice. Through these efforts, the ARISE field campaign helped improve cloud and sea ice computer modeling in the Arctic.
Facebook
TwitterElection Results | Join Data from 2020 General Election. All election results are official and have been certified by the Crawford County Pennsylvania Election Board
Facebook
TwitterIn this exercise, we'll merge the details of students from two datasets, namely student.csv and marks.csv. The student dataset contains columns such as Age, Gender, Grade, and Employed. The marks.csv dataset contains columns such as Mark and City. The Student_id column is common between the two datasets. Follow these steps to complete this exercise
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Blockchain data query: example JOIN
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Blockchain data query: Outer Join(4 actions)
Facebook
TwitterCPEXCV_Merge_DC8_Data are pre-generated aircraft merge data files created utilizing data collected during the Convective Processes Experiment - Cabo Verde (CPEX-CV) onboard the DC-8 aircraft. Data collection for this product is complete. Seeking to better understand atmospheric processes in regions with little data, the Convective Processes Experiment – Cabo Verde (CPEX-CV) campaign conducted by NASA is a continuation of the CPEX – Aerosols & Winds (CPEX-AW) campaign that took place between August to September 2021. The campaign will take place between 1-30 September 2022 and will operate out of Sal Island, Cabo Verde with the primary goal of investigating atmospheric dynamics, marine boundary layer properties, convection, the dust-laden Saharan Air Layer, and their interactions across various spatial scales to improve understanding and predictability of process-level lifecycles in the data-sparse tropical East Atlantic region. CPEX-CV will work towards its goal by addressing four main science objectives. The first goal is to improve understanding of the interaction between large-scale environmental forcings such as the Intertropical Convergence Zone (ITCZ), Saharan Air Layer, African easterly waves, and mid-level African easterly jet, and the lifecycle and properties of convective cloud systems, including tropical cyclone precursors, in the tropical East Atlantic region. Next, observations will be made about how local kinematic and thermodynamic conditions, including the vertical structure and variability of the marine boundary layer, relate to the initiation and lifecycle of convective cloud systems and their processes. Third, CPEX-CV will investigate how dynamical and convective processes affect size dependent Saharan dust vertical structure, long-range Saharan dust transport, and boundary layer exchange pathways. The last objective will be to assess the impact of CPEX-CV observations of atmospheric winds, thermodynamics, clouds, and aerosols on the prediction of tropical Atlantic weather systems and validate and interpret spaceborne remote sensors that provide similar measurements. To achieve these objectives, the NASA DC-8 aircraft will be deployed with remote sensing instruments and dropsondes that will allow for the measurement of tropospheric aerosols, winds, temperature, water vapor, and precipitation. Instruments onboard the aircraft include the Airborne Third Generation Precipitation Radar (APR-3), lidars such as the Doppler Aerosol WiNd Lidar (DAWN), High Altitude Lidar Observatory (HALO), High Altitude Monolithic Microwave Integrated Circuit (MMIC) Sounding Radiometer (HAMSR), Advanced Vertical Atmospheric Profiling System (AVAPS) dropsonde system, Cloud Aerosol and Precipitation Spectrometer (CAPS), and the Airborne In-situ and Radio Occultation (AIRO) instrument. Measurements taken by CPEX-CV will assist in moving science forward from previous CPEX and CPEX-AW missions, the calibration and validation of satellite measurements, and the development of airborne sensors, especially those with potential for satellite deployment.
Facebook
TwitterORACLES_Merge_Data are pre-generated aircraft merge data files created utilizing data collected during the ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) campaign. These measurements were collected from August 19, 2016 – October 27, 2016, August 1, 2017 – September 4, 2017 and September 21, 2018 – October 27, 2018. ORACLES provides multi-year airborne observations over the complete vertical column of key parameters that drive aerosol-cloud interactions in the southeast Atlantic, an area with some of the largest inter-model differences in aerosol forcing assessments on the planet. The P-3 Orion aircraft was utilized as a low-flying platform for simultaneous in situ and remote sensing measurements of aerosols and clouds and was supplemented by ER-2 remote sensing during the 2016 campaign. Data collection for this product is complete.Southern Africa produces almost one-third of the Earth’s biomass burning aerosol particles. The ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) experiment was a five year investigation with three intensive observation periods (August 19, 2016 – October 27, 2016; August 1, 2017 – September 4, 2017; September 21, 2018 – October 27, 2018) and was designed to study key processes that determine the climate impacts of African biomass burning aerosols. ORACLES provided multi-year airborne observations over the complete vertical column of the key parameters that drive aerosol-cloud interactions in the southeast Atlantic, an area with some of the largest inter-model differences in aerosol forcing assessments. These inter-model differences in aerosol and cloud distributions, as well as their combined climatic effects in the SE Atlantic are partly due to the persistence of aerosols above clouds. The varying separation of cloud and aerosol layers sampled during ORACLES allow for a process-oriented understanding of how variations in radiative heating profiles impact cloud properties, which is expected to improve model simulations for other remote regions experience long-range aerosol transport above clouds. ORACLES utilized two NASA aircraft, the P-3 and ER-2. The P-3 was used as a low-flying platform for simultaneous in situ and remote sensing measurements of aerosols and clouds in all three campaigns, supplemented by ER-2 remote sensing in 2016. ER-2 observations will be used to enhance satellite-based remote sensing by resolving variability within a particular scene, and by guiding the development of new and improved remote sensing techniques.
Facebook
TwitterNAAMES_Merge_Data is the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) pre-generated aircraft merge data files created using data collected during the NAAMES campaign. NAAMES was a NASA funded Earth-Venture Suborbital (EVS) mission with 4 deployments occurring from 2015-2018. Data collection is complete.The NASA North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) project was the first NASA Earth Venture – Suborbital mission focused on studying the coupled ocean ecosystem and atmosphere. NAAMES utilizes a combination of ship-based, airborne, autonomous sensor, and remote sensing measurements that directly link ocean ecosystem processes, emissions of ocean-generated aerosols and precursor gases, and subsequent atmospheric evolution and processing. Four deployments coincide with the seasonal cycle of phytoplankton in the North Atlantic Ocean: the Winter Transition (November 5 – December 2, 2015), the Bloom Climax (May 11 – June 5, 2016), the Deceleration Phase (August 30 – September 24, 2017), and the Acceleration Phase (March 20 – April 13, 2018). Ship-based measurements were conducted from the Woods Hole Oceanographic Institution Research Vessel Atlantis in the middle of the North Atlantic Ocean, while airborne measurements were conducted on a NASA Wallops Flight Facility C-130 Hercules that was based at St. John's International Airport, Newfoundland, Canada. Data products in the ASDC archive focus on the NAAMES atmospheric aerosol, cloud, and trace gas data from the ship and aircraft, as well as related satellite and model data subsets. While a few ocean-remote sensing data products (e.g., from the high-spectral resolution lidar) are also included in the ASDC archive, most ocean data products reside in a companion archive at SeaBass.
Facebook
TwitterThe Kresge early childhood interactive map contains data relating to early childhood and education. It is meant to help stakeholders better understand the early childhood landscape better.