87 datasets found
  1. D

    Data Collection and Labelling Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AMA Research & Media LLP (2025). Data Collection and Labelling Report [Dataset]. https://www.marketresearchforecast.com/reports/data-collection-and-labelling-33030
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Mar 13, 2025
    Dataset provided by
    AMA Research & Media LLP
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The data collection and labeling market is experiencing robust growth, fueled by the escalating demand for high-quality training data in artificial intelligence (AI) and machine learning (ML) applications. The market, estimated at $15 billion in 2025, is projected to achieve a Compound Annual Growth Rate (CAGR) of 25% over the forecast period (2025-2033), reaching approximately $75 billion by 2033. This expansion is primarily driven by the increasing adoption of AI across diverse sectors, including healthcare (medical image analysis, drug discovery), automotive (autonomous driving systems), finance (fraud detection, risk assessment), and retail (personalized recommendations, inventory management). The rising complexity of AI models and the need for more diverse and nuanced datasets are significant contributing factors to this growth. Furthermore, advancements in data annotation tools and techniques, such as active learning and synthetic data generation, are streamlining the data labeling process and making it more cost-effective. However, challenges remain. Data privacy concerns and regulations like GDPR necessitate robust data security measures, adding to the cost and complexity of data collection and labeling. The shortage of skilled data annotators also hinders market growth, necessitating investments in training and upskilling programs. Despite these restraints, the market’s inherent potential, coupled with ongoing technological advancements and increased industry investments, ensures sustained expansion in the coming years. Geographic distribution shows strong concentration in North America and Europe initially, but Asia-Pacific is poised for rapid growth due to increasing AI adoption and the availability of a large workforce. This makes strategic partnerships and global expansion crucial for market players aiming for long-term success.

  2. O

    Open Source Data Labeling Tool Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Open Source Data Labeling Tool Report [Dataset]. https://www.marketresearchforecast.com/reports/open-source-data-labeling-tool-28519
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Mar 7, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The open-source data labeling tool market is experiencing robust growth, driven by the increasing demand for high-quality training data in the burgeoning artificial intelligence (AI) and machine learning (ML) sectors. The market's expansion is fueled by several key factors. Firstly, the rising adoption of AI across various industries, including healthcare, automotive, and finance, necessitates large volumes of accurately labeled data. Secondly, open-source tools offer a cost-effective alternative to proprietary solutions, making them attractive to startups and smaller companies with limited budgets. Thirdly, the collaborative nature of open-source development fosters continuous improvement and innovation, leading to more sophisticated and user-friendly tools. While the cloud-based segment currently dominates due to scalability and accessibility, on-premise solutions maintain a significant share, especially among organizations with stringent data security and privacy requirements. The geographical distribution reveals strong growth in North America and Europe, driven by established tech ecosystems and early adoption of AI technologies. However, the Asia-Pacific region is expected to witness significant growth in the coming years, fueled by increasing digitalization and government initiatives promoting AI development. The market faces some challenges, including the need for skilled data labelers and the potential for inconsistencies in data quality across different open-source tools. Nevertheless, ongoing developments in automation and standardization are expected to mitigate these concerns. The forecast period of 2025-2033 suggests a continued upward trajectory for the open-source data labeling tool market. Assuming a conservative CAGR of 15% (a reasonable estimate given the rapid advancements in AI and the increasing need for labeled data), and a 2025 market size of $500 million (a plausible figure considering the significant investments in the broader AI market), the market is projected to reach approximately $1.8 billion by 2033. This growth will be further shaped by the ongoing development of new features, improved user interfaces, and the integration of advanced techniques such as active learning and semi-supervised learning within open-source tools. The competitive landscape is dynamic, with both established players and emerging startups contributing to the innovation and expansion of this crucial segment of the AI ecosystem. Companies are focusing on improving the accuracy, efficiency, and accessibility of their tools to cater to a growing and diverse user base.

  3. D

    Data Annotation and Collection Services Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Data Annotation and Collection Services Report [Dataset]. https://www.marketresearchforecast.com/reports/data-annotation-and-collection-services-30703
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 9, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Annotation and Collection Services market is experiencing robust growth, driven by the increasing adoption of artificial intelligence (AI) and machine learning (ML) across diverse sectors. The market, estimated at $10 billion in 2025, is projected to achieve a Compound Annual Growth Rate (CAGR) of 25% from 2025 to 2033, reaching approximately $45 billion by 2033. This significant expansion is fueled by several key factors. The surge in autonomous driving initiatives necessitates high-quality data annotation for training self-driving systems, while the burgeoning smart healthcare sector relies heavily on annotated medical images and data for accurate diagnoses and treatment planning. Similarly, the growth of smart security systems and financial risk control applications demands precise data annotation for improved accuracy and efficiency. Image annotation currently dominates the market, followed by text annotation, reflecting the widespread use of computer vision and natural language processing. However, video and voice annotation segments are showing rapid growth, driven by advancements in AI-powered video analytics and voice recognition technologies. Competition is intense, with both established technology giants like Alibaba Cloud and Baidu, and specialized data annotation companies like Appen and Scale Labs vying for market share. Geographic distribution shows a strong concentration in North America and Europe initially, but Asia-Pacific is expected to emerge as a major growth region in the coming years, driven primarily by China and India's expanding technology sectors. The market, however, faces certain challenges. The high cost of data annotation, particularly for complex tasks such as video annotation, can pose a barrier to entry for smaller companies. Ensuring data quality and accuracy remains a significant concern, requiring robust quality control mechanisms. Furthermore, ethical considerations surrounding data privacy and bias in algorithms require careful attention. To overcome these challenges, companies are investing in automation tools and techniques like synthetic data generation, alongside developing more sophisticated quality control measures. The future of the Data Annotation and Collection Services market will likely be shaped by advancements in AI and ML technologies, the increasing availability of diverse data sets, and the growing awareness of ethical considerations surrounding data usage.

  4. R

    Data Labeling Task Dataset

    • universe.roboflow.com
    zip
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Annotations (2025). Data Labeling Task Dataset [Dataset]. https://universe.roboflow.com/data-annotations-4ygun/data-labeling-task
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Data Annotations
    Variables measured
    Hand Bounding Boxes
    Description

    Data Labeling Task

    ## Overview
    
    Data Labeling Task is a dataset for object detection tasks - it contains Hand annotations for 5,048 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
  5. AI Training Data Market will grow at a CAGR of 23.50% from 2024 to 2031.

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2025). AI Training Data Market will grow at a CAGR of 23.50% from 2024 to 2031. [Dataset]. https://www.cognitivemarketresearch.com/ai-training-data-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jan 15, 2025
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global Ai Training Data market size is USD 1865.2 million in 2023 and will expand at a compound annual growth rate (CAGR) of 23.50% from 2023 to 2030.

    The demand for Ai Training Data is rising due to the rising demand for labelled data and diversification of AI applications.
    Demand for Image/Video remains higher in the Ai Training Data market.
    The Healthcare category held the highest Ai Training Data market revenue share in 2023.
    North American Ai Training Data will continue to lead, whereas the Asia-Pacific Ai Training Data market will experience the most substantial growth until 2030.
    

    Market Dynamics of AI Training Data Market

    Key Drivers of AI Training Data Market

    Rising Demand for Industry-Specific Datasets to Provide Viable Market Output
    

    A key driver in the AI Training Data market is the escalating demand for industry-specific datasets. As businesses across sectors increasingly adopt AI applications, the need for highly specialized and domain-specific training data becomes critical. Industries such as healthcare, finance, and automotive require datasets that reflect the nuances and complexities unique to their domains. This demand fuels the growth of providers offering curated datasets tailored to specific industries, ensuring that AI models are trained with relevant and representative data, leading to enhanced performance and accuracy in diverse applications.

    In July 2021, Amazon and Hugging Face, a provider of open-source natural language processing (NLP) technologies, have collaborated. The objective of this partnership was to accelerate the deployment of sophisticated NLP capabilities while making it easier for businesses to use cutting-edge machine-learning models. Following this partnership, Hugging Face will suggest Amazon Web Services as a cloud service provider for its clients.

    (Source: about:blank)

    Advancements in Data Labelling Technologies to Propel Market Growth
    

    The continuous advancements in data labelling technologies serve as another significant driver for the AI Training Data market. Efficient and accurate labelling is essential for training robust AI models. Innovations in automated and semi-automated labelling tools, leveraging techniques like computer vision and natural language processing, streamline the data annotation process. These technologies not only improve the speed and scalability of dataset preparation but also contribute to the overall quality and consistency of labelled data. The adoption of advanced labelling solutions addresses industry challenges related to data annotation, driving the market forward amidst the increasing demand for high-quality training data.

    In June 2021, Scale AI and MIT Media Lab, a Massachusetts Institute of Technology research centre, began working together. To help doctors treat patients more effectively, this cooperation attempted to utilize ML in healthcare.

    www.ncbi.nlm.nih.gov/pmc/articles/PMC7325854/

    Restraint Factors Of AI Training Data Market

    Data Privacy and Security Concerns to Restrict Market Growth
    

    A significant restraint in the AI Training Data market is the growing concern over data privacy and security. As the demand for diverse and expansive datasets rises, so does the need for sensitive information. However, the collection and utilization of personal or proprietary data raise ethical and privacy issues. Companies and data providers face challenges in ensuring compliance with regulations and safeguarding against unauthorized access or misuse of sensitive information. Addressing these concerns becomes imperative to gain user trust and navigate the evolving landscape of data protection laws, which, in turn, poses a restraint on the smooth progression of the AI Training Data market.

    How did COVID–19 impact the Ai Training Data market?

    The COVID-19 pandemic has had a multifaceted impact on the AI Training Data market. While the demand for AI solutions has accelerated across industries, the availability and collection of training data faced challenges. The pandemic disrupted traditional data collection methods, leading to a slowdown in the generation of labeled datasets due to restrictions on physical operations. Simultaneously, the surge in remote work and the increased reliance on AI-driven technologies for various applications fueled the need for diverse and relevant training data. This duali...

  6. Data annotation market size serviced by India 2018-2020

    • statista.com
    Updated Nov 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Data annotation market size serviced by India 2018-2020 [Dataset]. https://www.statista.com/statistics/1276284/india-data-annotation-market-serviced/
    Explore at:
    Dataset updated
    Nov 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    India
    Description

    In 2020, the estimated data annotation market size serviced by India was around 250 million U.S. dollars. It was a huge increase of more than 300 percent in comparison to 2018. Data annotation is the process of labeling data in text, video, image, and other digital file formats.

  7. I

    Global Data Labeling and Annotation Service Market Technological...

    • statsndata.org
    excel, pdf
    Updated Feb 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats N Data (2025). Global Data Labeling and Annotation Service Market Technological Advancements 2025-2032 [Dataset]. https://www.statsndata.org/report/data-labeling-and-annotation-service-market-380142
    Explore at:
    excel, pdfAvailable download formats
    Dataset updated
    Feb 2025
    Dataset authored and provided by
    Stats N Data
    License

    https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order

    Area covered
    Global
    Description

    The Data Labeling and Annotation Service market is a pivotal sector that underpins the burgeoning fields of artificial intelligence and machine learning. As companies increasingly harness vast amounts of unstructured data, the need for precise data labeling and annotation has never been more critical. These services

  8. Data annotation market revenue source India 2020, by region

    • statista.com
    Updated Nov 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Data annotation market revenue source India 2020, by region [Dataset]. https://www.statista.com/statistics/1276293/india-source-of-data-annotation-revenue-distribution-by-region/
    Explore at:
    Dataset updated
    Nov 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    India
    Description

    In 2020, more than 80 percent of the revenue of data annotation market were generated from English speaking regions, including the United States and the United Kingdom. The estimated data annotation market size serviced by India was around 250 million U.S. dollars in the same year. Data annotation is the process of labeling data in text, video, image, and other digital file formats.

  9. d

    Pixta AI | Imagery Data | Global | 10,000 Stock Images | Annotation and...

    • datarade.ai
    .json, .xml, .csv
    Updated Nov 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pixta AI (2022). Pixta AI | Imagery Data | Global | 10,000 Stock Images | Annotation and Labelling Services Provided | Traffic scenes from high view for AI & ML [Dataset]. https://datarade.ai/data-products/10-000-traffic-scenes-from-high-view-for-ai-ml-model-pixta-ai
    Explore at:
    .json, .xml, .csvAvailable download formats
    Dataset updated
    Nov 12, 2022
    Dataset authored and provided by
    Pixta AI
    Area covered
    Hong Kong, New Zealand, Malaysia, United States of America, Japan, Taiwan, Canada, Korea (Republic of), Singapore, Australia
    Description
    1. Overview This dataset is a collection of high view traffic images in multiple scenes, backgrounds and lighting conditions that are ready to use for optimizing the accuracy of computer vision models. All of the contents is sourced from PIXTA's stock library of 100M+ Asian-featured images and videos. PIXTA is the largest platform of visual materials in the Asia Pacific region offering fully-managed services, high quality contents and data, and powerful tools for businesses & organisations to enable their creative and machine learning projects.

    2. Use case This dataset is used for AI solutions training & testing in various cases: Traffic monitoring, Traffic camera system, Vehicle flow estimation,... Each data set is supported by both AI and human review process to ensure labelling consistency and accuracy. Contact us for more custom datasets.

    3. About PIXTA PIXTASTOCK is the largest Asian-featured stock platform providing data, contents, tools and services since 2005. PIXTA experiences 15 years of integrating advanced AI technology in managing, curating, processing over 100M visual materials and serving global leading brands for their creative and data demands. Visit us at https://www.pixta.ai/ for more details.

  10. R

    Healthcare Data Collection and Labeling Market Size Report 2037

    • researchnester.com
    Updated Jan 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Nester (2025). Healthcare Data Collection and Labeling Market Size Report 2037 [Dataset]. https://www.researchnester.com/reports/healthcare-data-collection-and-labeling-market/6612
    Explore at:
    Dataset updated
    Jan 10, 2025
    Dataset authored and provided by
    Research Nester
    License

    https://www.researchnester.comhttps://www.researchnester.com

    Description

    The global healthcare data collection and labeling market size surpassed USD 1.11 billion in 2024 and is forecasted to grow at a steady pace of 25.8% CAGR, reaching USD 21.94 billion by 2037. North America industry is estimated to account for largest revenue share of 37.8% by 2037, owing to utilizing state-of-the-art tools such as artificial intelligence (AI) and machine learning to improve efficiency and accuracy in data labeling and annotation.

  11. d

    Pixta AI | Imagery Data | Global | 10,000 Stock Images | Annotation and...

    • datarade.ai
    .json, .xml, .csv
    Updated Nov 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pixta AI (2022). Pixta AI | Imagery Data | Global | 10,000 Stock Images | Annotation and Labelling Services Provided | Human Face and Emotion Dataset for AI & ML [Dataset]. https://datarade.ai/data-products/human-emotions-datasets-for-ai-ml-model-pixta-ai
    Explore at:
    .json, .xml, .csvAvailable download formats
    Dataset updated
    Nov 14, 2022
    Dataset authored and provided by
    Pixta AI
    Area covered
    Malaysia, India, Canada, United Kingdom, Italy, Czech Republic, Hong Kong, New Zealand, United States of America, Philippines
    Description
    1. Overview This dataset is a collection of 6,000+ images of mixed race human face with various expressions & emotions that are ready to use for optimizing the accuracy of computer vision models. All of the contents is sourced from PIXTA's stock library of 100M+ Asian-featured images and videos. PIXTA is the largest platform of visual materials in the Asia Pacific region offering fully-managed services, high quality contents and data, and powerful tools for businesses & organisations to enable their creative and machine learning projects.

    2. The data set This dataset contains 6,000+ images of face emotion. Each data set is supported by both AI and human review process to ensure labelling consistency and accuracy. Contact us for more custom datasets.

    3. About PIXTA PIXTASTOCK is the largest Asian-featured stock platform providing data, contents, tools and services since 2005. PIXTA experiences 15 years of integrating advanced AI technology in managing, curating, processing over 100M visual materials and serving global leading brands for their creative and data demands. Visit us at https://www.pixta.ai/ or contact via our email contact@pixta.ai."

  12. T

    Text Annotation Tool Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jan 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Text Annotation Tool Report [Dataset]. https://www.datainsightsmarket.com/reports/text-annotation-tool-1928348
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Jan 22, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Market Analysis for Text Annotation Tool The global market for text annotation tools is projected to grow significantly, reaching XXX million USD by 2033, exhibiting a CAGR of XX% from 2025 to 2033. Key drivers behind this growth include the increasing demand for accurate data labeling for machine learning and natural language processing applications, the rise of cloud computing and AI-driven automation, and the expanding need for data annotation in various sectors such as healthcare, finance, and research. The market is segmented by application (commercial use, personal use), type (text annotation tool, image annotation tool, others), company (CloudApp, iMerit, Playment, Trilldata Technologies, Amazon Web Services, and others), and region (North America, South America, Europe, Middle East & Africa, Asia Pacific). North America currently holds the largest market share, followed by Europe and Asia Pacific. The increasing adoption of text annotation tools by enterprises and government agencies is expected to drive growth in the commercial use segment, while the demand for personal annotation tools for research and academic purposes is expected to fuel growth in the personal use segment.

  13. f

    This file includes the ID of the tweets and their stance labels which are...

    • plos.figshare.com
    application/csv
    Updated Jul 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicholas Perikli; Srimoy Bhattacharya; Blessing Ogbuokiri; Zahra Movahedi Nia; Benjamin Lieberman; Nidhi Tripathi; Salah-Eddine Dahbi; Finn Stevenson; Nicola Bragazzi; Jude Kong; Bruce Mellado (2024). This file includes the ID of the tweets and their stance labels which are from three classes namely, positive, neutral, and negative. [Dataset]. http://doi.org/10.1371/journal.pdig.0000545.s001
    Explore at:
    application/csvAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset provided by
    PLOS Digital Health
    Authors
    Nicholas Perikli; Srimoy Bhattacharya; Blessing Ogbuokiri; Zahra Movahedi Nia; Benjamin Lieberman; Nidhi Tripathi; Salah-Eddine Dahbi; Finn Stevenson; Nicola Bragazzi; Jude Kong; Bruce Mellado
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This file includes the ID of the tweets and their stance labels which are from three classes namely, positive, neutral, and negative.

  14. Z

    Antisemitism on Twitter: A Dataset for Machine Learning and Text Analytics

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Miehling, Daniel (2023). Antisemitism on Twitter: A Dataset for Machine Learning and Text Analytics [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7872834
    Explore at:
    Dataset updated
    Jun 23, 2023
    Dataset provided by
    Jikeli, Gunther
    Soemer, Katharina
    Karali, Sameer
    Miehling, Daniel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Institute For the Study of Contemporary Antisemitism (ISCA) at Indiana University Dataset:

    The ISCA project has compiled this dataset using an annotation portal, which was used to label tweets as either antisemitic or non-antisemitic, among other labels. Please note that the annotation was done with live data, including images and the context, such as threads. The original data was sourced from annotationportal.com.

    Content:

    This dataset contains 6,941 tweets that cover a wide range of topics common in conversations about Jews, Israel, and antisemitism between January 2019 and December 2021. The dataset is drawn from representative samples during this period with relevant keywords. 1,250 tweets (18%) meet the IHRA definition of antisemitic messages.

    The dataset has been compiled within the ISCA project using an annotation portal to label tweets as either antisemitic or non-antisemitic. The original data was sourced from annotationportal.com.

    The tweets' distribution of all messages by year is as follows: 1,499 (22%) from 2019, 3,716 (54%) from 2020, and 1,726 (25%) from 2021. 4,605 (66%) contain the keyword "Jews," 1,524 (22%) include "Israel," 529 (8%) feature the derogatory term "ZioNazi*," and 283 (4%) use the slur "K---s." Some tweets may contain multiple keywords.

    483 out of the 4,605 tweets with the keyword "Jews" (11%) and 203 out of the 1,524 tweets with the keyword "Israel" (13%) were classified as antisemitic. 97 out of the 283 tweets using the antisemitic slur "K---s" (34%) are antisemitic. Interestingly, many tweets featuring the slur "K---s" actually call out its usage. In contrast, the majority of tweets with the derogatory term "ZioNazi*" are antisemitic, with 467 out of 529 (88%) being classified as such.

    File Description:

    The dataset is provided in a csv file format, with each row representing a single message, including replies, quotes, and retweets. The file contains the following columns:

    ‘TweetID’: Represents the tweet ID.

    ‘Username’: Represents the username who published the tweet.

    ‘Text’: Represents the full text of the tweet (not pre-processed).

    ‘CreateDate’: Represents the date the tweet was created.

    ‘Biased’: Represents the labeled by our annotations if the tweet is antisemitic or non-antisemitic.

    ‘Keyword’: Represents the keyword that was used in the query. The keyword can be in the text, including mentioned names, or the username.

    Licences

    Data is published under the terms of the "Creative Commons Attribution 4.0 International" licence (https://creativecommons.org/licenses/by/4.0)

    R code is published under the terms of the "MIT" licence (https://opensource.org/licenses/MIT) ‘

    Acknowledgements

    We are grateful for the support of Indiana University’s Observatory on Social Media (OSoMe) (Davis et al. 2016) and the contributions and annotations of all team members in our Social Media & Hate Research Lab at Indiana University’s Institute for the Study of Contemporary Antisemitism, especially Grace Bland, Elisha S. Breton, Kathryn Cooper, Robin Forstenhäusler, Sophie von Máriássy, Mabel Poindexter, Jenna Solomon, Clara Schilling, and Victor Tschiskale.

    This work used Jetstream2 at Indiana University through allocation HUM200003 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by National Science Foundation grants #2138259, #2138286, #2138307, #2137603, and #2138296.

  15. f

    DataSheet1_Benchmarking automated cell type annotation tools for single-cell...

    • figshare.com
    docx
    Updated Jun 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuge Wang; Xingzhi Sun; Hongyu Zhao (2023). DataSheet1_Benchmarking automated cell type annotation tools for single-cell ATAC-seq data.docx [Dataset]. http://doi.org/10.3389/fgene.2022.1063233.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    Frontiers
    Authors
    Yuge Wang; Xingzhi Sun; Hongyu Zhao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    As single-cell chromatin accessibility profiling methods advance, scATAC-seq has become ever more important in the study of candidate regulatory genomic regions and their roles underlying developmental, evolutionary, and disease processes. At the same time, cell type annotation is critical in understanding the cellular composition of complex tissues and identifying potential novel cell types. However, most existing methods that can perform automated cell type annotation are designed to transfer labels from an annotated scRNA-seq data set to another scRNA-seq data set, and it is not clear whether these methods are adaptable to annotate scATAC-seq data. Several methods have been recently proposed for label transfer from scRNA-seq data to scATAC-seq data, but there is a lack of benchmarking study on the performance of these methods. Here, we evaluated the performance of five scATAC-seq annotation methods on both their classification accuracy and scalability using publicly available single-cell datasets from mouse and human tissues including brain, lung, kidney, PBMC, and BMMC. Using the BMMC data as basis, we further investigated the performance of these methods across different data sizes, mislabeling rates, sequencing depths and the number of cell types unique to scATAC-seq. Bridge integration, which is the only method that requires additional multimodal data and does not need gene activity calculation, was overall the best method and robust to changes in data size, mislabeling rate and sequencing depth. Conos was the most time and memory efficient method but performed the worst in terms of prediction accuracy. scJoint tended to assign cells to similar cell types and performed relatively poorly for complex datasets with deep annotations but performed better for datasets only with major label annotations. The performance of scGCN and Seurat v3 was moderate, but scGCN was the most time-consuming method and had the most similar performance to random classifiers for cell types unique to scATAC-seq.

  16. u

    Data from: DIPSER: A Dataset for In-Person Student Engagement Recognition in...

    • observatorio-cientifico.ua.es
    • scidb.cn
    Updated 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Márquez-Carpintero, Luis; Suescun-Ferrandiz, Sergio; Álvarez, Carolina Lorenzo; Fernandez-Herrero, Jorge; Viejo, Diego; Rosabel Roig-Vila; Cazorla, Miguel; Márquez-Carpintero, Luis; Suescun-Ferrandiz, Sergio; Álvarez, Carolina Lorenzo; Fernandez-Herrero, Jorge; Viejo, Diego; Rosabel Roig-Vila; Cazorla, Miguel (2025). DIPSER: A Dataset for In-Person Student Engagement Recognition in the Wild [Dataset]. https://observatorio-cientifico.ua.es/documentos/67321d21aea56d4af0484172
    Explore at:
    Dataset updated
    2025
    Authors
    Márquez-Carpintero, Luis; Suescun-Ferrandiz, Sergio; Álvarez, Carolina Lorenzo; Fernandez-Herrero, Jorge; Viejo, Diego; Rosabel Roig-Vila; Cazorla, Miguel; Márquez-Carpintero, Luis; Suescun-Ferrandiz, Sergio; Álvarez, Carolina Lorenzo; Fernandez-Herrero, Jorge; Viejo, Diego; Rosabel Roig-Vila; Cazorla, Miguel
    Description

    Data DescriptionThe DIPSER dataset is designed to assess student attention and emotion in in-person classroom settings, consisting of RGB camera data, smartwatch sensor data, and labeled attention and emotion metrics. It includes multiple camera angles per student to capture posture and facial expressions, complemented by smartwatch data for inertial and biometric metrics. Attention and emotion labels are derived from self-reports and expert evaluations. The dataset includes diverse demographic groups, with data collected in real-world classroom environments, facilitating the training of machine learning models for predicting attention and correlating it with emotional states.Data Collection and Generation ProceduresThe dataset was collected in a natural classroom environment at the University of Alicante, Spain. The recording setup consisted of six general cameras positioned to capture the overall classroom context and individual cameras placed at each student’s desk. Additionally, smartwatches were used to collect biometric data, such as heart rate, accelerometer, and gyroscope readings.Experimental SessionsNine distinct educational activities were designed to ensure a comprehensive range of engagement scenarios:News Reading – Students read projected or device-displayed news.Brainstorming Session – Idea generation for problem-solving.Lecture – Passive listening to an instructor-led session.Information Organization – Synthesizing information from different sources.Lecture Test – Assessment of lecture content via mobile devices.Individual Presentations – Students present their projects.Knowledge Test – Conducted using Kahoot.Robotics Experimentation – Hands-on session with robotics.MTINY Activity Design – Development of educational activities with computational thinking.Technical SpecificationsRGB Cameras: Individual cameras recorded at 640×480 pixels, while context cameras captured at 1280×720 pixels.Frame Rate: 9-10 FPS depending on the setup.Smartwatch Sensors: Collected heart rate, accelerometer, gyroscope, rotation vector, and light sensor data at a frequency of 1–100 Hz.Data Organization and FormatsThe dataset follows a structured directory format:/groupX/experimentY/subjectZ.zip Each subject-specific folder contains:images/ (individual facial images)watch_sensors/ (sensor readings in JSON format)labels/ (engagement & emotion annotations)metadata/ (subject demographics & session details)Annotations and LabelingEach data entry includes engagement levels (1-5) and emotional states (9 categories) based on both self-reported labels and evaluations by four independent experts. A custom annotation tool was developed to ensure consistency across evaluations.Missing Data and Data QualitySynchronization: A centralized server ensured time alignment across devices. Brightness changes were used to verify synchronization.Completeness: No major missing data, except for occasional random frame drops due to embedded device performance.Data Consistency: Uniform collection methodology across sessions, ensuring high reliability.Data Processing MethodsTo enhance usability, the dataset includes preprocessed bounding boxes for face, body, and hands, along with gaze estimation and head pose annotations. These were generated using YOLO, MediaPipe, and DeepFace.File Formats and AccessibilityImages: Stored in standard JPEG format.Sensor Data: Provided as structured JSON files.Labels: Available as CSV files with timestamps.The dataset is publicly available under the CC-BY license and can be accessed along with the necessary processing scripts via the DIPSER GitHub repository.Potential Errors and LimitationsDue to camera angles, some student movements may be out of frame in collaborative sessions.Lighting conditions vary slightly across experiments.Sensor latency variations are minimal but exist due to embedded device constraints.CitationIf you find this project helpful for your research, please cite our work using the following bibtex entry:@misc{marquezcarpintero2025dipserdatasetinpersonstudent1, title={DIPSER: A Dataset for In-Person Student1 Engagement Recognition in the Wild}, author={Luis Marquez-Carpintero and Sergio Suescun-Ferrandiz and Carolina Lorenzo Álvarez and Jorge Fernandez-Herrero and Diego Viejo and Rosabel Roig-Vila and Miguel Cazorla}, year={2025}, eprint={2502.20209}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2502.20209}, } Usage and ReproducibilityResearchers can utilize standard tools like OpenCV, TensorFlow, and PyTorch for analysis. The dataset supports research in machine learning, affective computing, and education analytics, offering a unique resource for engagement and attention studies in real-world classroom environments.

  17. d

    Pixta AI | Imagery Data | Global | 5,000 Stock Images | Annotation and...

    • datarade.ai
    .json, .xml, .txt
    Updated Aug 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pixta AI (2022). Pixta AI | Imagery Data | Global | 5,000 Stock Images | Annotation and Labelling Services Provided | Vehicle number plate position for AI & ML model [Dataset]. https://datarade.ai/data-products/5-000-vehicle-number-plate-position-for-ai-ml-model-pixta-ai
    Explore at:
    .json, .xml, .txtAvailable download formats
    Dataset updated
    Aug 31, 2022
    Dataset authored and provided by
    Pixta AI
    Area covered
    Canada, Hong Kong, Philippines, France, Portugal, Thailand, Spain, Belgium, United States of America, Vietnam
    Description
    1. Overview This dataset is a collection of 5,000+ images of vehicle number plate position that are ready to use for optimizing the accuracy of computer vision models. All of the contents is sourced from PIXTA's stock library of 100M+ Asian-featured images and videos. PIXTA is the largest platform of visual materials in the Asia Pacific region offering fully-managed services, high quality contents and data, and powerful tools for businesses & organisations to enable their creative and machine learning projects.

    2. Use case The 5,000+ images of vehicle number plate position could be used for various AI & Computer Vision models: Number Plate Recognition, Parking System, Surveillance Camera,... Each data set is supported by both AI and human review process to ensure labelling consistency and accuracy. Contact us for more custom datasets.

    3. Annotation Annotation is available for this dataset on demand, including:

    4. Bounding box

    5. Classification

    6. Segmentation ...

    7. About PIXTA PIXTASTOCK is the largest Asian-featured stock platform providing data, contents, tools and services since 2005. PIXTA experiences 15 years of integrating advanced AI technology in managing, curating, processing over 100M visual materials and serving global leading brands for their creative and data demands. Visit us at https://www.pixta.ai/ or contact via our email contact@pixta.ai.

  18. c

    Data from: English-Slovenian text genre dataset X-GENRE

    • clarin.si
    • live.european-language-grid.eu
    Updated Sep 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Taja Kuzman; Nikola Ljubešić (2024). English-Slovenian text genre dataset X-GENRE [Dataset]. https://www.clarin.si/repository/xmlui/handle/11356/1960?locale-attribute=sl
    Explore at:
    Dataset updated
    Sep 25, 2024
    Authors
    Taja Kuzman; Nikola Ljubešić
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    The X-GENRE dataset comprises almost 3,000 web texts in English and Slovenian, manually-annotated with genre labels. The dataset allows for automated genre identification and genre analyses as well as other web corpora research. Inter alia, it was used for the development of the multilingual X-GENRE classifier (http://hdl.handle.net/11356/1961).

    The X-GENRE dataset was constructed by merging three manually-annotated datasets by mapping the original schemata to the joint genre schema (the "X-GENRE schema"): 1) the Slovenian GINCO dataset (http://hdl.handle.net/11356/1467), 2) the English CORE dataset (https://github.com/TurkuNLP/CORE-corpus), and 3) the English FTD dataset (https://github.com/ssharoff/genre-keras). All of the original genre datasets are based on web corpora. The X-GENRE schema consists of 9 genre labels: Information/Explanation, News, Instruction, Opinion/Argumentation, Forum, Prose/Lyrical, Legal, Promotion and Other (refer to the README provided with the files for the details on the labels).

    The dataset is separated into train, development and test split. The train split consists of 1,772 texts and 1,940,317 words, the development split of 592 texts and 798,025 words, and the test split of 592 texts and 583,595 words. The splits are stratified by labels. As the dataset consists of two English datasets and one Slovenian dataset, the distribution of texts in the two languages is roughly two to one: 2,063 English texts and 893 Slovenian texts.

    The dataset is in JSONL format. It has the following attributes: text (text instance), labels (genre label), dataset (original manually-annotated genre dataset from which the instance was obtained – CORE, GINCO or FTD), and language (language of the text – Slovenian or English).

    This work received funding from the European Union’s Connecting Europe Facility 2014–2020 – CEF Telecom – under Grant Agreement No. INEA/CEF/ICT/A2020/2278341. This communication reflects only the authors’ views. The Agency is not responsible for any use that may be made of the information it contains.

  19. f

    Comparing LDA Results of the COVID-19 RoBERTa Mislabelled M-pox tweets...

    • plos.figshare.com
    xls
    Updated Jul 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicholas Perikli; Srimoy Bhattacharya; Blessing Ogbuokiri; Zahra Movahedi Nia; Benjamin Lieberman; Nidhi Tripathi; Salah-Eddine Dahbi; Finn Stevenson; Nicola Bragazzi; Jude Kong; Bruce Mellado (2024). Comparing LDA Results of the COVID-19 RoBERTa Mislabelled M-pox tweets before (top-section) and after (bottom-section) training. [Dataset]. http://doi.org/10.1371/journal.pdig.0000545.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset provided by
    PLOS Digital Health
    Authors
    Nicholas Perikli; Srimoy Bhattacharya; Blessing Ogbuokiri; Zahra Movahedi Nia; Benjamin Lieberman; Nidhi Tripathi; Salah-Eddine Dahbi; Finn Stevenson; Nicola Bragazzi; Jude Kong; Bruce Mellado
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The M-pox dataset is from May 1st to Sep 5th, 2022.

  20. Label Classifier Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Jan 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AMA Research & Media LLP (2025). Label Classifier Report [Dataset]. https://www.marketresearchforecast.com/reports/label-classifier-13364
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Jan 24, 2025
    Dataset provided by
    AMA Research & Media
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Label Classifier market size is estimated to be valued at USD XXX million in 2025 and is projected to grow at a CAGR of XX% from 2025 to 2033. Rapid adoption of Artificial Intelligence (AI) and Machine Learning (ML) in various industries, increasing demand for data annotation and classification, and growing need for efficient and accurate data labeling are major factors driving the growth of the market. The market is segmented by application, type, and region. By application, the market is categorized into SMEs and large enterprises. By type, the market is classified into rule-based classifiers, statistical-based classifiers, and machine learning (ML)-based classifiers. ML-based classifiers hold the largest market share due to their high accuracy, flexibility, and ability to handle complex data sets. By region, North America dominates the market, followed by Europe and Asia Pacific. Growing adoption of AI and ML in the IT and healthcare sectors, increasing demand for labeled data for training ML models, and presence of major market players in North America contribute to its leading position.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
AMA Research & Media LLP (2025). Data Collection and Labelling Report [Dataset]. https://www.marketresearchforecast.com/reports/data-collection-and-labelling-33030

Data Collection and Labelling Report

Explore at:
ppt, doc, pdfAvailable download formats
Dataset updated
Mar 13, 2025
Dataset provided by
AMA Research & Media LLP
License

https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

Time period covered
2025 - 2033
Area covered
Global
Variables measured
Market Size
Description

The data collection and labeling market is experiencing robust growth, fueled by the escalating demand for high-quality training data in artificial intelligence (AI) and machine learning (ML) applications. The market, estimated at $15 billion in 2025, is projected to achieve a Compound Annual Growth Rate (CAGR) of 25% over the forecast period (2025-2033), reaching approximately $75 billion by 2033. This expansion is primarily driven by the increasing adoption of AI across diverse sectors, including healthcare (medical image analysis, drug discovery), automotive (autonomous driving systems), finance (fraud detection, risk assessment), and retail (personalized recommendations, inventory management). The rising complexity of AI models and the need for more diverse and nuanced datasets are significant contributing factors to this growth. Furthermore, advancements in data annotation tools and techniques, such as active learning and synthetic data generation, are streamlining the data labeling process and making it more cost-effective. However, challenges remain. Data privacy concerns and regulations like GDPR necessitate robust data security measures, adding to the cost and complexity of data collection and labeling. The shortage of skilled data annotators also hinders market growth, necessitating investments in training and upskilling programs. Despite these restraints, the market’s inherent potential, coupled with ongoing technological advancements and increased industry investments, ensures sustained expansion in the coming years. Geographic distribution shows strong concentration in North America and Europe initially, but Asia-Pacific is poised for rapid growth due to increasing AI adoption and the availability of a large workforce. This makes strategic partnerships and global expansion crucial for market players aiming for long-term success.

Search
Clear search
Close search
Google apps
Main menu