Facebook
Twitter
According to our latest research, the global Data Labeling with LLMs market size was valued at USD 2.14 billion in 2024, with a robust year-on-year growth trajectory. The market is projected to expand at a CAGR of 22.8% from 2025 to 2033, reaching a forecasted value of USD 16.6 billion by 2033. This impressive growth is primarily driven by the increasing adoption of large language models (LLMs) to automate and enhance the efficiency of data labeling processes across various industries. As organizations continue to invest in AI and machine learning, the demand for high-quality, accurately labeled datasets—essential for training and fine-tuning LLMs—continues to surge, fueling the expansion of the data labeling with LLMs market.
One of the principal growth factors for the data labeling with LLMs market is the exponential increase in the volume of unstructured data generated by businesses and consumers worldwide. Organizations are leveraging LLMs to automate the labeling of vast datasets, which is essential for training sophisticated AI models. The integration of LLMs into data labeling workflows is not only improving the speed and accuracy of the annotation process but also reducing operational costs. This technological advancement has enabled enterprises to scale their AI initiatives more efficiently, facilitating the deployment of intelligent applications across sectors such as healthcare, automotive, finance, and retail. Moreover, the continuous evolution of LLMs, with capabilities such as zero-shot and few-shot learning, is further enhancing the quality and context-awareness of labeled data, making these solutions indispensable for next-generation AI systems.
Another significant driver is the growing need for domain-specific labeled datasets, especially in highly regulated industries like healthcare and finance. In these sectors, data privacy and security are paramount, and the use of LLMs in data labeling processes ensures that sensitive information is handled with the utmost care. LLM-powered platforms are increasingly being adopted to create high-quality, compliant datasets for applications such as medical imaging analysis, fraud detection, and customer sentiment analysis. The ability of LLMs to understand context, semantics, and complex language structures is particularly valuable in these domains, where the accuracy and reliability of labeled data directly impact the performance and safety of AI-driven solutions. This trend is expected to continue as organizations strive to meet stringent regulatory requirements while accelerating their AI adoption.
Furthermore, the proliferation of AI-powered applications in emerging markets is contributing to the rapid expansion of the data labeling with LLMs market. Countries in Asia Pacific and Latin America are witnessing significant investments in digital transformation, driving the demand for scalable and efficient data annotation solutions. The availability of cloud-based data labeling platforms, combined with advancements in LLM technologies, is enabling organizations in these regions to overcome traditional barriers such as limited access to skilled annotators and high operational costs. As a result, the market is experiencing robust growth in both developed and developing economies, with enterprises increasingly recognizing the strategic value of high-quality labeled data in gaining a competitive edge.
From a regional perspective, North America currently dominates the data labeling with LLMs market, accounting for the largest share in 2024. This leadership is attributed to the presence of major technology companies, advanced research institutions, and a mature AI ecosystem. However, Asia Pacific is expected to witness the highest CAGR during the forecast period, driven by rapid digitalization, government initiatives supporting AI development, and a burgeoning startup ecosystem. Europe is also emerging as a key market, with strong demand from sectors such as automotive and healthcare. Meanwhile, Latin America and the Middle East & Africa are gradually increasing their market presence, supported by growing investments in AI infrastructure and talent development.
Facebook
Twitter-SFT: Nexdata assists clients in generating high-quality supervised fine-tuning data for model optimization through prompts and outputs annotation.
-Red teaming: Nexdata helps clients train and validate models through drafting various adversarial attacks, such as exploratory or potentially harmful questions. Our red team capabilities help clients identify problems in their models related to hallucinations, harmful content, false information, discrimination, language bias and etc.
-RLHF: Nexdata assist clients in manually ranking multiple outputs generated by the SFT-trained model according to the rules provided by the client, or provide multi-factor scoring. By training annotators to align with values and utilizing a multi-person fitting approach, the quality of feedback can be improved.
-Compliance: All the Large Language Model(LLM) Data is collected with proper authorization
-Quality: Multiple rounds of quality inspections ensures high quality data output
-Secure Implementation: NDA is signed to gurantee secure implementation and data is destroyed upon delivery.
-Efficency: Our platform supports human-machine interaction and semi-automatic labeling, increasing labeling efficiency by more than 30% per annotator. It has successfully been applied to nearly 5,000 projects.
3.About Nexdata Nexdata is equipped with professional data collection devices, tools and environments, as well as experienced project managers in data collection and quality control, so that we can meet the Large Language Model(LLM) Data collection requirements in various scenarios and types. We have global data processing centers and more than 20,000 professional annotators, supporting on-demand Large Language Model(LLM) Data annotation services, such as speech, image, video, point cloud and Natural Language Processing (NLP) Data, etc. Please visit us at https://www.nexdata.ai/?source=Datarade
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Please share your suggestions to improve my datasets further✍️
📄 Dataset Overview This dataset contains Google Play Store app reviews labeled for sentiment using a deterministic Large Language Model (LLM) classification pipeline. Each review is tagged as positive, negative, or neutral, making it ready for NLP training, benchmarking, and market insight generation.
⚙️ Data Collection & Labeling Process Source: Reviews collected from Google Play Store using the google_play_scraper library. Labeling: Reviews classified by a Hugging Face Transformers-based LLM with a strict prompt to ensure one-word output. Post-processing: Outputs normalized to the three sentiment classes.
💡 Potential Uses Fine-tuning BERT, RoBERTa, LLaMA, or other transformer models. Sentiment dashboards for product feedback monitoring. Market research on user perception trends. Benchmark dataset for text classification experiments.
Please upvote!!!!
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The Social Engineering Detection Benchmark with LLMs dataset, meticulously curated by Doha AL-Qurashi and Rahaf Al-Batati, comprises 210 short scenarios and massages in both Arabic and English. Each message is labeled as or to evaluate large language models’ ability to detect social engineering tactics across diverse linguistic and cultural contexts.
Out of 14 evaluated LLMs, the following achieved the highest accuracy in correctly predicting malicious intent:
This balanced dataset includes:
To ensure realism and diversity, messages were sourced and labeled via:
true / false).Arabic or English.true, false, error, blank).Researchers and practitioners can use this dataset to:
scenario column for contextual understanding.malicious ground truth.
Data Privacy: All messages are synthetic or anonymized; no personal data included.
Responsible Use: Intended solely for research and educational purposes.
If you use this dataset, please cite:
AL-Qurashi, D., & Al-Batati, R. (2024). Social Engineering Detection Benchmark with LLMs [Data set]. Kaggle. https://www.kaggle.com/datasets/dohaalqurashi/social-engineering-detection-benchmark-with-llms
Facebook
Twitterhttps://choosealicense.com/licenses/cdla-sharing-1.0/https://choosealicense.com/licenses/cdla-sharing-1.0/
Bitext - Travel Tagged Training Dataset for LLM-based Virtual Assistants
Overview
This hybrid synthetic dataset is designed to be used to fine-tune Large Language Models such as GPT, Mistral and OpenELM, and has been generated using our NLP/NLG technology and our automated Data Labeling (DAL) tools. The goal is to demonstrate how Verticalization/Domain Adaptation for the [Travel] sector can be easily achieved using our two-step approach to LLM Fine-Tuning. An overview of… See the full description on the dataset page: https://huggingface.co/datasets/bitext/Bitext-travel-llm-chatbot-training-dataset.
Facebook
Twitterhttps://researchintelo.com/privacy-and-policyhttps://researchintelo.com/privacy-and-policy
According to our latest research, the Global LLM Data Quality Assurance market size was valued at $1.25 billion in 2024 and is projected to reach $8.67 billion by 2033, expanding at a robust CAGR of 23.7% during 2024–2033. The major factor propelling the growth of the LLM Data Quality Assurance market globally is the rapid proliferation of generative AI and large language models (LLMs) across industries, creating an urgent need for high-quality, reliable, and bias-free data to fuel these advanced systems. As organizations increasingly depend on LLMs for mission-critical applications, ensuring the integrity and accuracy of training and operational data has become indispensable to mitigate risk, enhance performance, and comply with evolving regulatory frameworks.
North America currently commands the largest share of the LLM Data Quality Assurance market, accounting for approximately 38% of the global revenue in 2024. This dominance can be attributed to the region’s mature AI ecosystem, significant investments in digital transformation, and the presence of leading technology firms and AI research institutions. The United States, in particular, has spearheaded the adoption of LLMs in sectors such as BFSI, healthcare, and IT, driving the demand for advanced data quality assurance solutions. Favorable government policies supporting AI innovation, a strong startup culture, and robust regulatory guidelines around data privacy and model transparency have further solidified North America’s leadership position in the market.
Asia Pacific is emerging as the fastest-growing region in the LLM Data Quality Assurance market, with a projected CAGR of 27.4% from 2024 to 2033. This rapid growth is driven by escalating investments in AI infrastructure, increasing digitalization across enterprises, and government-led initiatives to foster AI research and deployment. Countries such as China, Japan, South Korea, and India are witnessing exponential growth in LLM adoption, especially in sectors like e-commerce, telecommunications, and manufacturing. The region’s burgeoning talent pool, combined with a surge in AI-focused venture capital funding, is fueling innovation in data quality assurance platforms and services, positioning Asia Pacific as a major future growth engine for the market.
Emerging economies in Latin America and the Middle East & Africa are also starting to recognize the importance of LLM Data Quality Assurance, but adoption remains at a nascent stage due to infrastructural limitations, skill gaps, and budgetary constraints. These regions are gradually overcoming barriers as multinational corporations expand their operations and local governments launch digital transformation agendas. However, challenges such as data localization requirements, fragmented regulatory landscapes, and limited access to cutting-edge AI technologies are slowing widespread adoption. Despite these hurdles, localized demand for data quality solutions in sectors like banking, retail, and healthcare is expected to rise steadily as these economies modernize and integrate AI-driven workflows.
| Attributes | Details |
| Report Title | LLM Data Quality Assurance Market Research Report 2033 |
| By Component | Software, Services |
| By Application | Model Training, Data Labeling, Data Validation, Data Cleansing, Data Monitoring, Others |
| By Deployment Mode | On-Premises, Cloud |
| By Enterprise Size | Small and Medium Enterprises, Large Enterprises |
| By End-User | BFSI, Healthcare, Retail and E-commerce, IT and Telecommunications, Media and Entertainment, Manufacturing, Others |
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the augmented data and labels used in training the model, it is also needed for evaluation as the vectoriser is fit on this data and then the test data is transformed on that vectoriser
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This is an LLM-generated external dataset for the: - The Learning Agency Lab - PII Data Detection Competition
It contains 3382 4434 generated texts with their corresponding annotated labels in the required competition format.
Description:
- document (str): ID of the essay
- full_text (string): AI generated text.
- tokens (string): a list with the tokens (comes from text.split())
- trailing_whitespace (list): a list with boolean values indicating whether each token is followed by whitespace.
- labels (list): list with token labels in BIO format
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Advancing Homepage2Vec with LLM-Generated Datasets for Multilingual Website Classification
This dataset contains two subsets of labeled website data, specifically created to enhance the performance of Homepage2Vec, a multi-label model for website classification. The datasets were generated using Large Language Models (LLMs) to provide more accurate and diverse topic annotations for websites, addressing a limitation of existing Homepage2Vec training data.
Key Features:
LLM-generated annotations: Both datasets feature website topic labels generated using LLMs, a novel approach to creating high-quality training data for website classification models.
Improved multi-label classification: Fine-tuning Homepage2Vec with these datasets has been shown to improve its macro F1 score from 38% to 43% evaluated on a human-labeled dataset, demonstrating their effectiveness in capturing a broader range of website topics.
Multilingual applicability: The datasets facilitate classification of websites in multiple languages, reflecting the inherent multilingual nature of Homepage2Vec.
Dataset Composition:
curlie-gpt3.5-10k: 10,000 websites labeled using GPT-3.5, context 2 and 1-shot
curlie-gpt4-10k: 10,000 websites labeled using GPT-4, context 2 and zero-shot
Intended Use:
Fine-tuning and advancing Homepage2Vec or similar website classification models
Research on LLM-generated datasets for text classification tasks
Exploration of multilingual website classification
Additional Information:
Project and report repository: https://github.com/CS-433/ml-project-2-mlp
Acknowledgments:
This dataset was created as part of a project at EPFL's Data Science Lab (DLab) in collaboration with Prof. Robert West and Tiziano Piccardi.
Facebook
Twitterhttps://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
The Japanese Closed-Ended Question Answering Dataset is a meticulously curated collection of 5000 comprehensive Question-Answer pairs. It serves as a valuable resource for training Large Language Models (LLMs) and question-answering models in the Japanese language, advancing the field of artificial intelligence.
This closed-ended QA dataset comprises a diverse set of context paragraphs and questions paired with corresponding answers in Japanese. There is a context paragraph given for each question to get the answer from. The questions cover a broad range of topics, including science, history, technology, geography, literature, current affairs, and more.
Each question is accompanied by an answer, providing valuable information and insights to enhance the language model training process. Both the questions and answers were manually curated by native Japanese people, and references were taken from diverse sources like books, news articles, websites, web forums, and other reliable references.
This question-answer prompt completion dataset contains different types of prompts, including instruction type, continuation type, and in-context learning (zero-shot, few-shot) type. The dataset also contains questions and answers with different types of rich text, including tables, code, JSON, etc., with proper markdown.
To ensure diversity, this Q&A dataset includes questions with varying complexity levels, ranging from easy to medium and hard. Different types of questions, such as multiple-choice, direct, and true/false, are included. The QA dataset also contains questions with constraints, which makes it even more useful for LLM training.
To accommodate varied learning experiences, the dataset incorporates different types of answer formats. These formats include single-word, short phrases, single sentences, and paragraphs types of answers. The answers contain text strings, numerical values, date and time formats as well. Such diversity strengthens the language model's ability to generate coherent and contextually appropriate answers.
This fully labeled Japanese Closed-Ended Question Answer Dataset is available in JSON and CSV formats. It includes annotation details such as a unique id, context paragraph, context reference link, question, question type, question complexity, question category, domain, prompt type, answer, answer type, and rich text presence.
The dataset upholds the highest standards of quality and accuracy. Each question undergoes careful validation, and the corresponding answers are thoroughly verified. To prioritize inclusivity, the dataset incorporates questions and answers representing diverse perspectives and writing styles, ensuring it remains unbiased and avoids perpetuating discrimination.
The Japanese versions is grammatically accurate without any spelling or grammatical errors. No toxic or harmful content is used while building this dataset.
The entire dataset was prepared with the assistance of human curators from the FutureBeeAI crowd community. Continuous efforts are made to add more assets to this dataset, ensuring its growth and relevance. Additionally, FutureBeeAI offers the ability to collect custom question-answer data tailored to specific needs, providing flexibility and customization options.
The dataset, created by FutureBeeAI, is now ready for commercial use. Researchers, data scientists, and developers can utilize this fully labeled and ready-to-deploy Japanese Closed-Ended Question Answer Dataset to enhance the language understanding capabilities of their generative AI models, improve response generation, and explore new approaches to NLP question-answering tasks.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Cleaned and Optimized Dataset for AI vs. Human Text Classification
This dataset is a curated and optimized collection of text data designed for training and evaluating machine learning models to distinguish between AI-generated and human-written text. The dataset has been meticulously cleaned, deduplicated, and reduced in size to ensure efficiency while maintaining its utility for research and development purposes.
By combining multiple high-quality sources, this dataset provides a diverse range of text samples, making it ideal for tasks such as binary classification (AI vs. Human) and other natural language processing (NLP) applications.
Cleaned Text:
Label Consistency:
0 for human-written text, 1 for AI-generated text).Memory Optimization:
category for categorical columns).Deduplication:
Null Value Handling:
Compact Size:
label and clean_text, making it lightweight and easy to use.The final dataset contains the following columns:
| Column Name | Description |
|---|---|
label | Binary label indicating the source of the text (0: Human, 1: AI). |
clean_text | Preprocessed and cleaned text content ready for NLP tasks. |
This dataset is a consolidation of multiple high-quality datasets from various sources, ensuring diversity and representativeness. Below are the details of the sources used:
Source 1:
text, generated (renamed to label).Source 2:
text, label.Source 3:
AI_Essay (renamed to text), prompt_id (renamed to label).Source 4:
text, label.Source 5:
text, source (renamed to label).Source 6:
text, label.To ensure the dataset is clean, consistent, and optimized for use, the following steps were performed:
Column Standardization:
text and label).Text Cleaning:
Duplicate Removal:
Null Value Handling:
text or label).Memory Optimization:
category type for memory efficiency.Final Dataset Creation:
label and clean_text.This datase...
Facebook
Twitterhttps://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
The Finnish Open-Ended Question Answering Dataset is a meticulously curated collection of comprehensive Question-Answer pairs. It serves as a valuable resource for training Large Language Models (LLMs) and Question-answering models in the Finnish language, advancing the field of artificial intelligence.
This QA dataset comprises a diverse set of open-ended questions paired with corresponding answers in Finnish. There is no context paragraph given to choose an answer from, and each question is answered without any predefined context content. The questions cover a broad range of topics, including science, history, technology, geography, literature, current affairs, and more.
Each question is accompanied by an answer, providing valuable information and insights to enhance the language model training process. Both the questions and answers were manually curated by native Finnish people, and references were taken from diverse sources like books, news articles, websites, and other reliable references.
This question-answer prompt completion dataset contains different types of prompts, including instruction type, continuation type, and in-context learning (zero-shot, few-shot) type. The dataset also contains questions and answers with different types of rich text, including tables, code, JSON, etc., with proper markdown.
To ensure diversity, this Q&A dataset includes questions with varying complexity levels, ranging from easy to medium and hard. Different types of questions, such as multiple-choice, direct, and true/false, are included. Additionally, questions are further classified into fact-based and opinion-based categories, creating a comprehensive variety. The QA dataset also contains the question with constraints and persona restrictions, which makes it even more useful for LLM training.
To accommodate varied learning experiences, the dataset incorporates different types of answer formats. These formats include single-word, short phrases, single sentences, and paragraph types of answers. The answer contains text strings, numerical values, date and time formats as well. Such diversity strengthens the Language model's ability to generate coherent and contextually appropriate answers.
This fully labeled Finnish Open Ended Question Answer Dataset is available in JSON and CSV formats. It includes annotation details such as id, language, domain, question_length, prompt_type, question_category, question_type, complexity, answer_type, rich_text.
The dataset upholds the highest standards of quality and accuracy. Each question undergoes careful validation, and the corresponding answers are thoroughly verified. To prioritize inclusivity, the dataset incorporates questions and answers representing diverse perspectives and writing styles, ensuring it remains unbiased and avoids perpetuating discrimination.
Both the question and answers in Finnish are grammatically accurate without any word or grammatical errors. No copyrighted, toxic, or harmful content is used while building this dataset.
The entire dataset was prepared with the assistance of human curators from the FutureBeeAI crowd community. Continuous efforts are made to add more assets to this dataset, ensuring its growth and relevance. Additionally, FutureBeeAI offers the ability to collect custom question-answer data tailored to specific needs, providing flexibility and customization options.
The dataset, created by FutureBeeAI, is now ready for commercial use. Researchers, data scientists, and developers can utilize this fully labeled and ready-to-deploy Finnish Open Ended Question Answer Dataset to enhance the language understanding capabilities of their generative ai models, improve response generation, and explore new approaches to NLP question-answering tasks.
Facebook
Twitterhttps://choosealicense.com/licenses/cdla-sharing-1.0/https://choosealicense.com/licenses/cdla-sharing-1.0/
Bitext - Restaurants Tagged Training Dataset for LLM-based Virtual Assistants
Overview
This hybrid synthetic dataset is designed to be used to fine-tune Large Language Models such as GPT, Mistral and OpenELM, and has been generated using our NLP/NLG technology and our automated Data Labeling (DAL) tools. The goal is to demonstrate how Verticalization/Domain Adaptation for the [restaurants] sector can be easily achieved using our two-step approach to LLM Fine-Tuning. An… See the full description on the dataset page: https://huggingface.co/datasets/bitext/Bitext-restaurants-llm-chatbot-training-dataset.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
OverviewContext: A large number of bug reports are submitted in software projects on a daily basis. They are examined manually by practitioners. However, most of the bug reports are not related to the errors in the codebase (invalid bug reports), and cause a great waste of time and energy. Previous research have used various machine learning based techniques and language model based techniques to tackle this problem through auto-classification of bug reports. There exists a gap, however, in classification of bug reports using the large language models (LLMs) and techniques to improve the LLM performance for binary classification.Objective: The aim of this study is to apply various machine learning and natural language processing methods to classify bug reports as valid or invalid, then supply the predictions of these models to an LLM judge, along with similar bug reports and their labels, to enable it to make an informed prediction.Method: We first retrieved 10,000 real-world Firefox bug reports via the Bugzilla API, then divided them randomly into a training set and a test set. We trained three traditional classifiers (Naive Bayes, Random Forest, and SVM) on the training set, and fine-tuned five BERT-based models for classification. In parallel, we used LLMs with in-context examples given by the Retrieval Augmented Generation system established over the training set; and compared the results with zero-shot prompting. We have picked the best-performing LLM and used it as the judge LLM by providing it with the votes of the three diverse ML models, and top-5 semantically similar bug reports. We compared the performance of the judge LLM with the majority voting of the three chosen models.Results: The classical ML pipelines; Naive Bayes, Random Forest, and Linear SVM trained on TF-IDF features and achieved strong binary $F_1$ scores of 0.881, 0.894, and 0.878, respectively. Our suite of five fine-tuned BERT-based classifiers further improved performance, with F$_1$ scores for BERT base at 0.899, RoBERTa at 0.909, CodeBERT at 0.902, CodeBERT-Graph at 0.902, and the 128-token BERT variant at 0.899. In contrast, zero-shot LLM classification without retrieval saw $F_1$s ranging from 0.531 (GPT-4o-mini) to 0.737 (Llama-3.3-70B), highlighting the gap between out-of-the-box LLMs and specialized models. Introducing RAG-based few-shot prompting closed much of that gap, lifting LLM $F_1$s to 0.815 for GPT-o3-mini, 0.759 for GPT-o4-mini, and 0.797 for Llama, while GPT-4o-mini reached 0.729. Finally, our hybrid judge pipeline, combining top-5 similar bug reports, votes from RF, SVM, and RoBERTa, and reasoning by GPT-o3-mini, yielded an $F_1$ of 0.871, striking a balance between raw accuracy and human-readable explanations.Conclusions: Our evaluation confirms that specialized, fine-tuned classifiers, particularly RoBERTa and CodeBERT variants, remain the most cost-effective and highest-accuracy solutions for binary bug-report triage. Using RAG with LLMs substantially boosts classification over zero-shot baselines, although the scores do not surpass our top fine-tuned models. Nevertheless, their natural language rationales and actionable suggestions offer an explainability advantage that static classifiers cannot match. In practice, a hybrid ensemble where fast, accurate classifiers handle the bulk of cases and an LLM judge provides human-readable justification for edge cases appears to strike the best balance between performance, cost, and transparency.Research QuestionsThe study addresses the following research questions:RQ1: How do reasoning LLMs perform compared to prior ML and LLM classifiers when supported with few-shot prompting?RQ2: What is the effect of integrating an LLM judge into a majority-voting ensemble versus using voting alone?RQ3: How does few-shot prompting with RAG impact LLM performance relative to zero-shot prompting?Project StructureThe replication package consists of 4 folders. The data folder contains 2 files: training.csv, and bug_reports.csv. training.csv contains only 2 columns text and label, and it is the version we used when training the models. bug_reports.csv contains the columns and ids we have retrieved from Bugzilla. The code folder contains the .ipynb files we used when creating the dataset, training ML models, fine-tuning BERT-based models, and getting predictions from LLMs with both zero-shot and few-shot settings. The notebook for the unified pipeline is also included. The preds folder contains the predictions, explanations, and original labels of the bug reports from the test dataset. The metrics folder contains a single file which includes the metrics as JSON objects for all eighteen model configurations we have tested.Instruction for ReplicationThis replication package has the following folder structure:-code-data-preds-metricsThe code folder keepts the code we have used to create the dataset and preprocess it.It also includes the code we have used to train different models we have used in the study, and evaluate them.bert_models.ipynb contains the code for 5 different BERT-based models we have fine-tuned along with the code toprint the detailed scores for ease of evaluation.create_dataset.ipynb contains the code we have used for creating the dataset using the Bugzilla API.gpt_4o_mini.ipynb, gpt_o3_mini.ipynb, gpt_o4_mini.ipynb, and llama_70b.ipynb contain the code used to test the models in file names with zero-shot and few-shot configurations.The data folder contains the dataset we have collected and used in the study.bug_reports.csv is the file containing all information we obtained whether we used them in model training or not.training.csv is the version of the dataset we used when doing model training. It has only 2 labels, which simply the training process.The preds folder contains all predictions and explanations from the language models or hybrid judge pipeline.The metrics folder contains metrics.json, which includes all the model metrics as given in the paper. This file is handy for comparing the result of different models too.For the analysis performed in the review process, we have added another folder named review_analysis, which includes the scripts we have used to conduct additional analyses about the differences between the Judge LLM and majority voting, and the subsets where each approach is successful. The analysis also examines the aspects of bug reports that played an important role in being classified as valid by the LLM, including evidence-based patterns (such as file paths, urls, etc.), and potential biases such as text length correlation. There are 3 Python scripts for performing the analyses, 4 detailed markdown reports documenting the findings, and 5 visualizations illustrating model comparisons, voting patterns, and bias detection results. The key findings reveal that while the Judge LLM provides detailed natural language explanations, it exhibits a systematic text length bias (r=-0.360) and underperforms compared to the ML majority vote (81.5% vs 87.0% accuracy), though it offers superior explainability for human reviewers.
Facebook
Twitterhttps://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Hindi Open Ended Classification Prompt-Response Dataset, an extensive collection of 3000 meticulously curated prompt and response pairs. This dataset is a valuable resource for training Language Models (LMs) to classify input text accurately, a crucial aspect in advancing generative AI.
This open-ended classification dataset comprises a diverse set of prompts and responses where the prompt contains input text to be classified and may also contain task instruction, context, constraints, and restrictions while completion contains the best classification category as response. Both these prompts and completions are available in Hindi language. As this is an open-ended dataset, there will be no options given to choose the right classification category as a part of the prompt.
These prompt and completion pairs cover a broad range of topics, including science, history, technology, geography, literature, current affairs, and more. Each prompt is accompanied by a response, providing valuable information and insights to enhance the language model training process. Both the prompt and response were manually curated by native Hindi people, and references were taken from diverse sources like books, news articles, websites, and other reliable references.
This open-ended classification prompt and completion dataset contains different types of prompts, including instruction type, continuation type, and in-context learning (zero-shot, few-shot) type. The dataset also contains prompts and responses with different types of rich text, including tables, code, JSON, etc., with proper markdown.
To ensure diversity, this open-ended classification dataset includes prompts with varying complexity levels, ranging from easy to medium and hard. Different types of prompts, such as multiple-choice, direct, and true/false, are included. Additionally, prompts are diverse in terms of length from short to medium and long, creating a comprehensive variety. The classification dataset also contains prompts with constraints and persona restrictions, which makes it even more useful for LLM training.
To accommodate diverse learning experiences, our dataset incorporates different types of responses depending on the prompt. These formats include single-word, short phrase, and single sentence type of response. These responses encompass text strings, numerical values, and date and time formats, enhancing the language model's ability to generate reliable, coherent, and contextually appropriate answers.
This fully labeled Hindi Open Ended Classification Prompt Completion Dataset is available in JSON and CSV formats. It includes annotation details such as a unique ID, prompt, prompt type, prompt length, prompt complexity, domain, response, response type, and rich text presence.
Our dataset upholds the highest standards of quality and accuracy. Each prompt undergoes meticulous validation, and the corresponding responses are thoroughly verified. We prioritize inclusivity, ensuring that the dataset incorporates prompts and completions representing diverse perspectives and writing styles, maintaining an unbiased and discrimination-free stance.
The Hindi version is grammatically accurate without any spelling or grammatical errors. No copyrighted, toxic, or harmful content is used during the construction of this dataset.
The entire dataset was prepared with the assistance of human curators from the FutureBeeAI crowd community. Ongoing efforts are made to add more assets to this dataset, ensuring its growth and relevance. Additionally, FutureBeeAI offers the ability to gather custom open-ended classification prompt and completion data tailored to specific needs, providing flexibility and customization options.
The dataset, created by FutureBeeAI, is now available for commercial use. Researchers, data scientists, and developers can leverage this fully labeled and ready-to-deploy Hindi Open Ended Classification Prompt-Completion Dataset to enhance the classification abilities and accurate response generation capabilities of their generative AI models and explore new approaches to NLP tasks.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Important Notice: Ethical Use OnlyThis repository provides code and datasets for academic research on misinformation.Please note that the datasets include rumor-related texts. These materials are supplied solely for scholarly analysis and research aimed at understanding and combating misinformation.Prohibited UseDo not use this repository, including its code or data, to create or spread false information in any real-world context.Any misuse of these resources for malicious purposes is strictly forbidden.DisclaimerThe authors bear no responsibility for any unethical or unlawful use of the provided resources.By accessing or using this repository, you acknowledge and agree to comply with these ethical guidelines.Project StructureThe project is organized into three main directories, each corresponding to a major section of the paper's experiments:main_data_and_code/├── rumor_generation/├── rumor_detection/└── rumor_debunking/How to Get StartedPrerequisitesTo successfully run the code and reproduce the results, you will need to:Obtain and configure your own API key for the large language models (LLMs) used in the experiments. Please replace the placeholder API key in the code with your own.For the rumor detection experiments, download the public datasets (Twitter15, Twitter16, FakeNewsNet) from their respective sources. The pre-process scripts in the rumor detection folder must be run first to prepare the public datasets.Please note that many scripts are provided as examples using the Twitter15 dataset. To run experiments on other datasets like Twitter16 or FakeNewsNet, you will need to modify these scripts or create copies and update the corresponding file paths.Detailed Directory Breakdown1. rumor_generation/This directory contains all the code and data related to the rumor generation experiments.rumor_generation_zeroshot.py: Code for the zero-shot rumor generation experiment.rumor_generation_fewshot.py: Code for the few-shot rumor generation experiment.rumor_generation_cot.py: Code for the chain-of-thought (CoT) rumor generation experiment.token_distribution.py: Script to analyze token distribution in the generated text.label_rumors.py:Script to label LLM-generated texts based on whether they contain rumor-related content.extract_reasons.py: Script to extract reasons for rumor generation and rejection.visualization.py: Utility script for generating figures.LDA.py: Code for performing LDA topic modeling on the generated data.rumor_generation_responses.json: The complete output dataset from the rumor generation experiments.generation_reasons_extracted.json: The extracted reasons for generated rumors.rejection_reasons_extracted.json: The extracted reasons for rejected rumor generation requests.2. rumor_detection/This directory contains the code and data used for the rumor detection experiments.nonreasoning_zeroshot_twitter15.py: Code for the non-reasoning, zero-shot detection on the Twitter15 dataset. To run on Twitter16 or FakeNewsNet, update the file paths within the script. Similar experiment scripts below follow the same principle and are not described repeatedly.nonreasoning_fewshot_twitter15.py: Code for the non-reasoning, few-shot detection on the Twitter15 dataset.nonreasoning_cot_twitter15.py: Code for the non-reasoning, CoT detection on the Twitter15 dataset.reasoning_zeroshot_twitter15.py: Code for the Reasoning LLMs, zero-shot detection on the Twitter15 dataset.reasoning_fewshot_twitter15.py: Code for the Reasoning LLMs, few-shot detection on the Twitter15 dataset.reasoning_cot_twitter15.py: Code for the Reasoning LLMs, CoT detection on the Twitter15 dataset.traditional_model.py: Code for the traditional models used as baselines.preprocess_twitter15_and_twitter16.py: Script for preprocessing the Twitter15 and Twitter16 datasets.preprocess_fakenews.py: Script for preprocessing the FakeNewsNet dataset.generate_summary_table.py: Calculates all classification metrics and generates the final summary table for the rumor detection experiments.select_few_shot_example_15.py: Script to pre-select few-shot examples, using the Twitter15 dataset as an example. To generate examples for Twitter16 or FakeNewsNet, update the file paths within the script.twitter15_few_shot_examples.json: Pre-selected few-shot examples for the Twitter15 dataset.twitter16_few_shot_examples.json: Pre-selected few-shot examples for the Twitter16 dataset.fakenewsnet_few_shot_examples.json: Pre-selected few-shot examples for the FakeNewsNet dataset.twitter15_llm_results.json: LLM prediction results on the Twitter15 dataset.twitter16_llm_results.json: LLM prediction results on the Twitter16 dataset.fakenewsnet_llm_results.json: LLM prediction results on the FakeNewsNet dataset.visualization.py: Utility script for generating figures.3. rumor_debunking/This directory contains all the code and data for the rumor debunking experiments.analyze_sentiment.py: Script for analyzing the sentiment of the debunking texts.calculate_readability.py: Script for calculating the readability score of the debunking texts.plot_readability.py: Utility script for generating figures related to readability.fact_checking_with_nli.py: Code for the NLI-based fact-checking experiment.debunking_results.json: The dataset containing the debunking results for this experimental section.debunking_results_with_readability.json: The dataset containing the debunking results along with readability scores.sentiment_analysis/: This directory contains the result file from the sentiment analysis.debunking_results_with_sentiment.json: The dataset containing the debunking results along with sentiment analysis.Please contact the repository owner if you encounter any problems or have questions about the code or data.
Facebook
Twitterhttps://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Malayalam Open Ended Classification Prompt-Response Dataset, an extensive collection of 3000 meticulously curated prompt and response pairs. This dataset is a valuable resource for training Language Models (LMs) to classify input text accurately, a crucial aspect in advancing generative AI.
This open-ended classification dataset comprises a diverse set of prompts and responses where the prompt contains input text to be classified and may also contain task instruction, context, constraints, and restrictions while completion contains the best classification category as response. Both these prompts and completions are available in Malayalam language. As this is an open-ended dataset, there will be no options given to choose the right classification category as a part of the prompt.
These prompt and completion pairs cover a broad range of topics, including science, history, technology, geography, literature, current affairs, and more. Each prompt is accompanied by a response, providing valuable information and insights to enhance the language model training process. Both the prompt and response were manually curated by native Malayalam people, and references were taken from diverse sources like books, news articles, websites, and other reliable references.
This open-ended classification prompt and completion dataset contains different types of prompts, including instruction type, continuation type, and in-context learning (zero-shot, few-shot) type. The dataset also contains prompts and responses with different types of rich text, including tables, code, JSON, etc., with proper markdown.
To ensure diversity, this open-ended classification dataset includes prompts with varying complexity levels, ranging from easy to medium and hard. Different types of prompts, such as multiple-choice, direct, and true/false, are included. Additionally, prompts are diverse in terms of length from short to medium and long, creating a comprehensive variety. The classification dataset also contains prompts with constraints and persona restrictions, which makes it even more useful for LLM training.
To accommodate diverse learning experiences, our dataset incorporates different types of responses depending on the prompt. These formats include single-word, short phrase, and single sentence type of response. These responses encompass text strings, numerical values, and date and time formats, enhancing the language model's ability to generate reliable, coherent, and contextually appropriate answers.
This fully labeled Malayalam Open Ended Classification Prompt Completion Dataset is available in JSON and CSV formats. It includes annotation details such as a unique ID, prompt, prompt type, prompt length, prompt complexity, domain, response, response type, and rich text presence.
Our dataset upholds the highest standards of quality and accuracy. Each prompt undergoes meticulous validation, and the corresponding responses are thoroughly verified. We prioritize inclusivity, ensuring that the dataset incorporates prompts and completions representing diverse perspectives and writing styles, maintaining an unbiased and discrimination-free stance.
The Malayalam version is grammatically accurate without any spelling or grammatical errors. No copyrighted, toxic, or harmful content is used during the construction of this dataset.
The entire dataset was prepared with the assistance of human curators from the FutureBeeAI crowd community. Ongoing efforts are made to add more assets to this dataset, ensuring its growth and relevance. Additionally, FutureBeeAI offers the ability to gather custom open-ended classification prompt and completion data tailored to specific needs, providing flexibility and customization options.
The dataset, created by FutureBeeAI, is now available for commercial use. Researchers, data scientists, and developers can leverage this fully labeled and ready-to-deploy Malayalam Open Ended Classification Prompt-Completion Dataset to enhance the classification abilities and accurate response generation capabilities of their generative AI models and explore new approaches to NLP tasks.
Facebook
Twitterhttps://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
The Arabic Closed-Ended Question Answering Dataset is a meticulously curated collection of 5000 comprehensive Question-Answer pairs. It serves as a valuable resource for training Large Language Models (LLMs) and question-answering models in the Arabic language, advancing the field of artificial intelligence.
This closed-ended QA dataset comprises a diverse set of context paragraphs and questions paired with corresponding answers in Arabic. There is a context paragraph given for each question to get the answer from. The questions cover a broad range of topics, including science, history, technology, geography, literature, current affairs, and more.
Each question is accompanied by an answer, providing valuable information and insights to enhance the language model training process. Both the questions and answers were manually curated by native Arabic people, and references were taken from diverse sources like books, news articles, websites, web forums, and other reliable references.
This question-answer prompt completion dataset contains different types of prompts, including instruction type, continuation type, and in-context learning (zero-shot, few-shot) type. The dataset also contains questions and answers with different types of rich text, including tables, code, JSON, etc., with proper markdown.
To ensure diversity, this Q&A dataset includes questions with varying complexity levels, ranging from easy to medium and hard. Different types of questions, such as multiple-choice, direct, and true/false, are included. The QA dataset also contains questions with constraints, which makes it even more useful for LLM training.
To accommodate varied learning experiences, the dataset incorporates different types of answer formats. These formats include single-word, short phrases, single sentences, and paragraphs types of answers. The answers contain text strings, numerical values, date and time formats as well. Such diversity strengthens the language model's ability to generate coherent and contextually appropriate answers.
This fully labeled Arabic Closed-Ended Question Answer Dataset is available in JSON and CSV formats. It includes annotation details such as a unique id, context paragraph, context reference link, question, question type, question complexity, question category, domain, prompt type, answer, answer type, and rich text presence.
The dataset upholds the highest standards of quality and accuracy. Each question undergoes careful validation, and the corresponding answers are thoroughly verified. To prioritize inclusivity, the dataset incorporates questions and answers representing diverse perspectives and writing styles, ensuring it remains unbiased and avoids perpetuating discrimination.
The Arabic versions is grammatically accurate without any spelling or grammatical errors. No toxic or harmful content is used while building this dataset.
The entire dataset was prepared with the assistance of human curators from the FutureBeeAI crowd community. Continuous efforts are made to add more assets to this dataset, ensuring its growth and relevance. Additionally, FutureBeeAI offers the ability to collect custom question-answer data tailored to specific needs, providing flexibility and customization options.
The dataset, created by FutureBeeAI, is now ready for commercial use. Researchers, data scientists, and developers can utilize this fully labeled and ready-to-deploy Arabic Closed-Ended Question Answer Dataset to enhance the language understanding capabilities of their generative AI models, improve response generation, and explore new approaches to NLP question-answering tasks.
Facebook
TwitterThis dataset provides millions of consumer reviews enriched with sentiment labels (positive, neutral, or negative), making it an essential asset for training AI models, analyzing customer satisfaction, and detecting risk signals in customer feedback.
Collected across 970+ marketplaces (including Amazon, eBay, Temu, Flipkart, and others) and spanning 160+ industries, it reflects how consumers express delight, frustration, or dissatisfaction in real purchase and service situations.
Each entry includes:
Use this dataset to:
Whether you're building models or measuring brand trust, this dataset offers a structured view of consumer emotion, helping you turn unstructured feedback into meaningful action.
The more you purchase, the lower the price will be.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This document outlines the process used to create a structured, analyzable dataset of LLM attack methods from a corpus of unstructured red-teaming writeups using https://www.kaggle.com/datasets/kaggleqrdl/red-teaming-all-writeups dataset.
The foundation of this analysis is a formal, hierarchical taxonomy of known LLM attack methods, which is defined in attack_taxonomy.md. This taxonomy provides a controlled vocabulary for classification, ensuring consistency across all entries. The raw, unstructured summaries of various attack methodologies were compiled into a single file, condensed_methods.md.
To bridge the gap between the unstructured summaries and the formal taxonomy, we developed predict_taxonomy.py. This script automates the labeling process:
condensed_methods.md.attack_taxonomy.md as context.The script captures the list of predicted taxonomy labels from Gemini for each writeup. It then combines the original source, the full summary content, and the new taxonomy labels into a single, structured record.
This entire collection is saved as predicted_taxonomy.json, creating an enriched dataset where each attack method is now machine-readable and systematically classified. This structured data is invaluable for quantitative analysis, pattern recognition, and further research into LLM vulnerabilities.
Facebook
Twitter
According to our latest research, the global Data Labeling with LLMs market size was valued at USD 2.14 billion in 2024, with a robust year-on-year growth trajectory. The market is projected to expand at a CAGR of 22.8% from 2025 to 2033, reaching a forecasted value of USD 16.6 billion by 2033. This impressive growth is primarily driven by the increasing adoption of large language models (LLMs) to automate and enhance the efficiency of data labeling processes across various industries. As organizations continue to invest in AI and machine learning, the demand for high-quality, accurately labeled datasets—essential for training and fine-tuning LLMs—continues to surge, fueling the expansion of the data labeling with LLMs market.
One of the principal growth factors for the data labeling with LLMs market is the exponential increase in the volume of unstructured data generated by businesses and consumers worldwide. Organizations are leveraging LLMs to automate the labeling of vast datasets, which is essential for training sophisticated AI models. The integration of LLMs into data labeling workflows is not only improving the speed and accuracy of the annotation process but also reducing operational costs. This technological advancement has enabled enterprises to scale their AI initiatives more efficiently, facilitating the deployment of intelligent applications across sectors such as healthcare, automotive, finance, and retail. Moreover, the continuous evolution of LLMs, with capabilities such as zero-shot and few-shot learning, is further enhancing the quality and context-awareness of labeled data, making these solutions indispensable for next-generation AI systems.
Another significant driver is the growing need for domain-specific labeled datasets, especially in highly regulated industries like healthcare and finance. In these sectors, data privacy and security are paramount, and the use of LLMs in data labeling processes ensures that sensitive information is handled with the utmost care. LLM-powered platforms are increasingly being adopted to create high-quality, compliant datasets for applications such as medical imaging analysis, fraud detection, and customer sentiment analysis. The ability of LLMs to understand context, semantics, and complex language structures is particularly valuable in these domains, where the accuracy and reliability of labeled data directly impact the performance and safety of AI-driven solutions. This trend is expected to continue as organizations strive to meet stringent regulatory requirements while accelerating their AI adoption.
Furthermore, the proliferation of AI-powered applications in emerging markets is contributing to the rapid expansion of the data labeling with LLMs market. Countries in Asia Pacific and Latin America are witnessing significant investments in digital transformation, driving the demand for scalable and efficient data annotation solutions. The availability of cloud-based data labeling platforms, combined with advancements in LLM technologies, is enabling organizations in these regions to overcome traditional barriers such as limited access to skilled annotators and high operational costs. As a result, the market is experiencing robust growth in both developed and developing economies, with enterprises increasingly recognizing the strategic value of high-quality labeled data in gaining a competitive edge.
From a regional perspective, North America currently dominates the data labeling with LLMs market, accounting for the largest share in 2024. This leadership is attributed to the presence of major technology companies, advanced research institutions, and a mature AI ecosystem. However, Asia Pacific is expected to witness the highest CAGR during the forecast period, driven by rapid digitalization, government initiatives supporting AI development, and a burgeoning startup ecosystem. Europe is also emerging as a key market, with strong demand from sectors such as automotive and healthcare. Meanwhile, Latin America and the Middle East & Africa are gradually increasing their market presence, supported by growing investments in AI infrastructure and talent development.