The Cropland Data Layer (CDL) is a crop-specific land cover data layer created annually for the continental United States using moderate resolution satellite imagery and extensive agricultural ground truth. The CDL is created by the USDA, National Agricultural Statistics Service (NASS), Research and Development Division, Geospatial Information Branch, Spatial Analysis Research Section. For detailed FAQ please visit CropScape and Cropland Data Layers - FAQs. To explore details about the classification accuracies and utility of the data, see state-level omission and commission errors by crop type and year. The asset date is aligned with the calendar year of harvest. For most crops the planted and harvest year are the same. Some exceptions: winter wheat is unique, as it is planted in the prior year. A hay crop like alfalfa could have been planted years prior. For winter wheat the data also have a class called "Double Crop Winter Wheat/Soybeans". Some mid-latitude areas of the US have conditions such that a second crop (usually soybeans) can be planted immediately after the harvest of winter wheat and itself still be harvested within the same year. So for mapping winter wheat areas use both classes (use both values 24 and 26). While the CDL date is aligned with year of harvest, the map itself is more representative of what was planted. In other words, a small percentage of fields on a given year will not be harvested. Some non-agricultural categories are duplicate due to two very different epochs in methodology. The non-ag codes 63-65 and 81-88 are holdovers from the older methodology and will only appear in CDLs from 2007 and earlier. The non-ag codes from 111-195 are from the current methodology which uses the USGS NLCD as non-ag training and will only appear in CDLs 2007 and newer. 2007 was a transition year so there may be both sets of categories in the 2007 national product but will not appear within the same state. Note: The 2024 CDL only has the data band. The cultivated and confidence bands are yet to be released by the provider.
Meet Earth EngineGoogle Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.SATELLITE IMAGERY+YOUR ALGORITHMS+REAL WORLD APPLICATIONSLEARN MOREGLOBAL-SCALE INSIGHTExplore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.EXPLORE TIMELAPSEREADY-TO-USE DATASETSThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.EXPLORE DATASETSSIMPLE, YET POWERFUL APIThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.EXPLORE THE APIGoogle Earth Engine has made it possible for the first time in history to rapidly and accurately process vast amounts of satellite imagery, identifying where and when tree cover change has occurred at high resolution. Global Forest Watch would not exist without it. For those who care about the future of the planet Google Earth Engine is a great blessing!-Dr. Andrew Steer, President and CEO of the World Resources Institute.CONVENIENT TOOLSUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.LEARN ABOUT THE CODE EDITORSCIENTIFIC AND HUMANITARIAN IMPACTScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.SEE CASE STUDIESREADY TO BE PART OF THE SOLUTION?SIGN UP NOWTERMS OF SERVICE PRIVACY ABOUT GOOGLE
The Digital Geologic-GIS Map of parts of Great Sand Dunes National Park and Preserve (Sangre de Cristo Mountains and part of the Dunes), Colorado is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (gsam_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (gsam_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (grsa_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (grsa_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (gsam_geology_metadata_faq.pdf). Please read the grsa_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gsam_geology_metadata.txt or gsam_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Digital Geologic-GIS Map of Russell Cave National Monument and Vicinity, Alabama is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (ruca_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (ruca_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (ruca_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (ruca_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (ruca_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ruca_geology_metadata_faq.pdf). Please read the ruca_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ruca_geology_metadata.txt or ruca_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This data provides the integrated cadastral framework for Canada Lands. The cadastral framework consists of active and superseded cadastral parcel, roads, easements, administrative areas, active lines, points and annotations. The cadastral lines form the boundaries of the parcels. COGO attributes are associated to the lines and depict the adjusted framework of the cadastral fabric. The cadastral annotations consist of lot numbers, block numbers, township numbers, etc. The cadastral framework is compiled from Canada Lands Survey Records (CLSR), registration plans (RS) and location sketches (LS) archived in the Canada Lands Survey Records.
Soil temperature layers were calculated by adding monthly soil temperature offsets to monthly air-temperature maps from CHELSA (date range 1979-2013) (Karger et al. 2017, Sci Data). These soil temperature layers were then used to calculate annual means, temperature ranges, standard deviation, warmest and coldest months and quarters. Wettest and driest quarters were identified for each pixel based on CHELSA monthly values. A quarter is a period of three months (1/4 of the year). When using any of these layers, please cite: Lembrechts et al., Mismatches between soil and air temperature (2021). EcoEvoRxiv. DOI: 10.32942/osf.io/pksqw For each Soil Bioclim layer, two depth intervals are available: 0 - 5 cm and 5 - 15 cm. We have followed the generally accepted definitions of BIO 1 - BIO 11: SBIO1 = Annual Mean Temperature SBIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)) SBIO3 = Isothermality (BIO2/BIO7) (×100) SBIO4 = Temperature Seasonality (standard deviation ×100) SBIO5 = Max Temperature of Warmest Month SBIO6 = Min Temperature of Coldest Month SBIO7 = Temperature Annual Range (BIO5-BIO6) SBIO8 = Mean Temperature of Wettest Quarter SBIO9 = Mean Temperature of Driest Quarter SBIO10 = Mean Temperature of Warmest Quarter SBIO11 = Mean Temperature of Coldest Quarter These layers are also publicly available as Google Earth Engine assets. These are acessible via: https://code.earthengine.google.com/?asset=projects/crowtherlab/soil_bioclim/SBIO_v1_0_5cm https://code.earthengine.google.com/?asset=projects/crowtherlab/soil_bioclim/SBIO_v1_5_15cm Also available are monthly maps of soil temperature, for two depth intervals (0-5 cm and 5-15 cm). For example, the soil temperature map for month 1 (January) at 0-5 cm is named soilT_1_0_5cm.tif'. To mask pixels by the proportion of extrapolation, the files 'PCA_int_ext_0_5cm.tif' and 'PCA_int_ext_5_15cm.tif' can be used.
Welcome to Apiscrapy, your ultimate destination for comprehensive location-based intelligence. As an AI-driven web scraping and automation platform, Apiscrapy excels in converting raw web data into polished, ready-to-use data APIs. With a unique capability to collect Google Address Data, Google Address API, Google Location API, Google Map, and Google Location Data with 100% accuracy, we redefine possibilities in location intelligence.
Key Features:
Unparalleled Data Variety: Apiscrapy offers a diverse range of address-related datasets, including Google Address Data and Google Location Data. Whether you seek B2B address data or detailed insights for various industries, we cover it all.
Integration with Google Address API: Seamlessly integrate our datasets with the powerful Google Address API. This collaboration ensures not just accessibility but a robust combination that amplifies the precision of your location-based insights.
Business Location Precision: Experience a new level of precision in business decision-making with our address data. Apiscrapy delivers accurate and up-to-date business locations, enhancing your strategic planning and expansion efforts.
Tailored B2B Marketing: Customize your B2B marketing strategies with precision using our detailed B2B address data. Target specific geographic areas, refine your approach, and maximize the impact of your marketing efforts.
Use Cases:
Location-Based Services: Companies use Google Address Data to provide location-based services such as navigation, local search, and location-aware advertisements.
Logistics and Transportation: Logistics companies utilize Google Address Data for route optimization, fleet management, and delivery tracking.
E-commerce: Online retailers integrate address autocomplete features powered by Google Address Data to simplify the checkout process and ensure accurate delivery addresses.
Real Estate: Real estate agents and property websites leverage Google Address Data to provide accurate property listings, neighborhood information, and proximity to amenities.
Urban Planning and Development: City planners and developers utilize Google Address Data to analyze population density, traffic patterns, and infrastructure needs for urban planning and development projects.
Market Analysis: Businesses use Google Address Data for market analysis, including identifying target demographics, analyzing competitor locations, and selecting optimal locations for new stores or offices.
Geographic Information Systems (GIS): GIS professionals use Google Address Data as a foundational layer for mapping and spatial analysis in fields such as environmental science, public health, and natural resource management.
Government Services: Government agencies utilize Google Address Data for census enumeration, voter registration, tax assessment, and planning public infrastructure projects.
Tourism and Hospitality: Travel agencies, hotels, and tourism websites incorporate Google Address Data to provide location-based recommendations, itinerary planning, and booking services for travelers.
Discover the difference with Apiscrapy – where accuracy meets diversity in address-related datasets, including Google Address Data, Google Address API, Google Location API, and more. Redefine your approach to location intelligence and make data-driven decisions with confidence. Revolutionize your business strategies today!
The Physiography dataset represents the spatial intersection of landforms (available in EE as ERGo/1_0/US/landforms) and lithology (available in EE as ERGo/1_0/US/lithology) data layers. It provides 247 unique combinations out of a possible 270. The values for each type are formed by concatenating the landform and lithology types (e.g., 1101 is "Peak/ridge" landform on "carbonate" lithology). This data layer is sometimes referred to as characterizing "land facets". The landforms layer is based on the USGS's 10m NED DEM (available in EE as USGS/NED). The lithology layer is not basen on any DEM. This dataset is provided just for the US, because of the availability of the lithology data layer, though these data are likely available for other countries.
The Digital Geomorphic-GIS Map of Cape Lookout National Seashore, North Carolina (1:24,000 scale 2008 mapping) is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (calo_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (calo_geomorphology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (calo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (calo_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (calo_geomorphology_metadata_faq.pdf). Please read the calo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: North Carolina Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (calo_geomorphology_metadata.txt or calo_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
This dataset contains maps of the location and temporal distribution of surface water from 1984 to 2019 and provides statistics on the extent and change of those water surfaces. For more information see the associated journal article: High-resolution mapping of global surface water and its long-term changes (Nature, 2016) and the online Data Users Guide. These data were generated using 4,185,439 scenes from Landsat 5, 7, and 8 acquired between 16 March 1984 and 31 December 2019. Each pixel was individually classified into water / non-water using an expert system and the results were collated into a monthly history for the entire time period and two epochs (1984-1999, 2000-2019) for change detection. This mapping layers product consists of 1 image containing 7 bands. It maps different facets of the spatial and temporal distribution of surface water over the last 35 years. Areas where water has never been detected are masked.
The Unpublished Digital Geologic-GIS Map of Lake Clark National Park and Preserve and Vicinity, Alaska is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (lacl_geology.gdb), a 10.1 ArcMap (.mxd) map document (lacl_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (lacl_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (lacl_geology_gis_readme.pdf). Please read the lacl_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (lacl_geology_metadata.txt or lacl_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:1584,000 and United States National Map Accuracy Standards features are within (horizontally) 804.7 meters or 2640 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, Alaska Albers, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Lake Clark National Park and Preserve.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
A Google Earth Engine implementation of the Floodwater Depth Estimation Tool (FwDET) This is a Google Earth Engine implementation of the Floodwater Depth Estimation Tool (FwDET) developed by the Surface Dynamics and Modeling Lab at the University of Alabama that calculates flood depth using a flood extent layer and a digital elevation model. This research is made possible by the CyberSeed Program at the University of Alabama. Project name: WaterServ: A Cyberinfrastructure for Analysis, Visualization and Sharing of Hydrological Data. GitHub Repository (ArcMap and QGIS implementations): https://github.com/csdms-contrib/fwdet Cohen, S., A. Raney, D. Munasinghe, J.D. Loftis J, A. Molthan, J. Bell, L. Rogers, J. Galantowicz, G.R. Brakenridge7, A.J. Kettner, Y. Huang, Y. Tsang, (2019). The Floodwater Depth Estimation Tool (FwDET v2.0) for Improved Remote Sensing Analysis of Coastal Flooding. Natural Hazards and Earth System Sciences, 19, 2053–2065. https://doi.org/10.5194/nhess-19-2053-2019 Cohen, S., G. R. Brakenridge, A. Kettner, B. Bates, J. Nelson, R. McDonald, Y. Huang, D. Munasinghe, and J. Zhang (2018), Estimating Floodwater Depths from Flood Inundation Maps and Topography, Journal of the American Water Resources Association, 54 (4), 847–858. https://doi.org/10.1111/1752-1688.12609 Sample products and data availability: https://sdml.ua.edu/models/fwdet/ https://sdml.ua.edu/michigan-flood-may-2020/ https://cartoscience.users.earthengine.app/view/fwdet-gee-mi https://alabama.app.box.com/s/31p8pdh6ngwqnbcgzlhyk2gkbsd2elq0 GEE implementation output: fwdet_gee_brazos.tif ArcMap implementation output (see Cohen et al. 2019): fwdet_v2_brazos.tif iRIC validation layer (see Nelson et al. 2010): iric_brazos_hydraulic_model_validation.tif Brazos River inundation polygon access in GEE: var brazos = ee.FeatureCollection('users/cartoscience/FwDET-GEE-Public/Brazos_River_Inundation_2016') Nelson, J.M., Shimizu, Y., Takebayashi, H. and McDonald, R.R., 2010. The international river interface cooperative: public domain software for river modeling. In 2nd Joint Federal Interagency Conference, Las Vegas, June (Vol. 27). Google Earth Engine Code /* ---------------------------------------------------------------------------------------------------------------------- # FwDET-GEE calculates floodwater depth from a floodwater extent layer and a DEM Authors: Brad G. Peter, Sagy Cohen, Ronan Lucey, Dinuke Munasinghe, Austin Raney Emails: bpeter@ua.edu, sagy.cohen@ua.edu, ronan.m.lucey@nasa.gov, dsmunasinghe@crimson.ua.edu, aaraney@crimson.ua.edu Organizations: BP, SC, DM, AR - University of Alabama; RL - University of Alabama in Huntsville Last Modified: 10/08/2020 To cite this code use: Peter, Brad; Cohen, Sagy; Lucey, Ronan; Munasinghe, Dinuke; Raney, Austin, 2020, "A Google Earth Engine implementation of the Floodwater Depth Estimation Tool (FwDET-GEE)", https://doi.org/10.7910/DVN/JQ4BCN, Harvard Dataverse, V2 ------------------------------------------------------------------------------------------------------------------------- This is a Google Earth Engine implementation of the Floodwater Depth Estimation Tool (FwDETv2.0) [1] developed by the Surface Dynamics and Modeling Lab at the University of Alabama that calculates flood depth using a flood extent layer and a digital elevation model. This research is made possible by the CyberSeed Program at the University of Alabama. Project name: WaterServ: A Cyberinfrastructure for Analysis, Visualization and Sharing of Hydrological Data. GitHub Repository (ArcMap and QGIS implementations): https://github.com/csdms-contrib/fwdet ------------------------------------------------------------------------------------------------------------------------- How to run this code with your flood extent GEE asset: User of this script will need to update path to flood extent (line 32 or 33) and select from the processing options. Available DEM options (1) are USGS/NED (U.S.) and USGS/SRTMGL1_003 (global). Other options include (2) running the elevation outlier filtering algorithm, (3) adding water body data to the inundation extent, (4) add a water body data layer uploaded by the user rather than using the JRC global surface water data, (5) masking out regular water body data, (6) masking out 0 m depths, (7) choosing whether or not to export, (8) exporting additional data layers, and (9) setting an export file name. The simpleVis option (10) bypasses the time consuming processes and is meant for visualization only; set this option to false to complete the entire process and enable exporting. ------------------------------------------------------------------------------------------------------------------------- ••••••••••••••••••••••••••••••••••••••••••• USER OPTIONS •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Load flood extent layer | Flood extent layer must be uploaded to GEE first as an asset. If the flood extent is a shapefile, upload as a FeatureCollection; otherwise, if the flood extent layer is a raster, upload it as an image. A raster layer may be required if the flood extent is a highly complex geometry -------------------------------------- */ var flood = ee.FeatureCollection('users/username/folder/flood_extent') // comment out this line if using an Image // var flood = ee.Image('users/username/folder/flood_extent') // comment out this line if using a FeatureCollection var waterExtent = ee.FeatureCollection('users/username/folder/water_extent') // OPTIONAL comment out this line if using an Image // var waterExtent = ee.Image('users/username/folder/water_extent') // OPTIONAL comment out this line if using a FeatureCollection // Processing options - refer to the directions above /*1*/ var demSource = 'USGS/NED' // 'USGS/NED' or 'USGS/SRTMGL1_003' /*2*/ var outlierTest = 'TRUE' // 'TRUE' (default) or 'FALSE' /*3*/ var addWater = 'TRUE' // 'TRUE' (default) or 'FALSE' /*4*/ var userWater = 'FALSE' // 'TRUE' or 'FALSE' (default) /*5*/ var maskWater = 'FALSE' // 'TRUE' or 'FALSE' (default) /*6*/ var maskZero = 'FALSE' // 'TRUE' or 'FALSE' (default) /*7*/ var exportLayer = 'TRUE' // 'TRUE' (default) or 'FALSE' /*8*/ var exportAll = 'FALSE' // 'TRUE' or 'FALSE' (default) /*9*/ var outputName = 'FwDET_GEE' // text string for naming export file /*10*/ var simpleVis = 'FALSE' // 'TRUE' or 'FALSE' (default) // ••••••••••••••••••••••••••••••••• NO USER INPUT BEYOND THIS POINT •••••••••••••••••••••••••••••••••••••••••••••••••••• // Create buffer around flood area to use for clipping other layers var area = flood.geometry().bounds().buffer(1000).bounds() // Load DEM and grab projection info var dem = ee.Image(demSource).select('elevation').clip(area) // [2,3] var projection = dem.projection() var resolution = projection.nominalScale().getInfo() // Load global surface water layer var jrc = ee.Image('JRC/GSW1_1/GlobalSurfaceWater').select('occurrence').clip(area) // [4] var water_image = jrc // User uploaded flood extent layer // Identify if a raster or vector layer is being used and proceed with appropriate process if ( flood.name() == 'FeatureCollection' ) { var addProperty = function(feature) { return feature.set('val',0); }; var flood_image = flood.map(addProperty).reduceToImage(['val'],ee.Reducer.first()) .rename('flood') } else { var flood_image = flood.multiply(0) } // Optional user uploaded water extent layer if ( userWater == 'TRUE' ) { // Identify if a raster or vector layer is being used and proceed with appropriate process if ( waterExtent.name() == 'FeatureCollection' ) { var addProperty = function(feature) { return feature.set('val',0); }; var water_image = waterExtent.map(addProperty).reduceToImage(['val'],ee.Reducer.first()) .rename('flood') } else { var water_image = waterExtent.multiply(0) } } // Add water bodies to flood extent if 'TRUE' is selected if ( addWater == 'TRUE' ) { var w = water_image.reproject(projection) var waterFill = flood_image.mask().where(w.gt(0),1) flood_image = waterFill.updateMask(waterFill.eq(1)).multiply(0) } // Change processing options if 'TRUE' is selected if ( simpleVis == 'FALSE' ) { flood_image = flood_image.reproject(projection) } else { outlierTest = 'FALSE' exportLayer = 'FALSE' } // Run the outlier filtering process if 'TRUE' is selected if ( outlierTest == 'TRUE' ) { // Outlier detection and filling on complete DEM using the modified z-score and a median filter [5] var kernel = ee.Kernel.fixed(3,3,[[1,1,1],[1,1,1],[1,1,1]]) var kernel_weighted = ee.Kernel.fixed(3,3,[[1,1,1],[1,0,1],[1,1,1]]) var median = dem.focal_median({kernel:kernel}).reproject(projection) var median_weighted = dem.focal_median({kernel:kernel_weighted}).reproject(projection) var diff = dem.subtract(median) var mzscore = diff.multiply(0.6745).divide(diff.abs().focal_median({kernel:kernel}).reproject(projection)) var fillDEM = dem.where(mzscore.gt(3.5),median_weighted) // Outlier detection and filling on the flood extent border pixels var expand = flood_image.focal_max({kernel: ee.Kernel.square({ radius: projection.nominalScale(), units: 'meters' })}).reproject(projection) var demMask = fillDEM.updateMask(flood_image.mask().eq(0)) var boundary = demMask.add(expand) var medianBoundary = boundary.focal_median({kernel:kernel}).reproject(projection) var medianWeightedBoundary = boundary.focal_median({kernel:kernel_weighted}).reproject(projection) var diffBoundary = boundary.subtract(medianBoundary) var mzscoreBoundary = diffBoundary.multiply(0.6745).divide(diffBoundary.abs().focal_median({kernel:kernel}).reproject(projection)) var fill =
This product is part of the TreeMap data suite. It provides detailed spatial information on forest characteristics including number of live and dead trees, biomass, and carbon across the entire forested extent of the continental United States in 2016. TreeMap v2016 contains one image, a 22-band 30 x 30m resolution …
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Maps of cropland conversion classes, year of conversion, and pre- and post-conversion land cover associated with Lark et al. (2020). This repository also includes maps of 'local' and 'national' yield differentials for corn, soybeans, and wheat that are associated with the same publication. Code used to generate these data can be found here.
Cropland conversion maps are included in a zipped ESRI Geodatabase titled "US_land_conversion_2008-16.gdb". Each feature layer encompasses all of the conterminous United States at a 30m spatial resolution. Feature layers include:
Yield differential maps are included in the "yieldDifferentials.zip" folder as GeoTIFF rasters with a ~10km spatial resolution. Raster values represent relative (%) differences between the representative yields of new croplands (mtr = 3) and those of stable croplands (mtr = 1) planted to that crop within either (i) the larger 10km x 10km gridcell in which those fields are situated ("local" differentials) or (ii) the entire nation ("national" differentials).
The Digital Geologic-GIS Map of Joshua Tree National Park, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (jotr_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (jotr_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (jotr_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (jotr_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (jotr_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (jotr_geology_metadata_faq.pdf). Please read the jotr_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey and ESRI. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (jotr_geology_metadata.txt or jotr_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset Abstract:
Field-level monitoring of crop types in the United States via the Cropland Data Layer (CDL) has played an important role in improving production forecasts and enabling large-scale study of agricultural inputs and outcomes. Although CDL offers crop type maps across the conterminous US from 2008 onward, such maps are missing in many Midwestern states or are uneven in quality before 2008. To fill these data gaps, we used the now-public Landsat archive and cloud computing services to map corn and soybean at 30m resolution across the US Midwest from 1999-2018. Our training data were CDL from 2008-2018, and we validated the predictions on CDL 1999-2007 where available, county-level crop acreage statistics, and state-level crop rotation statistics. The corn-soybean maps, which we call the Corn-Soy Data Layer (CSDL), are publicly hosted on Google Earth Engine and also available for download on Zenodo.
Summary of Methods:
Using Google Earth Engine, we trained a random forest classifier to classify each pixel of the study area into corn, soybean, and an aggregated "other crops" class. CDL 2008-2018 data were used as labels. The features input to the model were harmonic regression coefficients fit to the NIR, SWIR1, SWIR2, and GCVI bands/indices of time series from Landsat 5, 7, and 8 Surface Reflectance observations. Cloudy pixels were masked out using the pixel_qa band provided with Landsat Surface Reflectance products.
Map Legend:
0 = outside study area
1 = corn
5 = soy
9 = other crop
255 = non-crop (masked by NLCD)
Values were chosen to be consistent with CDL values when possible.
Usage Notes:
We recommend that users consider metrics such as (1) user's and producer's accuracy with CDL and (2) R2 with NASS statistics across space and time to determine in which states/counties and years CSDL is of high quality. This can be done with the CSV file of user's and producer's accuracies included in this Zenodo, and annual county-level statistics and example code we have included in our repo at https://github.com/LobellLab/csdl.
Updates:
March 1, 2021: Fixed an issue where 255 (non-crop) values were represented as NAs instead. CSDL now contains the 255 values representing non-crop.
October 20, 2020: Fixed projection issues in the previous version. The CSDL projection now matches that of CDL.
July 13, 2020: We revised how we used NLCD to mask out non-crop pixels from our maps. Instead of using one cropland mask (the union of cropland across all NLCD maps) for all years of CSDL, we used a different cropland mask (the last available NLCD) for each year of CSDL. We also reprojected the CSDL maps to the same projection as CDL to make it easier for users to transition between or combine the two datasets.
The Digital Geologic-GIS Map of Redwood National Park and Vicinity, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (redw_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (redw_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (redw_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (redw_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (redw_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (redw_geology_metadata_faq.pdf). Please read the redw_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: California Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (redw_geology_metadata.txt or redw_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Digital Geologic-GIS Map of the Brooks Range and Vicinity, Alaska is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (arcn_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML files for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (arcn_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (arcn_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (cakr_gaar_kova_noat_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (arcn_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (arcn_geology_metadata_faq.pdf). Please read the cakr_gaar_kova_noat_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (arcn_geology_metadata.txt or arcn_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map digital data scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Shuttle Radar Topography Mission (SRTM) digital elevation dataset was originally produced to provide consistent, high-quality elevation data at near global scope. This version of the SRTM digital elevation data has been processed to fill data voids, and to facilitate its ease of use.
The Cropland Data Layer (CDL) is a crop-specific land cover data layer created annually for the continental United States using moderate resolution satellite imagery and extensive agricultural ground truth. The CDL is created by the USDA, National Agricultural Statistics Service (NASS), Research and Development Division, Geospatial Information Branch, Spatial Analysis Research Section. For detailed FAQ please visit CropScape and Cropland Data Layers - FAQs. To explore details about the classification accuracies and utility of the data, see state-level omission and commission errors by crop type and year. The asset date is aligned with the calendar year of harvest. For most crops the planted and harvest year are the same. Some exceptions: winter wheat is unique, as it is planted in the prior year. A hay crop like alfalfa could have been planted years prior. For winter wheat the data also have a class called "Double Crop Winter Wheat/Soybeans". Some mid-latitude areas of the US have conditions such that a second crop (usually soybeans) can be planted immediately after the harvest of winter wheat and itself still be harvested within the same year. So for mapping winter wheat areas use both classes (use both values 24 and 26). While the CDL date is aligned with year of harvest, the map itself is more representative of what was planted. In other words, a small percentage of fields on a given year will not be harvested. Some non-agricultural categories are duplicate due to two very different epochs in methodology. The non-ag codes 63-65 and 81-88 are holdovers from the older methodology and will only appear in CDLs from 2007 and earlier. The non-ag codes from 111-195 are from the current methodology which uses the USGS NLCD as non-ag training and will only appear in CDLs 2007 and newer. 2007 was a transition year so there may be both sets of categories in the 2007 national product but will not appear within the same state. Note: The 2024 CDL only has the data band. The cultivated and confidence bands are yet to be released by the provider.