Facebook
TwitterThese are the main layers that were used in mapping and analysis for the Santa Monica Mountains North Area Plan, which was adopted by the Board of Supervisors on May 4, 2021. Below are some links to important documents and to actually GIS data.Plan Website - This has links to the actual plan, maps and all project related materials. Click here for website.Online Web Mapping Application - This is the online application that shows all of the layers associated with the plan. These are the same layers that will be available for download below. Click here for the web mapping application.GIS Layers - The main GIS layers used in the application are available below.Below is a list of the GIS layers provided (shapefile format):Environmental (Zipped - 4.4 MB - click here)Habitat Connectivity - Essential Connectivity Area (ECA)Vegetation Sensitivity (includes ArcGIS .lyr file for version 10.0 and higher)Scenic Resources (Zipped - 1.3 MB - click here)State-Designated Scenic Highway 200-foot buffer (Please see 'State-Designated Scenic Highway' on our Open Data site here)Scenic RouteScenic Route 200-foot buffer
Facebook
TwitterThis dataset contains a variety of spatial data layers compiled in support of research activities associated with the NAME research program. With a few exception the data layers have each been imported and projected to a common geographic coordinate system into the ESRI ArcGIS geographical information system. This dataset is one large (550 MB) gzipped tar file.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The USDA Long-Term Agroecosystem Research was established to develop national strategies for sustainable intensification of agricultural production. As part of the Agricultural Research Service, the LTAR Network incorporates numerous geographies consisting of experimental areas and locations where data are being gathered. Starting in early 2019, two working groups of the LTAR Network (Remote Sensing and GIS, and Data Management) set a major goal to jointly develop a geodatabase of LTAR Standard GIS Data Layers. The purpose of the geodatabase was to enhance the Network's ability to utilize coordinated, harmonized datasets and reduce redundancy and potential errors associated with multiple copies of similar datasets. Project organizers met at least twice with each of the 18 LTAR sites from September 2019 through December 2020, compiling and editing a set of detailed geospatial data layers comprising a geodatabase, describing essential data collection areas within the LTAR Network.
The LTAR Standard GIS Data Layers geodatabase consists of geospatial data that represent locations and areas associated with the LTAR Network as of late 2020, including LTAR site locations, addresses, experimental plots, fields and watersheds, eddy flux towers, and phenocams. There are six data layers in the geodatabase available to the public. This geodatabase was created in 2019-2020 by the LTAR network as a national collaborative effort among working groups and LTAR sites. The creation of the geodatabase began with initial requests to LTAR site leads and data managers for geospatial data, followed by meetings with each LTAR site to review the initial draft. Edits were documented, and the final draft was again reviewed and certified by LTAR site leads or their delegates. Revisions to this geodatabase will occur biennially, with the next revision scheduled to be published in 2023.
Resources in this dataset:Resource Title: LTAR Standard GIS Data Layers, 2020 version, File Geodatabase. File Name: LTAR_Standard_GIS_Layers_v2020.zipResource Description: This file geodatabase consists of authoritative GIS data layers of the Long-Term Agroecosystem Research Network. Data layers include: LTAR site locations, LTAR site points of contact and street addresses, LTAR experimental boundaries, LTAR site "legacy region" boundaries, LTAR eddy flux tower locations, and LTAR phenocam locations.Resource Software Recommended: ArcGIS,url: esri.com Resource Title: LTAR Standard GIS Data Layers, 2020 version, GeoJSON files. File Name: LTAR_Standard_GIS_Layers_v2020_GeoJSON_ADC.zipResource Description: The contents of the LTAR Standard GIS Data Layers includes geospatial data that represent locations and areas associated with the LTAR Network as of late 2020. This collection of geojson files includes spatial data describing LTAR site locations, addresses, experimental plots, fields and watersheds, eddy flux towers, and phenocams. There are six data layers in the geodatabase available to the public. This dataset was created in 2019-2020 by the LTAR network as a national collaborative effort among working groups and LTAR sites. Resource Software Recommended: QGIS,url: https://qgis.org/en/site/
Facebook
TwitterThe Digital Geologic-GIS Map of Santa Rosa Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sris_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sris_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sris_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sris_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sris_geology_metadata.txt or sris_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThese are the main layers that were used in the mapping and analysis for the Santa Monica Mountains Local Coastal Plan, which was adopted by the Board of Supervisors on August 26, 2014, and certified by the California Coastal Commission on October 10, 2014. Below are some links to important documents and web mapping applications, as well as a link to the actual GIS data:
Plan Website – This has links to the actual plan, maps, and a link to our online web mapping application known as SMMLCP-NET. Click here for website. Online Web Mapping Application – This is the online web mapping application that shows all the layers associated with the plan. These are the same layers that are available for download below. Click here for the web mapping application. GIS Layers – This is a link to the GIS layers in the form of an ArcGIS Map Package, click here (LINK TO FOLLOW SOON) for ArcGIS Map Package (version 10.3). Also, included are layers in shapefile format. Those are included below.
Below is a list of the GIS Layers provided (shapefile format):
Recreation (Zipped - 5 MB - click here)
Coastal Zone Campground Trails (2012 National Park Service) Backbone Trail Class III Bike Route – Existing Class III Bike Route – Proposed
Scenic Resources (Zipped - 3 MB - click here)
Significant Ridgeline State-Designated Scenic Highway State-Designated Scenic Highway 200-foot buffer Scenic Route Scenic Route 200-foot buffer Scenic Element
Biological Resources (Zipped - 45 MB - click here)
National Hydrography Dataset – Streams H2 Habitat (High Scrutiny) H1 Habitat H1 Habitat 100-foot buffer H1 Habitat Quiet Zone H2 Habitat H3 Habitat
Hazards (Zipped - 8 MB - click here)
FEMA Flood Zone (100-year flood plain) Liquefaction Zone (Earthquake-Induced Liquefaction Potential) Landslide Area (Earthquake-Induced Landslide Potential) Fire Hazard and Responsibility Area
Zoning and Land Use (Zipped - 13 MB - click here)
Malibu LCP – LUP (1986) Malibu LCP – Zoning (1986) Land Use Policy Zoning
Other Layers (Zipped - 38 MB - click here)
Coastal Commission Appeal Jurisdiction Community Names Santa Monica Mountains (SMM) Coastal Zone Boundary Pepperdine University Long Range Development Plan (LRDP) Rural Village
Contact the L.A. County Dept. of Regional Planning's GIS Section if you have questions. Send to our email.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
GIS data is available on the Forest’s FTP site in the form of “shape files” or layers and is available free for downloading. To utilize these data layers you will need a program that uses the Geographic Information System (GIS) such as ESRI’s ArcMap, ArcView or the free map reading program ArcGIS Explorer. ArcGIS Explorer has tools that let you zoom in/out, print the map, and query data. It also has map tips to identify features, and a help menu. ArcGIS Explorer is available as a free download from the ESRI website. Included is a list of GIS data files available for the Shawnee National Forest. These GIS data files are updated on a continuing basis. It should be noted that this data may have been developed from sources of differing accuracy, accurate only at certain scales, based on modeling or interpretation, or incomplete while being created or revised. Overall accuracy, completeness and timeliness may vary. The following geospatial information/data was prepared by the Shawnee National Forests (US Forest Service). The Forest Service reserves the right to correct, update, modify or replace GIS data without notification. Resources in this dataset:Resource Title: Geospatial Data. File Name: Web Page, url: https://www.fs.usda.gov/main/shawnee/landmanagement/gis Information about the geospatial data and a ftp link to download Forest GIS Data Shapefiles.
Facebook
TwitterThis product set contains high-resolution Interferometric Synthetic Aperture Radar (IFSAR) imagery and geospatial data for the Barrow Peninsula (155.39 - 157.48 deg W, 70.86 - 71.47 deg N) and Barrow Triangle (156.13 - 157.08 deg W, 71.14 - 71.42 deg N), for use in Geographic Information Systems (GIS) and remote sensing software. The primary IFSAR data sets were acquired by Intermap Technologies from 27 to 29 July 2002, and consist of Orthorectified Radar Imagery (ORRI), a Digital Surface Model (DSM), and a Digital Terrain Model (DTM). Derived data layers include aspect, shaded relief, and slope-angle grids (floating-point binary and ArcInfo grid format), as well as a vector layer of contour lines (ESRI Shapefile format). Also available are accessory layers compiled from other sources: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); a quarter-quadrangle index map for the 26 IFSAR tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow Peninsula (ESRI Shapefile format). Unmodified IFSAR data comprise 26 data tiles across UTM zones 4 and 5. The DSM and DTM tiles (5 m resolution) are provided in floating-point binary format with header and projection files. The ORRI tiles (1.25 m resolution) are available in GeoTIFF format. FGDC-compliant metadata for all data sets are provided in text, HTML, and XML formats, along with the Intermap License Agreement and product handbook. The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are provided on five DVDs, available through licensing only to National Science Foundation (NSF)-funded investigators. An NSF award number must be provided when ordering data.
Facebook
TwitterVarious update dates
Facebook
TwitterThis dataset represents a unique compiled environmental data set for the circumpolar Arctic ocean region 45N to 90N region. It consists of 170 layers (mostly marine, some terrestrial) in ArcGIS 10 format to be used with a Geographic Information System (GIS) and which are listed below in detail. Most layers are long-term average raster GRIDs for the summer season, often by ocean depth, and represent value-added products easy to use. The sources of the data are manifold such as the World Ocean Atlas 2009 (WOA09), International Bathimetric Chart of the Arctic Ocean (IBCAO), Canadian Earth System Model 2 (CanESM2) data (the newest generation of models available) and data sources such as plankton databases and OBIS. Ocean layers were modeled and predicted into the future and zooplankton species were modeled based on future data: Calanus hyperboreus (AphiaID104467), Metridia longa (AphiaID 104632), M. pacifica (AphiaID 196784) and Thysanoessa raschii (AphiaID 110711). Some layers are derived within ArcGIS. Layers have pixel sizes between 1215.819573 meters and 25257.72929 meters for the best pooled model, and between 224881.2644 and 672240.4095 meters for future climate data. Data was then reprojected into North Pole Stereographic projection in meters (WGS84 as the geographic datum). Also, future layers are included as a selected subset of proposed future climate layers from the Canadian CanESM2 for the next 100 years (scenario runs rcp26 and rcp85). The following layer groups are available: bathymetry (depth, derived slope and aspect); proximity layers (to,glaciers,sea ice, protected areas, wetlands, shelf edge); dissolved oxygen, apparent oxygen, percent oxygen, nitrogen, phosphate, salinity, silicate (all for August and for 9 depth classes); runoff (proximity, annual and August); sea surface temperature; waterbody temperature (12 depth classes); modeled ocean boundary layers (H1, H2, H3 and Wx).This dataset is used for a M.Sc. thesis by the author, and freely available upon request. For questions and details we suggest contacting the authors. Process_Description: Please contact Moritz Schmid for the thesis and detailed explanations. Short version: We model predicted here for the first time ocean layers in the Arctic Ocean based on a unique dataset of physical oceanography. Moreover, we developed presence/random absence models that indicate where the studied zooplankton species are most likely to be present in the Arctic Ocean. Apart from that, we develop the first spatially explicit models known to science that describe the depth in which the studied zooplankton species are most likely to be at, as well as their distribution of life stages. We do not only do this for one present day scenario. We modeled five different scenarios and for future climate data. First, we model predicted ocean layers using the most up to date data from various open access sources, referred here as best-pooled model data. We decided to model this set of stratification layers after discussions and input of expert knowledge by Professor Igor Polyakov from the International Arctic Research Center at the University of Alaska Fairbanks. We predicted those stratification layers because those are the boundaries and layers that the plankton has to cross for diel vertical migration and a change in those would most likely affect the migration. I assigned 4 variables to the stratification layers. H1, H2, H3 and Wx. H1 is the lower boundary of the mixed layer depth. Above this layer a lot of atmospheric disturbance is causing mixing of the water, giving the mixed layer its name. H2, the middle of the halocline is important because in this part of the ocean a strong gradient in salinity and temperature separates water layers. H3, the isotherm is important, because beneath it flows denser and colder Atlantic water. Wx summarizes the overall width of the described water column. Ocean layers were predicted using machine learning algorithms (TreeNet, Salford Systems). Second, ocean layers were included as predictors and used to predict the presence/random absence, most likely depth and life stage layers for the zooplankton species: Calanus hyperboreus, Metridia longa, Metridia pacifica and Thysanoessa raschii, This process was repeated for future predictions based on the CanESM2 data (see in the data section). For zooplankton species the following layers were developed and for the future. C. hyperboreus: Best-pooled model as well as future predictions (rcp26 including ocean layer(also excluding), rcp85 including oocean layers (also excluding) for 2010 and 2100.For parameters: Presence/random absence, most likely depth and life stage layers M. longa: Best-pooled model as well as future predictions (rcp26 including ocean layer(also excluding), rcp85 including oocean layers (also excluding) for 2010 and 2100. For parameters: Presence/rand... Visit https://dataone.org/datasets/f63d0f6c-7d53-46ce-b755-42a368007601 for complete metadata about this dataset.
Facebook
TwitterPublic Open Space Geographic Information System data collection for Perth and Peel Metropolitan Areas
The public open space (POS) dataset contains polygon boundaries of areas defined as publicly available and open. This geographic information system (GIS) dataset was collected in 2011/2012 using ArcGIS software and aerial photography dated from 2010-2011. The data was collected across the Perth Metro and Peel Region.
POS refer to all land reserved for the provision of green space and natural environments (e.g. parks, reserves, bushland) that is freely accessible and intended for use for recreation purposes (active or passive) by the general public. Four types of “green and natural public open spaces” are distinguished: (1) Park; (2) Natural or Conservation Area; (3) School Grounds; and (4) Residual. Areas where the public are not permitted except on payment or which are available to limited and selected numbers by membership (e.g. golf courses and sports centre facilities) or setbacks and buffers required by legislation are not included.
Initially, potential POSs were identified from a combination of existing geographic information system (GIS) spatial data layers to create a generalized representation of ‘green space’ throughout the Perth metropolitan and Peel regions. Base data layers include: cadastral polygons, metropolitan and regional planning scheme polygons, school point locations, and reserve vesting polygons. The ‘green’ space layer was then visually updated and edited to represent the true boundaries of each POS using 2010-2011 aerial photography within the ArcGIS software environment. Each resulting ’green’ polygon was then classified using a decision tree into one of four possible categories: park, natural or conservation area, school grounds, or residual green space.
Following the classification process, amenity and other information about each POS was collected for polygons classified as “Park” following a protocol developed at the Centre for the Built Environment and Health (CBEH) called POSDAT (Public Open Space Desktop Auditing Tool). The parks were audited using aerial photography visualized using ArcGIS software. . The presence or absence of amenities such as sporting facilities (e.g. tennis courts, soccer fields, skate parks etc) were audited as well as information on the environmental quality (i.e. presence of water, adjacency to bushland, shade along paths, etc), recreational amenities (e.g. presence of BBQ’, café or kiosks, public access toilets) and information on selected features related to personal safety.
The data is stored in an ArcGIS File Geodatabase Feature Class (size 4MB) and has restricted access.
Data creation methodology, data definitions, and links to publications based on this data, accompany the dataset.
Facebook
TwitterThe Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThis data set contains high-resolution QuickBird imagery and geospatial data for the entire Barrow QuickBird image area (156.15° W - 157.07° W, 71.15° N - 71.41° N) and Barrow B4 Quadrangle (156.29° W - 156.89° W, 71.25° N - 71.40° N), for use in Geographic Information Systems (GIS) and remote sensing software. The original QuickBird data sets were acquired by DigitalGlobe from 1 to 2 August 2002, and consist of orthorectified satellite imagery. Federal Geographic Data Committee (FGDC)-compliant metadata for all value-added data sets are provided in text, HTML, and XML formats. Accessory layers include: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); an index map for the 62 QuickBird tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow QuickBird image area and the Barrow B4 quadrangle area (ESRI Shapefile format). Unmodified QuickBird data comprise 62 data tiles in Universal Transverse Mercator (UTM) Zone 4 in GeoTIFF format. Standard release files describing the QuickBird data are included, along with the DigitalGlobe license agreement and product handbooks. The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are provided on four DVDs. This product is available only to investigators funded specifically from the National Science Foundation (NSF), Office of Polar Programs (OPP), Arctic Sciences Section. An NSF OPP award number must be provided when ordering this data.
Facebook
TwitterThe GIS data maintained by HPPM includes information on buildings and grounds related to Harvard University. Our "standard" base layers are available to Harvard affiliates and their service providers (for example, architects) working on Harvard projects in AutoCAD DWG, ESRI SHP or File Geodatabase format. Additional datasets are sometimes available by special arrangement. http://home.hppm.harvard.edu/pages/gis-data-layers
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Cropland Data Layer (CDL), hosted on CropScape, provides a raster, geo-referenced, crop-specific land cover map for the continental United States. The CDL also includes a crop mask layer and planting frequency layers, as well as boundary, water and road layers. The Boundary Layer options provided are County, Agricultural Statistics Districts (ASD), State, and Region. The data is created annually using moderate resolution satellite imagery and extensive agricultural ground truth. Users can select a geographic area of interest or import one, then access acreage statistics for a specific year or view the change from one year to another. The data can be exported or added to the CDL. The information is useful for issues related to agricultural sustainability, biodiversity, and land cover monitoring, especially due to extreme weather events. Resources in this dataset:Resource Title: CropScape and Cropland Data Layer - National Download. File Name: Web Page, url: https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php Downloads available as zipped files at https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php --
National CDL's -- by year, 2008-2020. Cropland Data Layer provides a raster, geo-referenced, crop-specific land cover map for the continental United States. The CDL also includes a crop mask layer and planting frequency layers, as well as boundary, water and road layers. The Boundary Layer options provided are County, Agricultural Statistics Districts (ASD), State, and Region. National Cultivated Layer -- based on the most recent five years (2013-2020). National Frequency Layer -- the 2017 Crop Frequency Layer identifies crop specific planting frequency and are based on land cover information derived from the 2008 through 2020CDL's. There are currently four individual crop frequency data layers that represent four major crops: corn, cotton, soybeans, and wheat. National Confidence Layer -- the Confidence Layer spatially represents the predicted confidence that is associated with that output pixel, based upon the rule(s) that were used to classify it. Western/Eastern/Central U.S.
Visit https://nassgeodata.gmu.edu/CropScape/ for the interactive map including tutorials and basic instructions. These options include a "Demo Video", "Help", "Developer Guide", and "FAQ".
Facebook
TwitterGeographic Information System (GIS) analyses are an essential part of natural resource management and research. Calculating and summarizing data within intersecting GIS layers is common practice for analysts and researchers. However, the various tools and steps required to complete this process are slow and tedious, requiring many tools iterating over hundreds, or even thousands of datasets. USGS scientists will combine a series of ArcGIS geoprocessing capabilities with custom scripts to create tools that will calculate, summarize, and organize large amounts of data that can span many temporal and spatial scales with minimal user input. The tools work with polygons, lines, points, and rasters to calculate relevant summary data and combine them into a single output table that can be easily incorporated into statistical analyses. These tools are useful for anyone interested in using an automated script to quickly compile summary information within all areas of interest in a GIS dataset.
Toolbox Use
License
Creative Commons-PDDC
Recommended Citation
Welty JL, Jeffries MI, Arkle RS, Pilliod DS, Kemp SK. 2021. GIS Clipping and Summarization Toolbox: U.S. Geological Survey Software Release. https://doi.org/10.5066/P99X8558
Facebook
TwitterThe Digital Surficial Geologic-GIS Map of Mount Rainier National Park, Washington is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mora_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mora_surficial_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mora_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mora_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mora_surficial_geology_metadata_faq.pdf). Please read the mora_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mora_surficial_geology_metadata.txt or mora_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:48,000 and United States National Map Accuracy Standards features are within (horizontally) 24.4 meters or 80 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 10N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native
Facebook
TwitterThe Digital Surficial Geologic-GIS Map of Glacier Bay National Park and Preserve and Vicinity, Alaska and British Columbia is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (glba_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (glba_surficial_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (glba_surficial_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (glba_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (glba_surficial_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (glba_surficial_geology_metadata_faq.pdf). Please read the glba_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: National Park Service. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (glba_surficial_geology_metadata.txt or glba_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThe Digital Geologic-GIS Map of Yosemite Valley Glacial and Postglacial Deposits, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (yova_glacial_and_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (yova_glacial_and_surficial_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (yova_glacial_and_surficial_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (yose_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (yova_glacial_and_surficial_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (yova_glacial_and_surficial_geology_metadata_faq.pdf). Please read the yose_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (yova_glacial_and_surficial_geology_metadata.txt or yova_glacial_and_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThe Digital Bedrock Geologic-GIS Map of Voyageurs National Park and Vicinity, Minnesota is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (voya_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (voya_bedrock_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (voya_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (voya_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (voya_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (voya_bedrock_geology_metadata_faq.pdf). Please read the voya_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Minnesota Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (voya_bedrock_geology_metadata.txt or voya_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThe Digital Geologic-GIS Map of Redwood National Park and Vicinity, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (redw_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (redw_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (redw_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (redw_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (redw_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (redw_geology_metadata_faq.pdf). Please read the redw_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: California Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (redw_geology_metadata.txt or redw_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThese are the main layers that were used in mapping and analysis for the Santa Monica Mountains North Area Plan, which was adopted by the Board of Supervisors on May 4, 2021. Below are some links to important documents and to actually GIS data.Plan Website - This has links to the actual plan, maps and all project related materials. Click here for website.Online Web Mapping Application - This is the online application that shows all of the layers associated with the plan. These are the same layers that will be available for download below. Click here for the web mapping application.GIS Layers - The main GIS layers used in the application are available below.Below is a list of the GIS layers provided (shapefile format):Environmental (Zipped - 4.4 MB - click here)Habitat Connectivity - Essential Connectivity Area (ECA)Vegetation Sensitivity (includes ArcGIS .lyr file for version 10.0 and higher)Scenic Resources (Zipped - 1.3 MB - click here)State-Designated Scenic Highway 200-foot buffer (Please see 'State-Designated Scenic Highway' on our Open Data site here)Scenic RouteScenic Route 200-foot buffer