Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
PandaLM aims to provide reproducible and automated comparisons between different large language models (LLMs). By giving PandaLM the same context, it can compare the responses of different LLMs and provide a reason for the decision, along with a reference answer. The target audience for PandaLM may be organizations that have confidential data and research labs with limited funds that seek reproducibility. These organizations may not want to disclose their data to third parties or may not be able to afford the high costs of secret data leakage using third-party APIs or hiring human annotators. With PandaLM, they can perform evaluations without compromising data security or incurring high costs, and obtain reproducible results. To demonstrate the reliability and consistency of our tool, we have created a diverse human-annotated test dataset of approximately 1,000 samples, where the contexts and the labels are all created by humans. Our results indicate that PandaLM-7B achieves 93.75% of GPT-3.5's evaluation ability and 88.28% of GPT-4's in terms of F1-score on our test dataset.. More papers and features are coming soon.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
BIRD-CRITIC-1.0-Open
BIRD-Critic is the first SQL debugging benchmark designed to answer a critical question: Can large language models (LLMs) fix user issues in real-world database applications? Each task in BIRD-CRITIC has been verified by human experts on the following dimensions:
Reproduction of errors on BIRD env to prevent data leakage. Carefully curate test case functions for each task specifically. Soft EX: This metric can evaluate SELECT-ONLY tasks. Soft EX + Parsing:… See the full description on the dataset page: https://huggingface.co/datasets/birdsql/bird-critic-1.0-open.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
PandaLM aims to provide reproducible and automated comparisons between different large language models (LLMs). By giving PandaLM the same context, it can compare the responses of different LLMs and provide a reason for the decision, along with a reference answer. The target audience for PandaLM may be organizations that have confidential data and research labs with limited funds that seek reproducibility. These organizations may not want to disclose their data to third parties or may not be able to afford the high costs of secret data leakage using third-party APIs or hiring human annotators. With PandaLM, they can perform evaluations without compromising data security or incurring high costs, and obtain reproducible results. To demonstrate the reliability and consistency of our tool, we have created a diverse human-annotated test dataset of approximately 1,000 samples, where the contexts and the labels are all created by humans. Our results indicate that PandaLM-7B achieves 93.75% of GPT-3.5's evaluation ability and 88.28% of GPT-4's in terms of F1-score on our test dataset.. More papers and features are coming soon.