100+ datasets found
  1. Exploratory Data Analysis on Automobile Dataset

    • kaggle.com
    zip
    Updated Sep 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Monis Ahmad (2022). Exploratory Data Analysis on Automobile Dataset [Dataset]. https://www.kaggle.com/datasets/monisahmad/automobile
    Explore at:
    zip(4915 bytes)Available download formats
    Dataset updated
    Sep 12, 2022
    Authors
    Monis Ahmad
    Description

    Dataset

    This dataset was created by Monis Ahmad

    Contents

  2. sales_data

    • kaggle.com
    zip
    Updated Jan 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amalawa Max Ogbomo (2024). sales_data [Dataset]. https://www.kaggle.com/datasets/amalawaogbomo/sales-data
    Explore at:
    zip(1827 bytes)Available download formats
    Dataset updated
    Jan 31, 2024
    Authors
    Amalawa Max Ogbomo
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Amalawa Max Ogbomo

    Released under Apache 2.0

    Contents

  3. Ecommerce Dataset for Data Analysis

    • kaggle.com
    zip
    Updated Sep 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shrishti Manja (2024). Ecommerce Dataset for Data Analysis [Dataset]. https://www.kaggle.com/datasets/shrishtimanja/ecommerce-dataset-for-data-analysis/code
    Explore at:
    zip(2028853 bytes)Available download formats
    Dataset updated
    Sep 19, 2024
    Authors
    Shrishti Manja
    Description

    This dataset contains 55,000 entries of synthetic customer transactions, generated using Python's Faker library. The goal behind creating this dataset was to provide a resource for learners like myself to explore, analyze, and apply various data analysis techniques in a context that closely mimics real-world data.

    About the Dataset: - CID (Customer ID): A unique identifier for each customer. - TID (Transaction ID): A unique identifier for each transaction. - Gender: The gender of the customer, categorized as Male or Female. - Age Group: Age group of the customer, divided into several ranges. - Purchase Date: The timestamp of when the transaction took place. - Product Category: The category of the product purchased, such as Electronics, Apparel, etc. - Discount Availed: Indicates whether the customer availed any discount (Yes/No). - Discount Name: Name of the discount applied (e.g., FESTIVE50). - Discount Amount (INR): The amount of discount availed by the customer. - Gross Amount: The total amount before applying any discount. - Net Amount: The final amount after applying the discount. - Purchase Method: The payment method used (e.g., Credit Card, Debit Card, etc.). - Location: The city where the purchase took place.

    Use Cases: 1. Exploratory Data Analysis (EDA): This dataset is ideal for conducting EDA, allowing users to practice techniques such as summary statistics, visualizations, and identifying patterns within the data. 2. Data Preprocessing and Cleaning: Learners can work on handling missing data, encoding categorical variables, and normalizing numerical values to prepare the dataset for analysis. 3. Data Visualization: Use tools like Python’s Matplotlib, Seaborn, or Power BI to visualize purchasing trends, customer demographics, or the impact of discounts on purchase amounts. 4. Machine Learning Applications: After applying feature engineering, this dataset is suitable for supervised learning models, such as predicting whether a customer will avail a discount or forecasting purchase amounts based on the input features.

    This dataset provides an excellent sandbox for honing skills in data analysis, machine learning, and visualization in a structured but flexible manner.

    This is not a real dataset. This dataset was generated using Python's Faker library for the sole purpose of learning

  4. Sample data files for Python Course

    • figshare.com
    txt
    Updated Nov 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Verhaar (2022). Sample data files for Python Course [Dataset]. http://doi.org/10.6084/m9.figshare.21501549.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Nov 4, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Peter Verhaar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sample data set used in an introductory course on Programming in Python

  5. H

    Python Codes for Data Analysis of The Impact of COVID-19 on Technical...

    • dataverse.harvard.edu
    • figshare.com
    Updated Mar 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elizabeth Szkirpan (2022). Python Codes for Data Analysis of The Impact of COVID-19 on Technical Services Units Survey Results [Dataset]. http://doi.org/10.7910/DVN/SXMSDZ
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 21, 2022
    Dataset provided by
    Harvard Dataverse
    Authors
    Elizabeth Szkirpan
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Copies of Anaconda 3 Jupyter Notebooks and Python script for holistic and clustered analysis of "The Impact of COVID-19 on Technical Services Units" survey results. Data was analyzed holistically using cleaned and standardized survey results and by library type clusters. To streamline data analysis in certain locations, an off-shoot CSV file was created so data could be standardized without compromising the integrity of the parent clean file. Three Jupyter Notebooks/Python scripts are available in relation to this project: COVID_Impact_TechnicalServices_HolisticAnalysis (a holistic analysis of all survey data) and COVID_Impact_TechnicalServices_LibraryTypeAnalysis (a clustered analysis of impact by library type, clustered files available as part of the Dataverse for this project).

  6. Datasets for manuscript "A data engineering framework for chemical flow...

    • catalog.data.gov
    • gimi9.com
    Updated Nov 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2021). Datasets for manuscript "A data engineering framework for chemical flow analysis of industrial pollution abatement operations" [Dataset]. https://catalog.data.gov/dataset/datasets-for-manuscript-a-data-engineering-framework-for-chemical-flow-analysis-of-industr
    Explore at:
    Dataset updated
    Nov 7, 2021
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    The EPA GitHub repository PAU4ChemAs as described in the README.md file, contains Python scripts written to build the PAU dataset modules (technologies, capital and operating costs, and chemical prices) for tracking chemical flows transfers, releases estimation, and identification of potential occupation exposure scenarios in pollution abatement units (PAUs). These PAUs are employed for on-site chemical end-of-life management. The folder datasets contains the outputs for each framework step. The Chemicals_in_categories.csv contains the chemicals for the TRI chemical categories. The EPA GitHub repository PAU_case_study as described in its readme.md entry, contains the Python scripts to run the manuscript case study for designing the PAUs, the data-driven models, and the decision-making module for chemicals of concern and tracking flow transfers at the end-of-life stage. The data was obtained by means of data engineering using different publicly-available databases. The properties of chemicals were obtained using the GitHub repository Properties_Scraper, while the PAU dataset using the repository PAU4Chem. Finally, the EPA GitHub repository Properties_Scraper contains a Python script to massively gather information about exposure limits and physical properties from different publicly-available sources: EPA, NOAA, OSHA, and the institute for Occupational Safety and Health of the German Social Accident Insurance (IFA). Also, all GitHub repositories describe the Python libraries required for running their code, how to use them, the obtained outputs files after running the Python script modules, and the corresponding EPA Disclaimer. This dataset is associated with the following publication: Hernandez-Betancur, J.D., M. Martin, and G.J. Ruiz-Mercado. A data engineering framework for on-site end-of-life industrial operations. JOURNAL OF CLEANER PRODUCTION. Elsevier Science Ltd, New York, NY, USA, 327: 129514, (2021).

  7. Pandas Practice Dataset

    • kaggle.com
    zip
    Updated Jan 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mrityunjay Pathak (2023). Pandas Practice Dataset [Dataset]. https://www.kaggle.com/datasets/themrityunjaypathak/pandas-practice-dataset/discussion
    Explore at:
    zip(493 bytes)Available download formats
    Dataset updated
    Jan 27, 2023
    Authors
    Mrityunjay Pathak
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    What is Pandas?

    Pandas is a Python library used for working with data sets.

    It has functions for analyzing, cleaning, exploring, and manipulating data.

    The name "Pandas" has a reference to both "Panel Data", and "Python Data Analysis" and was created by Wes McKinney in 2008.

    Why Use Pandas?

    Pandas allows us to analyze big data and make conclusions based on statistical theories.

    Pandas can clean messy data sets, and make them readable and relevant.

    Relevant data is very important in data science.

    What Can Pandas Do?

    Pandas gives you answers about the data. Like:

    Is there a correlation between two or more columns?

    What is average value?

    Max value?

    Min value?

  8. f

    Python script with data analysis.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Sep 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Romanowska, Iza; Raja, Rubina; Jiménez, Joan Campmany; Seland, Eivind H. (2022). Python script with data analysis. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000444350
    Explore at:
    Dataset updated
    Sep 21, 2022
    Authors
    Romanowska, Iza; Raja, Rubina; Jiménez, Joan Campmany; Seland, Eivind H.
    Description

    The file is prepared for use with Jupyter Notebook. Data analysis for climate proxies and estimates of carrying capacity over time. (IPYNB)

  9. Storage and Transit Time Data and Code

    • zenodo.org
    zip
    Updated Oct 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew Felton; Andrew Felton (2024). Storage and Transit Time Data and Code [Dataset]. http://doi.org/10.5281/zenodo.14009758
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 29, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Andrew Felton; Andrew Felton
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Author: Andrew J. Felton
    Date: 10/29/2024

    This R project contains the primary code and data (following pre-processing in python) used for data production, manipulation, visualization, and analysis, and figure production for the study entitled:

    "Global estimates of the storage and transit time of water through vegetation"

    Please note that 'turnover' and 'transit' are used interchangeably. Also please note that this R project has been updated multiple times as the analysis has updated.

    Data information:

    The data folder contains key data sets used for analysis. In particular:

    "data/turnover_from_python/updated/august_2024_lc/" contains the core datasets used in this study including global arrays summarizing five year (2016-2020) averages of mean (annual) and minimum (monthly) transit time, storage, canopy transpiration, and number of months of data able as both an array (.nc) or data table (.csv). These data were produced in python using the python scripts found in the "supporting_code" folder. The remaining files in the "data" and "data/supporting_data"" folder primarily contain ground-based estimates of storage and transit found in public databases or through a literature search, but have been extensively processed and filtered here. The "supporting_data"" folder also contains annual (2016-2020) MODIS land cover data used in the analysis and contains separate filters containing the original data (.hdf) and then the final process (filtered) data in .nc format. The resulting annual land cover distributions were used in the pre-processing of data in python.

    #Code information

    Python scripts can be found in the "supporting_code" folder.

    Each R script in this project has a role:

    "01_start.R": This script sets the working directory, loads in the tidyverse package (the remaining packages in this project are called using the `::` operator), and can run two other scripts: one that loads the customized functions (02_functions.R) and one for importing and processing the key dataset for this analysis (03_import_data.R).

    "02_functions.R": This script contains custom functions. Load this using the
    `source()` function in the 01_start.R script.

    "03_import_data.R": This script imports and processes the .csv transit data. It joins the mean (annual) transit time data with the minimum (monthly) transit data to generate one dataset for analysis: annual_turnover_2. Load this using the
    `source()` function in the 01_start.R script.

    "04_figures_tables.R": This is the main workhouse for figure/table production and
    supporting analyses. This script generates the key figures and summary statistics
    used in the study that then get saved in the manuscript_figures folder. Note that all
    maps were produced using Python code found in the "supporting_code"" folder.

    "supporting_generate_data.R": This script processes supporting data used in the analysis, primarily the varying ground-based datasets of leaf water content.

    "supporting_process_land_cover.R": This takes annual MODIS land cover distributions and processes them through a multi-step filtering process so that they can be used in preprocessing of datasets in python.

  10. n

    Demo dataset for: SPACEc, a streamlined, interactive Python workflow for...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Jul 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuqi Tan; Tim Kempchen (2024). Demo dataset for: SPACEc, a streamlined, interactive Python workflow for multiplexed image processing and analysis [Dataset]. http://doi.org/10.5061/dryad.brv15dvj1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 8, 2024
    Dataset provided by
    Stanford University School of Medicine
    Authors
    Yuqi Tan; Tim Kempchen
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Multiplexed imaging technologies provide insights into complex tissue architectures. However, challenges arise due to software fragmentation with cumbersome data handoffs, inefficiencies in processing large images (8 to 40 gigabytes per image), and limited spatial analysis capabilities. To efficiently analyze multiplexed imaging data, we developed SPACEc, a scalable end-to-end Python solution, that handles image extraction, cell segmentation, and data preprocessing and incorporates machine-learning-enabled, multi-scaled, spatial analysis, operated through a user-friendly and interactive interface. The demonstration dataset was derived from a previous analysis and contains TMA cores from a human tonsil and tonsillitis sample that were acquired with the Akoya PhenocyclerFusion platform. The dataset can be used to test the workflow and establish it on a user’s system or to familiarize oneself with the pipeline. Methods Tissue samples: Tonsil cores were extracted from a larger multi-tumor tissue microarray (TMA), which included a total of 66 unique tissues (51 malignant and semi-malignant tissues, as well as 15 non-malignant tissues). Representative tissue regions were annotated on corresponding hematoxylin and eosin (H&E)-stained sections by a board-certified surgical pathologist (S.Z.). Annotations were used to generate the 66 cores each with cores of 1mm diameter. FFPE tissue blocks were retrieved from the tissue archives of the Institute of Pathology, University Medical Center Mainz, Germany, and the Department of Dermatology, University Medical Center Mainz, Germany. The multi-tumor-TMA block was sectioned at 3µm thickness onto SuperFrost Plus microscopy slides before being processed for CODEX multiplex imaging as previously described. CODEX multiplexed imaging and processing To run the CODEX machine, the slide was taken from the storage buffer and placed in PBS for 10 minutes to equilibrate. After drying the PBS with a tissue, a flow cell was sealed onto the tissue slide. The assembled slide and flow cell were then placed in a PhenoCycler Buffer made from 10X PhenoCycler Buffer & Additive for at least 10 minutes before starting the experiment. A 96-well reporter plate was prepared with each reporter corresponding to the correct barcoded antibody for each cycle, with up to 3 reporters per cycle per well. The fluorescence reporters were mixed with 1X PhenoCycler Buffer, Additive, nuclear-staining reagent, and assay reagent according to the manufacturer's instructions. With the reporter plate and assembled slide and flow cell placed into the CODEX machine, the automated multiplexed imaging experiment was initiated. Each imaging cycle included steps for reporter binding, imaging of three fluorescent channels, and reporter stripping to prepare for the next cycle and set of markers. This was repeated until all markers were imaged. After the experiment, a .qptiff image file containing individual antibody channels and the DAPI channel was obtained. Image stitching, drift compensation, deconvolution, and cycle concatenation are performed within the Akoya PhenoCycler software. The raw imaging data output (tiff, 377.442nm per pixel for 20x CODEX) is first examined with QuPath software (https://qupath.github.io/) for inspection of staining quality. Any markers that produce unexpected patterns or low signal-to-noise ratios should be excluded from the ensuing analysis. The qptiff files must be converted into tiff files for input into SPACEc. Data preprocessing includes image stitching, drift compensation, deconvolution, and cycle concatenation performed using the Akoya Phenocycler software. The raw imaging data (qptiff, 377.442 nm/pixel for 20x CODEX) files from the Akoya PhenoCycler technology were first examined with QuPath software (https://qupath.github.io/) to inspect staining qualities. Markers with untenable patterns or low signal-to-noise ratios were excluded from further analysis. A custom CODEX analysis pipeline was used to process all acquired CODEX data (scripts available upon request). The qptiff files were converted into tiff files for tissue detection (watershed algorithm) and cell segmentation.

  11. Z

    Data Cleaning, Translation & Split of the Dataset for the Automatic...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Aug 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Köhler, Juliane (2022). Data Cleaning, Translation & Split of the Dataset for the Automatic Classification of Documents for the Classification System for the Berliner Handreichungen zur Bibliotheks- und Informationswissenschaft [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6957841
    Explore at:
    Dataset updated
    Aug 8, 2022
    Authors
    Köhler, Juliane
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cleaned_Dataset.csv – The combined CSV files of all scraped documents from DABI, e-LiS, o-bib and Springer.

    Data_Cleaning.ipynb – The Jupyter Notebook with python code for the analysis and cleaning of the original dataset.

    ger_train.csv – The German training set as CSV file.

    ger_validation.csv – The German validation set as CSV file.

    en_test.csv – The English test set as CSV file.

    en_train.csv – The English training set as CSV file.

    en_validation.csv – The English validation set as CSV file.

    splitting.py – The python code for splitting a dataset into train, test and validation set.

    DataSetTrans_de.csv – The final German dataset as a CSV file.

    DataSetTrans_en.csv – The final English dataset as a CSV file.

    translation.py – The python code for translating the cleaned dataset.

  12. Replication Package: Unboxing Default Argument Breaking Changes in 1 + 2...

    • zenodo.org
    application/gzip
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    João Eduardo Montandon; Luciana Lourdes Silva; Cristiano Politowski; Daniel Prates; Arthur Bonifácio; Ghizlane El Boussaidi; João Eduardo Montandon; Luciana Lourdes Silva; Cristiano Politowski; Daniel Prates; Arthur Bonifácio; Ghizlane El Boussaidi (2024). Replication Package: Unboxing Default Argument Breaking Changes in 1 + 2 Data Science Libraries in Python [Dataset]. http://doi.org/10.5281/zenodo.11584961
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Jul 15, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    João Eduardo Montandon; Luciana Lourdes Silva; Cristiano Politowski; Daniel Prates; Arthur Bonifácio; Ghizlane El Boussaidi; João Eduardo Montandon; Luciana Lourdes Silva; Cristiano Politowski; Daniel Prates; Arthur Bonifácio; Ghizlane El Boussaidi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Replication Package

    This repository contains data and source files needed to replicate our work described in the paper "Unboxing Default Argument Breaking Changes in Scikit Learn".

    Requirements

    We recommend the following requirements to replicate our study:

    1. Internet access
    2. At least 100GB of space
    3. Docker installed
    4. Git installed

    Package Structure

    We relied on Docker containers to provide a working environment that is easier to replicate. Specifically, we configure the following containers:

    • data-analysis, an R-based Container we used to run our data analysis.
    • data-collection, a Python Container we used to collect Scikit's default arguments and detect them in client applications.
    • database, a Postgres Container we used to store clients' data, obtainer from Grotov et al.
    • storage, a directory used to store the data processed in data-analysis and data-collection. This directory is shared in both containers.
    • docker-compose.yml, the Docker file that configures all containers used in the package.

    In the remainder of this document, we describe how to set up each container properly.

    Using VSCode to Setup the Package

    We selected VSCode as the IDE of choice because its extensions allow us to implement our scripts directly inside the containers. In this package, we provide configuration parameters for both data-analysis and data-collection containers. This way you can directly access and run each container inside it without any specific configuration.

    You first need to set up the containers

    $ cd /replication/package/folder
    $ docker-compose build
    $ docker-compose up
    # Wait docker creating and running all containers
    

    Then, you can open them in Visual Studio Code:

    1. Open VSCode in project root folder
    2. Access the command palette and select "Dev Container: Reopen in Container"
      1. Select either Data Collection or Data Analysis.
    3. Start working

    If you want/need a more customized organization, the remainder of this file describes it in detail.

    Longest Road: Manual Package Setup

    Database Setup

    The database container will automatically restore the dump in dump_matroskin.tar in its first launch. To set up and run the container, you should:

    Build an image:

    $ cd ./database
    $ docker build --tag 'dabc-database' .
    $ docker image ls
    REPOSITORY  TAG    IMAGE ID    CREATED     SIZE
    dabc-database latest  b6f8af99c90d  50 minutes ago  18.5GB
    

    Create and enter inside the container:

    $ docker run -it --name dabc-database-1 dabc-database
    $ docker exec -it dabc-database-1 /bin/bash
    root# psql -U postgres -h localhost -d jupyter-notebooks
    jupyter-notebooks=# \dt
           List of relations
     Schema |    Name    | Type | Owner
    --------+-------------------+-------+-------
     public | Cell       | table | root
     public | Code_cell     | table | root
     public | Md_cell      | table | root
     public | Notebook     | table | root
     public | Notebook_features | table | root
     public | Notebook_metadata | table | root
     public | repository    | table | root
    

    If you got the tables list as above, your database is properly setup.

    It is important to mention that this database is extended from the one provided by Grotov et al.. Basically, we added three columns in the table Notebook_features (API_functions_calls, defined_functions_calls, andother_functions_calls) containing the function calls performed by each client in the database.

    Data Collection Setup

    This container is responsible for collecting the data to answer our research questions. It has the following structure:

    • dabcs.py, extract DABCs from Scikit Learn source code, and export them to a CSV file.
    • dabcs-clients.py, extract function calls from clients and export them to a CSV file. We rely on a modified version of Matroskin to leverage the function calls. You can find the tool's source code in the `matroskin`` directory.
    • Makefile, commands to set up and run both dabcs.py and dabcs-clients.py
    • matroskin, the directory containing the modified version of matroskin tool. We extended the library to collect the function calls performed on the client notebooks of Grotov's dataset.
    • storage, a docker volume where the data-collection should save the exported data. This data will be used later in Data Analysis.
    • requirements.txt, Python dependencies adopted in this module.

    Note that the container will automatically configure this module for you, e.g., install dependencies, configure matroskin, download scikit learn source code, etc. For this, you must run the following commands:

    $ cd ./data-collection
    $ docker build --tag "data-collection" .
    $ docker run -it -d --name data-collection-1 -v $(pwd)/:/data-collection -v $(pwd)/../storage/:/data-collection/storage/ data-collection
    $ docker exec -it data-collection-1 /bin/bash
    $ ls
    Dockerfile Makefile config.yml dabcs-clients.py dabcs.py matroskin storage requirements.txt utils.py
    

    If you see project files, it means the container is configured accordingly.

    Data Analysis Setup

    We use this container to conduct the analysis over the data produced by the Data Collection container. It has the following structure:

    • dependencies.R, an R script containing the dependencies used in our data analysis.
    • data-analysis.Rmd, the R notebook we used to perform our data analysis
    • datasets, a docker volume pointing to the storage directory.

    Execute the following commands to run this container:

    $ cd ./data-analysis
    $ docker build --tag "data-analysis" .
    $ docker run -it -d --name data-analysis-1 -v $(pwd)/:/data-analysis -v $(pwd)/../storage/:/data-collection/datasets/ data-analysis
    $ docker exec -it data-analysis-1 /bin/bash
    $ ls
    data-analysis.Rmd datasets dependencies.R Dockerfile figures Makefile
    

    If you see project files, it means the container is configured accordingly.

    A note on storage shared folder

    As mentioned, the storage folder is mounted as a volume and shared between data-collection and data-analysis containers. We compressed the content of this folder due to space constraints. Therefore, before starting working on Data Collection or Data Analysis, make sure you extracted the compressed files. You can do this by running the Makefile inside storage folder.

    $ make unzip # extract files
    $ ls
    clients-dabcs.csv clients-validation.csv dabcs.csv Makefile scikit-learn-versions.csv versions.csv
    $ make zip # compress files
    $ ls
    csv-files.tar.gz Makefile
  13. m

    Student Skill Gap Analysis

    • data.mendeley.com
    • kaggle.com
    Updated Apr 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bindu Garg (2025). Student Skill Gap Analysis [Dataset]. http://doi.org/10.17632/rv6scbpd7v.1
    Explore at:
    Dataset updated
    Apr 28, 2025
    Authors
    Bindu Garg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is designed for skill gap analysis, focusing on evaluating the skill gap between students’ current skills and industry requirements. It provides insights into technical skills, soft skills, career interests, and challenges, helping in skill gap analysis to identify areas for improvement.

    By leveraging this dataset, educators, recruiters, and researchers can conduct skill gap analysis to assess students’ job readiness and tailor training programs accordingly. It serves as a valuable resource for identifying skill deficiencies and skill gaps improving career guidance, and enhancing curriculum design through targeted skill gap analysis.

    Following is the column descriptors: Name - Student's full name. email_id - Student's email address. Year - The academic year the student is currently in (e.g., 1st Year, 2nd Year, etc.). Current Course - The course the student is currently pursuing (e.g., B.Tech CSE, MBA, etc.). Technical Skills - List of technical skills possessed by the student (e.g., Python, Data Analysis, Cloud Computing). Programming Languages - Programming languages known by the student (e.g., Python, Java, C++). Rating - Self-assessed rating of technical skills on a scale of 1 to 5. Soft Skills - List of soft skills (e.g., Communication, Leadership, Teamwork). Rating - Self-assessed rating of soft skills on a scale of 1 to 5. Projects - Indicates whether the student has worked on any projects (Yes/No). Career Interest - The student's preferred career path (e.g., Data Scientist, Software Engineer). Challenges - Challenges faced while applying for jobs/internships (e.g., Lack of experience, Resume building issues).

  14. Data from: PLEIAData:consumption, HVAC (Heating, Ventilation & Air...

    • zenodo.org
    • portalinvestigacion.um.es
    • +2more
    zip
    Updated Feb 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Antonio Martínez Ibarra; Antonio Martínez Ibarra; Aurora González-Vidal; Aurora González-Vidal; Antonio Skarmeta Gómez; Antonio Skarmeta Gómez (2023). PLEIAData:consumption, HVAC (Heating, Ventilation & Air Conditioning), temperature, weather and motion sensor data for smart buildings applications [Dataset]. http://doi.org/10.5281/zenodo.7620136
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 8, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Antonio Martínez Ibarra; Antonio Martínez Ibarra; Aurora González-Vidal; Aurora González-Vidal; Antonio Skarmeta Gómez; Antonio Skarmeta Gómez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset presents detailed building operation data from the three blocks (A, B and C) of the Pleiades building of the University of Murcia, which is a pilot building of the European project PHOENIX. The aim of PHOENIX is to improve buildings efficiency, and therefore we included information of:
    (i) consumption data, aggregated by block in kWh; (ii) HVAC (Heating, Ventilation and Air Conditioning) data with several features, such as state (ON=1, OFF=0), operation mode (None=0, Heating=1, Cooling=2), setpoint and device type; (iii) indoor temperature per room; (iv) weather data, including temperature, humidity, radiation, dew point, wind direction and precipitation; (v) carbon dioxide and presence data for few rooms; (vi) relationships between HVAC, temperature, carbon dioxide and presence sensors identifiers with their respective rooms and blocks. Weather data was acquired from the IMIDA (Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario).

  15. S

    Supporting dataset of the aritcle :Underneath Social Media Texts: Sentiment...

    • scidb.cn
    Updated Mar 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bingyao Jia; Meifang Xie; Jing Wu; Junyi Zhao (2024). Supporting dataset of the aritcle :Underneath Social Media Texts: Sentiment Responses to Public Health Emergency During 2022 COVID-19 Pandemic in China [Dataset]. http://doi.org/10.57760/sciencedb.16527
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 4, 2024
    Dataset provided by
    Science Data Bank
    Authors
    Bingyao Jia; Meifang Xie; Jing Wu; Junyi Zhao
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Area covered
    China
    Description

    This dataset is the supporting data for the paper Underneath Social Media Texts: Sentiment Responses to Public Health Emergency During 2022 COVID-19 Pandemic in China.This dataset is mainly used to analyze the data of weibo text and perform sentiment analysis. The data were obtained from Weibo, and the texts were crawled using a Python tool: Weibo crawler tool. The data contains time, text content, user address, etc. Subsequently, Cleaned weibo data was obtained after cleaning operation in Excel. According to the improved Chinese sentiment lexicon, the sentiment analysis tool was used to analyze the text for sentiment analysis, to derive the main sentiment and sentiment scores, and the result file is Sentiment analysis results. Finally, ADF and KPSS analysis tools were used to analyze the stability of sentiment scores in different cities.The weibo text and sentiment analysis results data in the dataset are in .xlsx format, and the rest of the tools are Python code.Crawled data is limited by time, specific search terms and other restrictions, different operation time and terms may lead to differences in the data.

  16. Computer Programming and Data Analysis with Python

    • kaggle.com
    zip
    Updated Sep 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Md. Babul Miah (2020). Computer Programming and Data Analysis with Python [Dataset]. https://www.kaggle.com/datasets/babulmiah/computer-programming-and-data-analysis-with-python
    Explore at:
    zip(1045 bytes)Available download formats
    Dataset updated
    Sep 26, 2020
    Authors
    Md. Babul Miah
    Description

    Dataset

    This dataset was created by Md. Babul Miah

    Contents

  17. m

    Reddit r/AskScience Flair Dataset

    • data.mendeley.com
    Updated May 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sumit Mishra (2022). Reddit r/AskScience Flair Dataset [Dataset]. http://doi.org/10.17632/k9r2d9z999.3
    Explore at:
    Dataset updated
    May 23, 2022
    Authors
    Sumit Mishra
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Reddit is a social news, content rating and discussion website. It's one of the most popular sites on the internet. Reddit has 52 million daily active users and approximately 430 million users who use it once a month. Reddit has different subreddits and here We'll use the r/AskScience Subreddit.

    The dataset is extracted from the subreddit /r/AskScience from Reddit. The data was collected between 01-01-2016 and 20-05-2022. It contains 612,668 Datapoints and 25 Columns. The database contains a number of information about the questions asked on the subreddit, the description of the submission, the flair of the question, NSFW or SFW status, the year of the submission, and more. The data is extracted using python and Pushshift's API. A little bit of cleaning is done using NumPy and pandas as well. (see the descriptions of individual columns below).

    The dataset contains the following columns and descriptions: author - Redditor Name author_fullname - Redditor Full name contest_mode - Contest mode [implement obscured scores and randomized sorting]. created_utc - Time the submission was created, represented in Unix Time. domain - Domain of submission. edited - If the post is edited or not. full_link - Link of the post on the subreddit. id - ID of the submission. is_self - Whether or not the submission is a self post (text-only). link_flair_css_class - CSS Class used to identify the flair. link_flair_text - Flair on the post or The link flair’s text content. locked - Whether or not the submission has been locked. num_comments - The number of comments on the submission. over_18 - Whether or not the submission has been marked as NSFW. permalink - A permalink for the submission. retrieved_on - time ingested. score - The number of upvotes for the submission. description - Description of the Submission. spoiler - Whether or not the submission has been marked as a spoiler. stickied - Whether or not the submission is stickied. thumbnail - Thumbnail of Submission. question - Question Asked in the Submission. url - The URL the submission links to, or the permalink if a self post. year - Year of the Submission. banned - Banned by the moderator or not.

    This dataset can be used for Flair Prediction, NSFW Classification, and different Text Mining/NLP tasks. Exploratory Data Analysis can also be done to get the insights and see the trend and patterns over the years.

  18. Dataset of a Study of Computational reproducibility of Jupyter notebooks...

    • zenodo.org
    pdf, zip
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sheeba Samuel; Sheeba Samuel; Daniel Mietchen; Daniel Mietchen (2024). Dataset of a Study of Computational reproducibility of Jupyter notebooks from biomedical publications [Dataset]. http://doi.org/10.5281/zenodo.8226725
    Explore at:
    zip, pdfAvailable download formats
    Dataset updated
    Jul 11, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Sheeba Samuel; Sheeba Samuel; Daniel Mietchen; Daniel Mietchen
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This repository contains the dataset for the study of computational reproducibility of Jupyter notebooks from biomedical publications. Our focus lies in evaluating the extent of reproducibility of Jupyter notebooks derived from GitHub repositories linked to publications present in the biomedical literature repository, PubMed Central. We analyzed the reproducibility of Jupyter notebooks from GitHub repositories associated with publications indexed in the biomedical literature repository PubMed Central. The dataset includes the metadata information of the journals, publications, the Github repositories mentioned in the publications and the notebooks present in the Github repositories.

    Data Collection and Analysis

    We use the code for reproducibility of Jupyter notebooks from the study done by Pimentel et al., 2019 and adapted the code from ReproduceMeGit. We provide code for collecting the publication metadata from PubMed Central using NCBI Entrez utilities via Biopython.

    Our approach involves searching PMC using the esearch function for Jupyter notebooks using the query: ``(ipynb OR jupyter OR ipython) AND github''. We meticulously retrieve data in XML format, capturing essential details about journals and articles. By systematically scanning the entire article, encompassing the abstract, body, data availability statement, and supplementary materials, we extract GitHub links. Additionally, we mine repositories for key information such as dependency declarations found in files like requirements.txt, setup.py, and pipfile. Leveraging the GitHub API, we enrich our data by incorporating repository creation dates, update histories, pushes, and programming languages.

    All the extracted information is stored in a SQLite database. After collecting and creating the database tables, we ran a pipeline to collect the Jupyter notebooks contained in the GitHub repositories based on the code from Pimentel et al., 2019.

    Our reproducibility pipeline was started on 27 March 2023.

    Repository Structure

    Our repository is organized into two main folders:

    • archaeology: This directory hosts scripts designed to download, parse, and extract metadata from PubMed Central publications and associated repositories. There are 24 database tables created which store the information on articles, journals, authors, repositories, notebooks, cells, modules, executions, etc. in the db.sqlite database file.
    • analyses: Here, you will find notebooks instrumental in the in-depth analysis of data related to our study. The db.sqlite file generated by running the archaelogy folder is stored in the analyses folder for further analysis. The path can however be configured in the config.py file. There are two sets of notebooks: one set (naming pattern N[0-9]*.ipynb) is focused on examining data pertaining to repositories and notebooks, while the other set (PMC[0-9]*.ipynb) is for analyzing data associated with publications in PubMed Central, i.e.\ for plots involving data about articles, journals, publication dates or research fields. The resultant figures from the these notebooks are stored in the 'outputs' folder.
    • MethodsWorkflow: The MethodsWorkflow file provides a conceptual overview of the workflow used in this study.

    Accessing Data and Resources:

    • All the data generated during the initial study can be accessed at https://doi.org/10.5281/zenodo.6802158
    • For the latest results and re-run data, refer to this link.
    • The comprehensive SQLite database that encapsulates all the study's extracted data is stored in the db.sqlite file.
    • The metadata in xml format extracted from PubMed Central which contains the information about the articles and journal can be accessed in pmc.xml file.

    System Requirements:

    Running the pipeline:

    • Clone the computational-reproducibility-pmc repository using Git:
      git clone https://github.com/fusion-jena/computational-reproducibility-pmc.git
    • Navigate to the computational-reproducibility-pmc directory:
      cd computational-reproducibility-pmc/computational-reproducibility-pmc
    • Configure environment variables in the config.py file:
      GITHUB_USERNAME = os.environ.get("JUP_GITHUB_USERNAME", "add your github username here")
      GITHUB_TOKEN = os.environ.get("JUP_GITHUB_PASSWORD", "add your github token here")
    • Other environment variables can also be set in the config.py file.
      BASE_DIR = Path(os.environ.get("JUP_BASE_DIR", "./")).expanduser() # Add the path of directory where the GitHub repositories will be saved
      DB_CONNECTION = os.environ.get("JUP_DB_CONNECTION", "sqlite:///db.sqlite") # Add the path where the database is stored.
    • To set up conda environments for each python versions, upgrade pip, install pipenv, and install the archaeology package in each environment, execute:
      source conda-setup.sh
    • Change to the archaeology directory
      cd archaeology
    • Activate conda environment. We used py36 to run the pipeline.
      conda activate py36
    • Execute the main pipeline script (r0_main.py):
      python r0_main.py

    Running the analysis:

    • Navigate to the analysis directory.
      cd analyses
    • Activate conda environment. We use raw38 for the analysis of the metadata collected in the study.
      conda activate raw38
    • Install the required packages using the requirements.txt file.
      pip install -r requirements.txt
    • Launch Jupyterlab
      jupyter lab
    • Refer to the Index.ipynb notebook for the execution order and guidance.

    References:

  19. O

    Python Codebase and Jupyter Notebooks - Applications of Machine Learning...

    • data.openei.org
    • gdr.openei.org
    • +3more
    archive
    Updated Jun 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Steve Brown; Connor Smith; Steve Brown; Connor Smith (2022). Python Codebase and Jupyter Notebooks - Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada [Dataset]. http://doi.org/10.15121/1897035
    Explore at:
    archiveAvailable download formats
    Dataset updated
    Jun 30, 2022
    Dataset provided by
    Open Energy Data Initiative (OEDI)
    USDOE Office of Energy Efficiency and Renewable Energy (EERE), Multiple Programs (EE)
    Nevada Bureau of Mines and Geology
    Authors
    Steve Brown; Connor Smith; Steve Brown; Connor Smith
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Great Basin, Nevada
    Description

    Git archive containing Python modules and resources used to generate machine-learning models used in the "Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada" project. This software is licensed as free to use, modify, and distribute with attribution. Full license details are included within the archive. See "documentation.zip" for setup instructions and file trees annotated with module descriptions.

  20. Science Education Research Topic Modeling Dataset

    • zenodo.org
    • data.niaid.nih.gov
    bin, html +2
    Updated Oct 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tor Ole B. Odden; Tor Ole B. Odden; Alessandro Marin; Alessandro Marin; John L. Rudolph; John L. Rudolph (2024). Science Education Research Topic Modeling Dataset [Dataset]. http://doi.org/10.5281/zenodo.4094974
    Explore at:
    bin, txt, html, text/x-pythonAvailable download formats
    Dataset updated
    Oct 9, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Tor Ole B. Odden; Tor Ole B. Odden; Alessandro Marin; Alessandro Marin; John L. Rudolph; John L. Rudolph
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    This dataset contains scraped and processed text from roughly 100 years of articles published in the Wiley journal Science Education (formerly General Science Quarterly). This text has been cleaned and filtered in preparation for analysis using natural language processing techniques, particularly topic modeling with latent Dirichlet allocation (LDA). We also include a Jupyter Notebook illustrating how one can use LDA to analyze this dataset and extract latent topics from it, as well as analyze the rise and fall of those topics over the history of the journal.

    The articles were downloaded and scraped in December of 2019. Only non-duplicate articles with a listed author (according to the CrossRef metadata database) were included, and due to missing data and text recognition issues we excluded all articles published prior to 1922. This resulted in 5577 articles in total being included in the dataset. The text of these articles was then cleaned in the following way:

    • We removed duplicated text from each article: prior to 1969, articles in the journal were published in a magazine format in which the end of one article and the beginning of the next would share the same page, so we developed an automated detection of article beginnings and endings that was able to remove any duplicate text.
    • We removed the reference sections of the articles, as well headings (in all caps) such as “ABSTRACT”.
    • We reunited any partial words that were separated due to line breaks, text recognition issues, or British vs. American spellings (for example converting “per cent” to “percent”)
    • We removed all numbers, symbols, special characters, and punctuation, and lowercased all words.
    • We removed all stop words, which are words without any semantic meaning on their own—“the”, “in,” “if”, “and”, “but”, etc.—and all single-letter words.
    • We lemmatized all words, with the added step of including a part-of-speech tagger so our algorithm would only aggregate and lemmatize words from the same part of speech (e.g., nouns vs. verbs).
    • We detected and create bi-grams, sets of words that frequently co-occur and carry additional meaning together. These words were combined with an underscore: for example, “problem_solving” and “high_school”.

    After filtering, each document was then turned into a list of individual words (or tokens) which were then collected and saved (using the python pickle format) into the file scied_words_bigrams_V5.pkl.

    In addition to this file, we have also included the following files:

    1. SciEd_paper_names_weights.pkl: A file containing limited metadata (title, author, year published, and DOI) for each of the papers, in the same order as they appear within the main datafile. This file also includes the weights assigned by an LDA model used to analyze the data
    2. Science Education LDA Notebook.ipynb: A notebook file that replicates our LDA analysis, with a written explanation of all of the steps and suggestions on how to explore the results.
    3. Supporting files for the notebook. These include the requirements, the README, a helper script with functions for plotting that were too long to include in the notebook, and two HTML graphs that are embedded into the notebook.

    This dataset is shared under the terms of the Wiley Text and Data Mining Agreement, which allows users to share text and data mining output for non-commercial research purposes. Any questions or comments can be directed to Tor Ole Odden, t.o.odden@fys.uio.no.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Monis Ahmad (2022). Exploratory Data Analysis on Automobile Dataset [Dataset]. https://www.kaggle.com/datasets/monisahmad/automobile
Organization logo

Exploratory Data Analysis on Automobile Dataset

Data Visualization Using Python

Explore at:
zip(4915 bytes)Available download formats
Dataset updated
Sep 12, 2022
Authors
Monis Ahmad
Description

Dataset

This dataset was created by Monis Ahmad

Contents

Search
Clear search
Close search
Google apps
Main menu