Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Project Description:
Title: Pandas Data Manipulation and File Conversion
Overview: This project aims to demonstrate the basic functionalities of Pandas, a powerful data manipulation library in Python. In this project, we will create a DataFrame, perform some data manipulation operations using Pandas, and then convert the DataFrame into both Excel and CSV formats.
Key Objectives:
Tools and Libraries Used:
Project Implementation:
DataFrame Creation:
Data Manipulation:
File Conversion:
to_excel() function.to_csv() function.Expected Outcome:
Upon completion of this project, you will have gained a fundamental understanding of how to work with Pandas DataFrames, perform basic data manipulation tasks, and convert DataFrames into different file formats. This knowledge will be valuable for data analysis, preprocessing, and data export tasks in various data science and analytics projects.
Conclusion:
The Pandas library offers powerful tools for data manipulation and file conversion in Python. By completing this project, you will have acquired essential skills that are widely applicable in the field of data science and analytics. You can further extend this project by exploring more advanced Pandas functionalities or integrating it into larger data processing pipelines.in this data we add number of data and make that data a data frame.and save in single excel file as different sheet name and then convert that excel file in csv file .
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Excel file containing additional data too large to fit in a PDF, CUT&RUN–RNAseq merge analyses.
Facebook
TwitterOriginal file: https://www.kaggle.com/datasets/redlineracer/nfl-combine-performance-data-2009-2019
Using NFL Combine data from 2009-2019, the information was cleaned and adjusted to conform to standard measurements in Excel. PivotTables were utilized to analyze the relationship between variables such as BMI, Draft Round, Teams, Schools, Players, Positions, and more. Additionally, a dashboard was created to present the findings in a clear and concise manner.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
About Datasets: - Domain : Finance - Project: Bank loan of customers - Datasets: Finance_1.xlsx & Finance_2.xlsx - Dataset Type: Excel Data - Dataset Size: Each Excel file has 39k+ records
KPI's: 1. Year wise loan amount Stats 2. Grade and sub grade wise revol_bal 3. Total Payment for Verified Status Vs Total Payment for Non Verified Status 4. State wise loan status 5. Month wise loan status 6. Get more insights based on your understanding of the data
Process: 1. Understanding the problem 2. Data Collection 3. Data Cleaning 4. Exploring and analyzing the data 5. Interpreting the results
This data contains Power Query, Power Pivot, Merge data, Clustered Bar Chart, Clustered Column Chart, Line Chart, 3D Pie chart, Dashboard, slicers, timeline, formatting techniques.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The SMARTDEST DATASET WP3 v1.0 includes data at sub-city level for 7 cities: Amsterdam, Barcelona, Edinburgh, Lisbon, Ljubljana, Turin, and Venice. It is made up of information extracted from public sources at the local level (mostly, city council open data portals) or volunteered geographic information, that is, geospatial content generated by non-professionals using mapping systems available on the Internet (e.g., Geofabrik). Details on data sources and variables are included in a ‘metadata’ spreadsheet in the excel file. The same excel file contains 5 additional spreadsheets. The first one, labelled #1, was used to perform the analysis on the determinants of the geographical spread of tourism supply in SMARTDEST case study’s cities (in the main document D3.3, section 4.1), The second one (labelled #2) offers information that would allow to replicate the analysis on tourism-led population decline reported in section 4.3. As for spreadsheets named #3-AMS, #4-BCN, and #5-EDI, they refer to data sources and variables used to run follow-up analyses discussed in section 5.1, with the objective of digging into the causes of depopulation in Amsterdam, Barcelona, and Edinburgh, respectively. The column ‘row’ can be used to merge the excel file with the shapefile ‘db_task3.3_SmartDest’. Data are available at the buurt level in Amsterdam (an administrative unit roughly corresponding to a neighbourhood), census tract level in Barcelona and Ljubljana, for data zones in Edinburgh, statistical zones in Turin, and località in Venice.
Facebook
TwitterAnalyzing sales data is essential for any business looking to make informed decisions and optimize its operations. In this project, we will utilize Microsoft Excel and Power Query to conduct a comprehensive analysis of Superstore sales data. Our primary objectives will be to establish meaningful connections between various data sheets, ensure data quality, and calculate critical metrics such as the Cost of Goods Sold (COGS) and discount values. Below are the key steps and elements of this analysis:
1- Data Import and Transformation:
2- Data Quality Assessment:
3- Calculating COGS:
4- Discount Analysis:
5- Sales Metrics:
6- Visualization:
7- Report Generation:
Throughout this analysis, the goal is to provide a clear and comprehensive understanding of the Superstore's sales performance. By using Excel and Power Query, we can efficiently manage and analyze the data, ensuring that the insights gained contribute to the store's growth and success.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Excel spreadsheet containing, in separate sheets, underlying numerical data used to generate the indicated figure panels.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Project Description:
Title: Pandas Data Manipulation and File Conversion
Overview: This project aims to demonstrate the basic functionalities of Pandas, a powerful data manipulation library in Python. In this project, we will create a DataFrame, perform some data manipulation operations using Pandas, and then convert the DataFrame into both Excel and CSV formats.
Key Objectives:
Tools and Libraries Used:
Project Implementation:
DataFrame Creation:
Data Manipulation:
File Conversion:
to_excel() function.to_csv() function.Expected Outcome:
Upon completion of this project, you will have gained a fundamental understanding of how to work with Pandas DataFrames, perform basic data manipulation tasks, and convert DataFrames into different file formats. This knowledge will be valuable for data analysis, preprocessing, and data export tasks in various data science and analytics projects.
Conclusion:
The Pandas library offers powerful tools for data manipulation and file conversion in Python. By completing this project, you will have acquired essential skills that are widely applicable in the field of data science and analytics. You can further extend this project by exploring more advanced Pandas functionalities or integrating it into larger data processing pipelines.in this data we add number of data and make that data a data frame.and save in single excel file as different sheet name and then convert that excel file in csv file .