7 datasets found
  1. Merge number of excel file,convert into csv file

    • kaggle.com
    zip
    Updated Mar 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aashirvad pandey (2024). Merge number of excel file,convert into csv file [Dataset]. https://www.kaggle.com/datasets/aashirvadpandey/merge-number-of-excel-fileconvert-into-csv-file
    Explore at:
    zip(6731 bytes)Available download formats
    Dataset updated
    Mar 30, 2024
    Authors
    Aashirvad pandey
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Project Description:

    Title: Pandas Data Manipulation and File Conversion

    Overview: This project aims to demonstrate the basic functionalities of Pandas, a powerful data manipulation library in Python. In this project, we will create a DataFrame, perform some data manipulation operations using Pandas, and then convert the DataFrame into both Excel and CSV formats.

    Key Objectives:

    1. DataFrame Creation: Utilize Pandas to create a DataFrame with sample data.
    2. Data Manipulation: Perform basic data manipulation tasks such as adding columns, filtering data, and performing calculations.
    3. File Conversion: Convert the DataFrame into Excel (.xlsx) and CSV (.csv) file formats.

    Tools and Libraries Used:

    • Python
    • Pandas

    Project Implementation:

    1. DataFrame Creation:

      • Import the Pandas library.
      • Create a DataFrame using either a dictionary, a list of dictionaries, or by reading data from an external source like a CSV file.
      • Populate the DataFrame with sample data representing various data types (e.g., integer, float, string, datetime).
    2. Data Manipulation:

      • Add new columns to the DataFrame representing derived data or computations based on existing columns.
      • Filter the DataFrame to include only specific rows based on certain conditions.
      • Perform basic calculations or transformations on the data, such as aggregation functions or arithmetic operations.
    3. File Conversion:

      • Utilize Pandas to convert the DataFrame into an Excel (.xlsx) file using the to_excel() function.
      • Convert the DataFrame into a CSV (.csv) file using the to_csv() function.
      • Save the generated files to the local file system for further analysis or sharing.

    Expected Outcome:

    Upon completion of this project, you will have gained a fundamental understanding of how to work with Pandas DataFrames, perform basic data manipulation tasks, and convert DataFrames into different file formats. This knowledge will be valuable for data analysis, preprocessing, and data export tasks in various data science and analytics projects.

    Conclusion:

    The Pandas library offers powerful tools for data manipulation and file conversion in Python. By completing this project, you will have acquired essential skills that are widely applicable in the field of data science and analytics. You can further extend this project by exploring more advanced Pandas functionalities or integrating it into larger data processing pipelines.in this data we add number of data and make that data a data frame.and save in single excel file as different sheet name and then convert that excel file in csv file .

  2. Excel file containing additional data too large to fit in a PDF,...

    • plos.figshare.com
    xlsx
    Updated Dec 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Odette Verdejo-Torres; David C. Klein; Lorena Novoa-Aponte; Jaime Carrazco-Carrillo; Denzel Bonilla-Pinto; Antonio Rivera; Arpie Bakhshian; Fa’alataitaua M. Fitisemanu; Martha L. Jiménez-González; Lyra Flinn; Aidan T. Pezacki; Antonio Lanzirotti; Luis Antonio Ortiz Frade; Christopher J. Chang; Juan G. Navea; Crysten E. Blaby-Haas; Sarah J. Hainer; Teresita Padilla-Benavides (2024). Excel file containing additional data too large to fit in a PDF, CUT&RUN–RNAseq merge analyses. [Dataset]. http://doi.org/10.1371/journal.pgen.1011495.s018
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Dec 26, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Odette Verdejo-Torres; David C. Klein; Lorena Novoa-Aponte; Jaime Carrazco-Carrillo; Denzel Bonilla-Pinto; Antonio Rivera; Arpie Bakhshian; Fa’alataitaua M. Fitisemanu; Martha L. Jiménez-González; Lyra Flinn; Aidan T. Pezacki; Antonio Lanzirotti; Luis Antonio Ortiz Frade; Christopher J. Chang; Juan G. Navea; Crysten E. Blaby-Haas; Sarah J. Hainer; Teresita Padilla-Benavides
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Excel file containing additional data too large to fit in a PDF, CUT&RUN–RNAseq merge analyses.

  3. Edited - NFL Combine - Performance Data 2009-2019

    • kaggle.com
    zip
    Updated Oct 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tyler Wolf (2022). Edited - NFL Combine - Performance Data 2009-2019 [Dataset]. https://www.kaggle.com/datasets/tylerpwolf/edited-nfl-combine-performance-data-20092019/data
    Explore at:
    zip(1262110 bytes)Available download formats
    Dataset updated
    Oct 31, 2022
    Authors
    Tyler Wolf
    Description

    Original file: https://www.kaggle.com/datasets/redlineracer/nfl-combine-performance-data-2009-2019

    Using NFL Combine data from 2009-2019, the information was cleaned and adjusted to conform to standard measurements in Excel. PivotTables were utilized to analyze the relationship between variables such as BMI, Draft Round, Teams, Schools, Players, Positions, and more. Additionally, a dashboard was created to present the findings in a clear and concise manner.

  4. Bank Loan Analysis Project in Excel

    • kaggle.com
    zip
    Updated May 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sanjana Murthy (2024). Bank Loan Analysis Project in Excel [Dataset]. https://www.kaggle.com/datasets/sanjanamurthy392/bank-loan-analysis-project/code
    Explore at:
    zip(38976902 bytes)Available download formats
    Dataset updated
    May 4, 2024
    Authors
    Sanjana Murthy
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    About Datasets: - Domain : Finance - Project: Bank loan of customers - Datasets: Finance_1.xlsx & Finance_2.xlsx - Dataset Type: Excel Data - Dataset Size: Each Excel file has 39k+ records

    KPI's: 1. Year wise loan amount Stats 2. Grade and sub grade wise revol_bal 3. Total Payment for Verified Status Vs Total Payment for Non Verified Status 4. State wise loan status 5. Month wise loan status 6. Get more insights based on your understanding of the data

    Process: 1. Understanding the problem 2. Data Collection 3. Data Cleaning 4. Exploring and analyzing the data 5. Interpreting the results

    This data contains Power Query, Power Pivot, Merge data, Clustered Bar Chart, Clustered Column Chart, Line Chart, 3D Pie chart, Dashboard, slicers, timeline, formatting techniques.

  5. SMARTDEST DATASET WP3 v1.0

    • data.europa.eu
    unknown
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo (2025). SMARTDEST DATASET WP3 v1.0 [Dataset]. https://data.europa.eu/data/datasets/oai-zenodo-org-6787378?locale=el
    Explore at:
    unknown(9913124)Available download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The SMARTDEST DATASET WP3 v1.0 includes data at sub-city level for 7 cities: Amsterdam, Barcelona, Edinburgh, Lisbon, Ljubljana, Turin, and Venice. It is made up of information extracted from public sources at the local level (mostly, city council open data portals) or volunteered geographic information, that is, geospatial content generated by non-professionals using mapping systems available on the Internet (e.g., Geofabrik). Details on data sources and variables are included in a ‘metadata’ spreadsheet in the excel file. The same excel file contains 5 additional spreadsheets. The first one, labelled #1, was used to perform the analysis on the determinants of the geographical spread of tourism supply in SMARTDEST case study’s cities (in the main document D3.3, section 4.1), The second one (labelled #2) offers information that would allow to replicate the analysis on tourism-led population decline reported in section 4.3. As for spreadsheets named #3-AMS, #4-BCN, and #5-EDI, they refer to data sources and variables used to run follow-up analyses discussed in section 5.1, with the objective of digging into the causes of depopulation in Amsterdam, Barcelona, and Edinburgh, respectively. The column ‘row’ can be used to merge the excel file with the shapefile ‘db_task3.3_SmartDest’. Data are available at the buurt level in Amsterdam (an administrative unit roughly corresponding to a neighbourhood), census tract level in Barcelona and Ljubljana, for data zones in Edinburgh, statistical zones in Turin, and località in Venice.

  6. Superstore Sales Analysis

    • kaggle.com
    zip
    Updated Oct 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ali Reda Elblgihy (2023). Superstore Sales Analysis [Dataset]. https://www.kaggle.com/datasets/aliredaelblgihy/superstore-sales-analysis/versions/1
    Explore at:
    zip(3009057 bytes)Available download formats
    Dataset updated
    Oct 21, 2023
    Authors
    Ali Reda Elblgihy
    Description

    Analyzing sales data is essential for any business looking to make informed decisions and optimize its operations. In this project, we will utilize Microsoft Excel and Power Query to conduct a comprehensive analysis of Superstore sales data. Our primary objectives will be to establish meaningful connections between various data sheets, ensure data quality, and calculate critical metrics such as the Cost of Goods Sold (COGS) and discount values. Below are the key steps and elements of this analysis:

    1- Data Import and Transformation:

    • Gather and import relevant sales data from various sources into Excel.
    • Utilize Power Query to clean, transform, and structure the data for analysis.
    • Merge and link different data sheets to create a cohesive dataset, ensuring that all data fields are connected logically.

    2- Data Quality Assessment:

    • Perform data quality checks to identify and address issues like missing values, duplicates, outliers, and data inconsistencies.
    • Standardize data formats and ensure that all data is in a consistent, usable state.

    3- Calculating COGS:

    • Determine the Cost of Goods Sold (COGS) for each product sold by considering factors like purchase price, shipping costs, and any additional expenses.
    • Apply appropriate formulas and calculations to determine COGS accurately.

    4- Discount Analysis:

    • Analyze the discount values offered on products to understand their impact on sales and profitability.
    • Calculate the average discount percentage, identify trends, and visualize the data using charts or graphs.

    5- Sales Metrics:

    • Calculate and analyze various sales metrics, such as total revenue, profit margins, and sales growth.
    • Utilize Excel functions to compute these metrics and create visuals for better insights.

    6- Visualization:

    • Create visualizations, such as charts, graphs, and pivot tables, to present the data in an understandable and actionable format.
    • Visual representations can help identify trends, outliers, and patterns in the data.

    7- Report Generation:

    • Compile the findings and insights into a well-structured report or dashboard, making it easy for stakeholders to understand and make informed decisions.

    Throughout this analysis, the goal is to provide a clear and comprehensive understanding of the Superstore's sales performance. By using Excel and Power Query, we can efficiently manage and analyze the data, ensuring that the insights gained contribute to the store's growth and success.

  7. Excel spreadsheet containing, in separate sheets, underlying numerical data...

    • plos.figshare.com
    xlsx
    Updated Sep 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hoi Tong Wong; Adeline M. Luperchio; Sean Riley; Daniel J. Salamango (2023). Excel spreadsheet containing, in separate sheets, underlying numerical data used to generate the indicated figure panels. [Dataset]. http://doi.org/10.1371/journal.ppat.1011634.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Sep 15, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Hoi Tong Wong; Adeline M. Luperchio; Sean Riley; Daniel J. Salamango
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Excel spreadsheet containing, in separate sheets, underlying numerical data used to generate the indicated figure panels.

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Aashirvad pandey (2024). Merge number of excel file,convert into csv file [Dataset]. https://www.kaggle.com/datasets/aashirvadpandey/merge-number-of-excel-fileconvert-into-csv-file
Organization logo

Merge number of excel file,convert into csv file

merging the file and converting the file

Explore at:
zip(6731 bytes)Available download formats
Dataset updated
Mar 30, 2024
Authors
Aashirvad pandey
License

Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically

Description

Project Description:

Title: Pandas Data Manipulation and File Conversion

Overview: This project aims to demonstrate the basic functionalities of Pandas, a powerful data manipulation library in Python. In this project, we will create a DataFrame, perform some data manipulation operations using Pandas, and then convert the DataFrame into both Excel and CSV formats.

Key Objectives:

  1. DataFrame Creation: Utilize Pandas to create a DataFrame with sample data.
  2. Data Manipulation: Perform basic data manipulation tasks such as adding columns, filtering data, and performing calculations.
  3. File Conversion: Convert the DataFrame into Excel (.xlsx) and CSV (.csv) file formats.

Tools and Libraries Used:

  • Python
  • Pandas

Project Implementation:

  1. DataFrame Creation:

    • Import the Pandas library.
    • Create a DataFrame using either a dictionary, a list of dictionaries, or by reading data from an external source like a CSV file.
    • Populate the DataFrame with sample data representing various data types (e.g., integer, float, string, datetime).
  2. Data Manipulation:

    • Add new columns to the DataFrame representing derived data or computations based on existing columns.
    • Filter the DataFrame to include only specific rows based on certain conditions.
    • Perform basic calculations or transformations on the data, such as aggregation functions or arithmetic operations.
  3. File Conversion:

    • Utilize Pandas to convert the DataFrame into an Excel (.xlsx) file using the to_excel() function.
    • Convert the DataFrame into a CSV (.csv) file using the to_csv() function.
    • Save the generated files to the local file system for further analysis or sharing.

Expected Outcome:

Upon completion of this project, you will have gained a fundamental understanding of how to work with Pandas DataFrames, perform basic data manipulation tasks, and convert DataFrames into different file formats. This knowledge will be valuable for data analysis, preprocessing, and data export tasks in various data science and analytics projects.

Conclusion:

The Pandas library offers powerful tools for data manipulation and file conversion in Python. By completing this project, you will have acquired essential skills that are widely applicable in the field of data science and analytics. You can further extend this project by exploring more advanced Pandas functionalities or integrating it into larger data processing pipelines.in this data we add number of data and make that data a data frame.and save in single excel file as different sheet name and then convert that excel file in csv file .

Search
Clear search
Close search
Google apps
Main menu