9 datasets found
  1. MERGE Dataset

    • zenodo.org
    zip
    Updated Feb 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pedro Lima Louro; Pedro Lima Louro; Hugo Redinho; Hugo Redinho; Ricardo Santos; Ricardo Santos; Ricardo Malheiro; Ricardo Malheiro; Renato Panda; Renato Panda; Rui Pedro Paiva; Rui Pedro Paiva (2025). MERGE Dataset [Dataset]. http://doi.org/10.5281/zenodo.13939205
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 7, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Pedro Lima Louro; Pedro Lima Louro; Hugo Redinho; Hugo Redinho; Ricardo Santos; Ricardo Santos; Ricardo Malheiro; Ricardo Malheiro; Renato Panda; Renato Panda; Rui Pedro Paiva; Rui Pedro Paiva
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    The MERGE dataset is a collection of audio, lyrics, and bimodal datasets for conducting research on Music Emotion Recognition. A complete version is provided for each modality. The audio datasets provide 30-second excerpts for each sample, while full lyrics are provided in the relevant datasets. The amount of available samples in each dataset is the following:

    • MERGE Audio Complete: 3554
    • MERGE Audio Balanced: 3232
    • MERGE Lyrics Complete: 2568
    • MERGE Lyrics Balanced: 2400
    • MERGE Bimodal Complete: 2216
    • MERGE Bimodal Balanced: 2000

    Additional Contents

    Each dataset contains the following additional files:

    • av_values: File containing the arousal and valence values for each sample sorted by their identifier;
    • tvt_dataframes: Train, validate, and test splits for each dataset. Both a 70-15-15 and a 40-30-30 split are provided.

    Metadata

    A metadata spreadsheet is provided for each dataset with the following information for each sample, if available:

    • Song (Audio and Lyrics datasets) - Song identifiers. Identifiers starting with MT were extracted from the AllMusic platform, while those starting with A or L were collected from private collections;
    • Quadrant - Label corresponding to one of the four quadrants from Russell's Circumplex Model;
    • AllMusic Id - For samples starting with A or L, the matching AllMusic identifier is also provided. This was used to complement the available information for the samples originally obtained from the platform;
    • Artist - First performing artist or band;
    • Title - Song title;
    • Relevance - AllMusic metric representing the relevance of the song in relation to the query used;
    • Duration - Song length in seconds;
    • Moods - User-generated mood tags extracted from the AllMusic platform and available in Warriner's affective dictionary;
    • MoodsAll - User-generated mood tags extracted from the AllMusic platform;
    • Genres - User-generated genre tags extracted from the AllMusic platform;
    • Themes - User-generated theme tags extracted from the AllMusic platform;
    • Styles - User-generated style tags extracted from the AllMusic platform;
    • AppearancesTrackIDs - All AllMusic identifiers related with a sample;
    • Sample - Availability of the sample in the AllMusic platform;
    • SampleURL - URL to the 30-second excerpt in AllMusic;
    • ActualYear - Year of song release.

    Citation

    If you use some part of the MERGE dataset in your research, please cite the following article:

    Louro, P. L. and Redinho, H. and Santos, R. and Malheiro, R. and Panda, R. and Paiva, R. P. (2024). MERGE - A Bimodal Dataset For Static Music Emotion Recognition. arxiv. URL: https://arxiv.org/abs/2407.06060.

    BibTeX:

    @misc{louro2024mergebimodaldataset,
    title={MERGE -- A Bimodal Dataset for Static Music Emotion Recognition},
    author={Pedro Lima Louro and Hugo Redinho and Ricardo Santos and Ricardo Malheiro and Renato Panda and Rui Pedro Paiva},
    year={2024},
    eprint={2407.06060},
    archivePrefix={arXiv},
    primaryClass={cs.SD},
    url={https://arxiv.org/abs/2407.06060},
    }

    Acknowledgements

    This work is funded by FCT - Foundation for Science and Technology, I.P., within the scope of the projects: MERGE - DOI: 10.54499/PTDC/CCI-COM/3171/2021 financed with national funds (PIDDAC) via the Portuguese State Budget; and project CISUC - UID/CEC/00326/2020 with funds from the European Social Fund, through the Regional Operational Program Centro 2020.

    Renato Panda was supported by Ci2 - FCT UIDP/05567/2020.

  2. KORUS-AQ Aircraft Merge Data Files - Dataset - NASA Open Data Portal

    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    Updated Feb 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). KORUS-AQ Aircraft Merge Data Files - Dataset - NASA Open Data Portal [Dataset]. https://data.staging.idas-ds1.appdat.jsc.nasa.gov/dataset/korus-aq-aircraft-merge-data-files
    Explore at:
    Dataset updated
    Feb 18, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    KORUSAQ_Merge_Data are pre-generated merge data files combining various products collected during the KORUS-AQ field campaign. This collection features pre-generated merge files for the DC-8 aircraft. Data collection for this product is complete. The KORUS-AQ field study was conducted in South Korea during May-June, 2016. The study was jointly sponsored by NASA and Korea’s National Institute of Environmental Research (NIER). The primary objectives were to investigate the factors controlling air quality in Korea (e.g., local emissions, chemical processes, and transboundary transport) and to assess future air quality observing strategies incorporating geostationary satellite observations. To achieve these science objectives, KORUS-AQ adopted a highly coordinated sampling strategy involved surface and airborne measurements including both in-situ and remote sensing instruments. Surface observations provided details on ground-level air quality conditions while airborne sampling provided an assessment of conditions aloft relevant to satellite observations and necessary to understand the role of emissions, chemistry, and dynamics in determining air quality outcomes. The sampling region covers the South Korean peninsula and surrounding waters with a primary focus on the Seoul Metropolitan Area. Airborne sampling was primarily conducted from near surface to about 8 km with extensive profiling to characterize the vertical distribution of pollutants and their precursors. The airborne observational data were collected from three aircraft platforms: the NASA DC-8, NASA B-200, and Hanseo King Air. Surface measurements were conducted from 16 ground sites and 2 ships: R/V Onnuri and R/V Jang Mok. The major data products collected from both the ground and air include in-situ measurements of trace gases (e.g., ozone, reactive nitrogen species, carbon monoxide and dioxide, methane, non-methane and oxygenated hydrocarbon species), aerosols (e.g., microphysical and optical properties and chemical composition), active remote sensing of ozone and aerosols, and passive remote sensing of NO2, CH2O, and O3 column densities. These data products support research focused on examining the impact of photochemistry and transport on ozone and aerosols, evaluating emissions inventories, and assessing the potential use of satellite observations in air quality studies.

  3. NASA DC-8 1 Second Data Merge

    • data.ucar.edu
    ascii
    Updated Dec 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gao Chen; Jennifer R. Olson; Langley Research Center (LaRC), NASA (2024). NASA DC-8 1 Second Data Merge [Dataset]. http://doi.org/10.5065/D6SF2TXB
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Dec 26, 2024
    Dataset provided by
    University Corporation for Atmospheric Research
    Authors
    Gao Chen; Jennifer R. Olson; Langley Research Center (LaRC), NASA
    Time period covered
    May 18, 2012 - Jun 22, 2012
    Area covered
    Description

    This data set contains NASA DC-8 1 Second Data Merge data collected during the Deep Convective Clouds and Chemistry Experiment (DC3) from 18 May 2012 through 22 June 2012. These merges are an updated version that were provided by NASA. In most cases, variable names have been kept identical to those submitted in the raw data files. However, in some cases, names have been changed (e.g., to eliminate duplication). Units have been standardized throughout the merge. No "grand merge" has been provided for the 1-second data on the DC8 aircraft due to its prohibitive size (~1.5GB). In most cases, downloading the individual merge files for each day and simply concatenating them should suffice. This data set is in ICARTT format. Please see the header portion of the data files for details on instruments, parameters, quality assurance, quality control, contact information, and data set comments. For more information on the updates to this dataset, please see the readme file.

  4. DLR Falcon 1 Minute Data Merge

    • data.ucar.edu
    ascii
    Updated Dec 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gao Chen; Jennifer R. Olson; Michael Shook (2024). DLR Falcon 1 Minute Data Merge [Dataset]. http://doi.org/10.26023/SZ09-F2G3-7X0V
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Dec 26, 2024
    Dataset provided by
    University Corporation for Atmospheric Research
    Authors
    Gao Chen; Jennifer R. Olson; Michael Shook
    Time period covered
    May 29, 2012 - Jun 14, 2012
    Area covered
    Description

    This data set contains DLR Falcon 1 Minute Data Merge data collected during the Deep Convective Clouds and Chemistry Experiment (DC3) from 29 May 2012 through 14 June 2012. These merges were created using data in the NASA DC3 archive as of September 25, 2013. In most cases, variable names have been kept identical to those submitted in the raw data files. However, in some cases, names have been changed (e.g., to eliminate duplication). Units have been standardized throughout the merge. In addition, a "grand merge" has been provided. This includes data from all the individual merged flights throughout the mission. This grand merge will follow the following naming convention: "dc3-mrg06-falcon_merge_YYYYMMdd_R2_thruYYYYMMdd.ict" (with the comment "_thruYYYYMMdd" indicating the last flight date included). This data set is in ICARTT format. Please see the header portion of the data files for details on instruments, parameters, quality assurance, quality control, contact information, and data set comments.

  5. Data from: A dataset to model Levantine landcover and land-use change...

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Dec 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Kempf; Michael Kempf (2023). A dataset to model Levantine landcover and land-use change connected to climate change, the Arab Spring and COVID-19 [Dataset]. http://doi.org/10.5281/zenodo.10396148
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 16, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Michael Kempf; Michael Kempf
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 16, 2023
    Area covered
    Levant
    Description

    Overview

    This dataset is the repository for the following paper submitted to Data in Brief:

    Kempf, M. A dataset to model Levantine landcover and land-use change connected to climate change, the Arab Spring and COVID-19. Data in Brief (submitted: December 2023).

    The Data in Brief article contains the supplement information and is the related data paper to:

    Kempf, M. Climate change, the Arab Spring, and COVID-19 - Impacts on landcover transformations in the Levant. Journal of Arid Environments (revision submitted: December 2023).

    Description/abstract

    The Levant region is highly vulnerable to climate change, experiencing prolonged heat waves that have led to societal crises and population displacement. Since 2010, the area has been marked by socio-political turmoil, including the Syrian civil war and currently the escalation of the so-called Israeli-Palestinian Conflict, which strained neighbouring countries like Jordan due to the influx of Syrian refugees and increases population vulnerability to governmental decision-making. Jordan, in particular, has seen rapid population growth and significant changes in land-use and infrastructure, leading to over-exploitation of the landscape through irrigation and construction. This dataset uses climate data, satellite imagery, and land cover information to illustrate the substantial increase in construction activity and highlights the intricate relationship between climate change predictions and current socio-political developments in the Levant.

    Folder structure

    The main folder after download contains all data, in which the following subfolders are stored are stored as zipped files:

    “code” stores the above described 9 code chunks to read, extract, process, analyse, and visualize the data.

    “MODIS_merged” contains the 16-days, 250 m resolution NDVI imagery merged from three tiles (h20v05, h21v05, h21v06) and cropped to the study area, n=510, covering January 2001 to December 2022 and including January and February 2023.

    “mask” contains a single shapefile, which is the merged product of administrative boundaries, including Jordan, Lebanon, Israel, Syria, and Palestine (“MERGED_LEVANT.shp”).

    “yield_productivity” contains .csv files of yield information for all countries listed above.

    “population” contains two files with the same name but different format. The .csv file is for processing and plotting in R. The .ods file is for enhanced visualization of population dynamics in the Levant (Socio_cultural_political_development_database_FAO2023.ods).

    “GLDAS” stores the raw data of the NASA Global Land Data Assimilation System datasets that can be read, extracted (variable name), and processed using code “8_GLDAS_read_extract_trend” from the respective folder. One folder contains data from 1975-2022 and a second the additional January and February 2023 data.

    “built_up” contains the landcover and built-up change data from 1975 to 2022. This folder is subdivided into two subfolder which contain the raw data and the already processed data. “raw_data” contains the unprocessed datasets and “derived_data” stores the cropped built_up datasets at 5 year intervals, e.g., “Levant_built_up_1975.tif”.

    Code structure

    1_MODIS_NDVI_hdf_file_extraction.R


    This is the first code chunk that refers to the extraction of MODIS data from .hdf file format. The following packages must be installed and the raw data must be downloaded using a simple mass downloader, e.g., from google chrome. Packages: terra. Download MODIS data from after registration from: https://lpdaac.usgs.gov/products/mod13q1v061/ or https://search.earthdata.nasa.gov/search (MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061, last accessed, 09th of October 2023). The code reads a list of files, extracts the NDVI, and saves each file to a single .tif-file with the indication “NDVI”. Because the study area is quite large, we have to load three different (spatially) time series and merge them later. Note that the time series are temporally consistent.


    2_MERGE_MODIS_tiles.R


    In this code, we load and merge the three different stacks to produce large and consistent time series of NDVI imagery across the study area. We further use the package gtools to load the files in (1, 2, 3, 4, 5, 6, etc.). Here, we have three stacks from which we merge the first two (stack 1, stack 2) and store them. We then merge this stack with stack 3. We produce single files named NDVI_final_*consecutivenumber*.tif. Before saving the final output of single merged files, create a folder called “merged” and set the working directory to this folder, e.g., setwd("your directory_MODIS/merged").


    3_CROP_MODIS_merged_tiles.R


    Now we want to crop the derived MODIS tiles to our study area. We are using a mask, which is provided as .shp file in the repository, named "MERGED_LEVANT.shp". We load the merged .tif files and crop the stack with the vector. Saving to individual files, we name them “NDVI_merged_clip_*consecutivenumber*.tif. We now produced single cropped NDVI time series data from MODIS.
    The repository provides the already clipped and merged NDVI datasets.


    4_TREND_analysis_NDVI.R


    Now, we want to perform trend analysis from the derived data. The data we load is tricky as it contains 16-days return period across a year for the period of 22 years. Growing season sums contain MAM (March-May), JJA (June-August), and SON (September-November). December is represented as a single file, which means that the period DJF (December-February) is represented by 5 images instead of 6. For the last DJF period (December 2022), the data from January and February 2023 can be added. The code selects the respective images from the stack, depending on which period is under consideration. From these stacks, individual annually resolved growing season sums are generated and the slope is calculated. We can then extract the p-values of the trend and characterize all values with high confidence level (0.05). Using the ggplot2 package and the melt function from reshape2 package, we can create a plot of the reclassified NDVI trends together with a local smoother (LOESS) of value 0.3.
    To increase comparability and understand the amplitude of the trends, z-scores were calculated and plotted, which show the deviation of the values from the mean. This has been done for the NDVI values as well as the GLDAS climate variables as a normalization technique.


    5_BUILT_UP_change_raster.R


    Let us look at the landcover changes now. We are working with the terra package and get raster data from here: https://ghsl.jrc.ec.europa.eu/download.php?ds=bu (last accessed 03. March 2023, 100 m resolution, global coverage). Here, one can download the temporal coverage that is aimed for and reclassify it using the code after cropping to the individual study area. Here, I summed up different raster to characterize the built-up change in continuous values between 1975 and 2022.


    6_POPULATION_numbers_plot.R


    For this plot, one needs to load the .csv-file “Socio_cultural_political_development_database_FAO2023.csv” from the repository. The ggplot script provided produces the desired plot with all countries under consideration.


    7_YIELD_plot.R


    In this section, we are using the country productivity from the supplement in the repository “yield_productivity” (e.g., "Jordan_yield.csv". Each of the single country yield datasets is plotted in a ggplot and combined using the patchwork package in R.


    8_GLDAS_read_extract_trend


    The last code provides the basis for the trend analysis of the climate variables used in the paper. The raw data can be accessed https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS%20Noah%20Land%20Surface%20Model%20L4%20monthly&page=1 (last accessed 9th of October 2023). The raw data comes in .nc file format and various variables can be extracted using the [“^a variable name”] command from the spatraster collection. Each time you run the code, this variable name must be adjusted to meet the requirements for the variables (see this link for abbreviations: https://disc.gsfc.nasa.gov/datasets/GLDAS_CLSM025_D_2.0/summary, last accessed 09th of October 2023; or the respective code chunk when reading a .nc file with the ncdf4 package in R) or run print(nc) from the code or use names(the spatraster collection).
    Choosing one variable, the code uses the MERGED_LEVANT.shp mask from the repository to crop and mask the data to the outline of the study area.
    From the processed data, trend analysis are conducted and z-scores were calculated following the code described above. However, annual trends require the frequency of the time series analysis to be set to value = 12. Regarding, e.g., rainfall, which is measured as annual sums and not means, the chunk r.sum=r.sum/12 has to be removed or set to r.sum=r.sum/1 to avoid calculating annual mean values (see other variables). Seasonal subset can be calculated as described in the code. Here, 3-month subsets were chosen for growing seasons, e.g. March-May (MAM), June-July (JJA), September-November (SON), and DJF (December-February, including Jan/Feb of the consecutive year).
    From the data, mean values of 48 consecutive years are calculated and trend analysis are performed as describe above. In the same way, p-values are extracted and 95 % confidence level values are marked with dots on the raster plot. This analysis can be performed with a much longer time series, other variables, ad different spatial extent across the globe due to the availability of the GLDAS variables.

  6. H

    National Health Interview Survey (NHIS)

    • dataverse.harvard.edu
    Updated May 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Damico (2013). National Health Interview Survey (NHIS) [Dataset]. http://doi.org/10.7910/DVN/BYPZ8N
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 30, 2013
    Dataset provided by
    Harvard Dataverse
    Authors
    Anthony Damico
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    analyze the national health interview survey (nhis) with r the national health interview survey (nhis) is a household survey about health status and utilization. each annual data set can be used to examine the disease burden and access to care that individuals and families are currently experiencing across the country. check out the wikipedia article (ohh hayy i wrote that) for more detail about its current and potential uses. if you're cooking up a health-related analysis that doesn't need medical expenditures or monthly health insurance coverage, look at nhis before the medical expenditure panel survey (it's sample is twice as big). the centers for disease control and prevention (cdc) has been keeping nhis real since 1957, and the scripts below automate the download, importation, and analysis of every file back to 1963. what happened in 1997, you ask? scientists cloned dolly the sheep, clinton started his second term, and the national health interview survey underwent its most recent major questionnaire re-design. here's how all the moving parts work: a person-level file (personsx) that merges onto other files using unique household (hhx), family (fmx), and person (fpx) identifiers. [note to data historians: prior to 2004, person number was (px) and unique within each household.] this file includes the complex sample survey variables needed to construct a taylor-series linearization design, and should be used if your analysis doesn't require variables from the sample adult or sample c hild files. this survey setup generalizes to the noninstitutional, non-active duty military population. a family-level file that merges onto other files using unique household (hhx) and family (fmx) identifiers. a household-level file that merges onto other files using the unique household (hhx) identifier. a sample adult file that includes questions asked of only one adult within each household (selected at random) - a subset of the main person-level file. hhx, fmx, and fpx identifiers will merge with each of the files above, but since not every adult gets asked thes e questions, this file contains its own set of weights: wtfa_sa instead of wtfa. you can merge on whatever other variables you need from the three files above, but if your analysis requires any variables from the sample adult questionnaire, you can't use records in the person-level file that aren't also in the sample adult file (a big sample size cut). this survey setup generalizes to the noninstitutional, non-active duty military adult population. a sample child file that includes questions asked of only one child within each household (if available, and also selected at random) - another subset of the main person-level file. same deal as the sample adult description, except use wtfa_sc instead of wtfa oh yeah and this one generalizes to the child population. five imputed income files. if you want income and/or poverty variables incorporated into any part of your analysis, you'll need these puppies. the replication example below uses these, but if that's impenetrable, post in the comments describing where you get stuck. some injury stuff and other miscellanea that varies by year. if anyone uses this, please share your experience. if you use anything more than the personsx file alone, you'll need to merge some tables together. make sure you understand the difference between setting the parameter all = TRUE versus all = FALSE -- not everyone in the personsx file has a record in the samadult and sam child files. this new github repository contains four scripts: 1963-2011 - download all microdata.R loop through every year and download every file hosted on the cdc's nhis ftp site import each file into r with SAScii save each file as an r d ata file (.rda) download all the documentation into the year-specific directory 2011 personsx - analyze.R load the r data file (.rda) created by the download script (above) set up a taylor-series linearization survey design outlined on page 6 of this survey document perform a smattering of analysis examples 2011 personsx plus samadult with multiple imputation - analyze.R load the personsx and samadult r data files (.rda) created by the download script (above) merge the personsx and samadult files, highlighting how to conduct analyses that need both create tandem survey designs for both personsx-only and merg ed personsx-samadult files perform just a touch of analysis examples load and loop through the five imputed income files, tack them onto the personsx-samadult file conduct a poverty recode or two analyze the multiply-imputed survey design object, just like mom used to analyze replicate cdc tecdoc - 2000 multiple imputation.R download and import the nhis 2000 personsx and imputed income files, using SAScii and this imputed income sas importation script (no longer hosted on the cdc's nhis ftp site). loop through each of the five imputed income files, merging each to the personsx file and performing the same set of...

  7. Exelon to Merge with Constellation Energy Group

    • store.globaldata.com
    Updated May 1, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GlobalData UK Ltd. (2011). Exelon to Merge with Constellation Energy Group [Dataset]. https://store.globaldata.com/report/exelon-to-merge-with-constellation-energy-group/
    Explore at:
    Dataset updated
    May 1, 2011
    Dataset provided by
    GlobalDatahttps://www.globaldata.com/
    Authors
    GlobalData UK Ltd.
    License

    https://www.globaldata.com/privacy-policy/https://www.globaldata.com/privacy-policy/

    Time period covered
    2011 - 2015
    Area covered
    North America
    Description

    Exelon Corporation (Exelon) has entered into a definitive merger agreement with Constellation Energy (Constellation Energy) to combine the two companies in a stock-for-stock exchange transaction valued at $7,900m. The resulting company will retain the Exelon name and will be headquartered in Chicago. Exelon’s Power team and Constellation Energy’s retail and wholesale businesses will be amalgamated under the Constellation Energy brand and be headquartered in Baltimore. Both the companies’ renewable businesses will also be headquartered in Baltimore. The three utilities of Exelon- BGE, Commonwealth Edison Company (ComEd) and PECO Energy Company (PECO) will remain as independent organizations. The agreement brings the two large companies together, creating a platform for growth and delivering stakeholder benefits. The new amalgamated company will bring a clean power fleet and competitive prices to millions of customers. The most important factor behind the merger of these two companies is the creation of a new company that will evolve as the number one energy provider in the US with market capitalization of $34 billion. Read More

  8. IRPC to Merge with PTT Global Chemical

    • store.globaldata.com
    Updated Sep 1, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GlobalData UK Ltd. (2012). IRPC to Merge with PTT Global Chemical [Dataset]. https://store.globaldata.com/report/irpc-to-merge-with-ptt-global-chemical-2/
    Explore at:
    Dataset updated
    Sep 1, 2012
    Dataset provided by
    GlobalDatahttps://www.globaldata.com/
    Authors
    GlobalData UK Ltd.
    License

    https://www.globaldata.com/privacy-policy/https://www.globaldata.com/privacy-policy/

    Time period covered
    2012 - 2016
    Area covered
    Asia-Pacific
    Description

    IRPC Public Company Limited, a Thai integrated petroleum and petrochemical company, is likely to merge with PTT Global Chemical Public Company Limited, a leading producer and distributor of petrochemical products in Thailand. The planned merger would be spearheaded by PTT Group, a majority shareholder in both companies, who tried to merge the two companies two years ago but did not succeed due to legal battles with IRPC’s founder, Prachai Leophairatana. Now, with the ousting of Leophairatana from the Board of Directors (BOD) of IRPC in February this year, the legal hurdle appears to be over and PTT can go ahead with its strategy to create a flagship integrated petrochemical and refining company. The merger will help both companies to achieve cost synergies and reduce the overall operational cost. The merger will also allow the combined company to achieve leadership in several product markets in the country. IRPC shares have already witnessed an increase in prices in anticipation of the merger. Read More

  9. Register of merged charities

    • gov.uk
    • sasastunts.com
    Updated Mar 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Charity Commission (2025). Register of merged charities [Dataset]. https://www.gov.uk/government/publications/register-of-merged-charities
    Explore at:
    Dataset updated
    Mar 5, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    The Charity Commission
    Description

    Access the register of merged charities and read the guidance to understand when you can, or must, register your merger to help you secure future gifts.

  10. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Pedro Lima Louro; Pedro Lima Louro; Hugo Redinho; Hugo Redinho; Ricardo Santos; Ricardo Santos; Ricardo Malheiro; Ricardo Malheiro; Renato Panda; Renato Panda; Rui Pedro Paiva; Rui Pedro Paiva (2025). MERGE Dataset [Dataset]. http://doi.org/10.5281/zenodo.13939205
Organization logo

MERGE Dataset

Explore at:
zipAvailable download formats
Dataset updated
Feb 7, 2025
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Pedro Lima Louro; Pedro Lima Louro; Hugo Redinho; Hugo Redinho; Ricardo Santos; Ricardo Santos; Ricardo Malheiro; Ricardo Malheiro; Renato Panda; Renato Panda; Rui Pedro Paiva; Rui Pedro Paiva
License

Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically

Description

The MERGE dataset is a collection of audio, lyrics, and bimodal datasets for conducting research on Music Emotion Recognition. A complete version is provided for each modality. The audio datasets provide 30-second excerpts for each sample, while full lyrics are provided in the relevant datasets. The amount of available samples in each dataset is the following:

  • MERGE Audio Complete: 3554
  • MERGE Audio Balanced: 3232
  • MERGE Lyrics Complete: 2568
  • MERGE Lyrics Balanced: 2400
  • MERGE Bimodal Complete: 2216
  • MERGE Bimodal Balanced: 2000

Additional Contents

Each dataset contains the following additional files:

  • av_values: File containing the arousal and valence values for each sample sorted by their identifier;
  • tvt_dataframes: Train, validate, and test splits for each dataset. Both a 70-15-15 and a 40-30-30 split are provided.

Metadata

A metadata spreadsheet is provided for each dataset with the following information for each sample, if available:

  • Song (Audio and Lyrics datasets) - Song identifiers. Identifiers starting with MT were extracted from the AllMusic platform, while those starting with A or L were collected from private collections;
  • Quadrant - Label corresponding to one of the four quadrants from Russell's Circumplex Model;
  • AllMusic Id - For samples starting with A or L, the matching AllMusic identifier is also provided. This was used to complement the available information for the samples originally obtained from the platform;
  • Artist - First performing artist or band;
  • Title - Song title;
  • Relevance - AllMusic metric representing the relevance of the song in relation to the query used;
  • Duration - Song length in seconds;
  • Moods - User-generated mood tags extracted from the AllMusic platform and available in Warriner's affective dictionary;
  • MoodsAll - User-generated mood tags extracted from the AllMusic platform;
  • Genres - User-generated genre tags extracted from the AllMusic platform;
  • Themes - User-generated theme tags extracted from the AllMusic platform;
  • Styles - User-generated style tags extracted from the AllMusic platform;
  • AppearancesTrackIDs - All AllMusic identifiers related with a sample;
  • Sample - Availability of the sample in the AllMusic platform;
  • SampleURL - URL to the 30-second excerpt in AllMusic;
  • ActualYear - Year of song release.

Citation

If you use some part of the MERGE dataset in your research, please cite the following article:

Louro, P. L. and Redinho, H. and Santos, R. and Malheiro, R. and Panda, R. and Paiva, R. P. (2024). MERGE - A Bimodal Dataset For Static Music Emotion Recognition. arxiv. URL: https://arxiv.org/abs/2407.06060.

BibTeX:

@misc{louro2024mergebimodaldataset,
title={MERGE -- A Bimodal Dataset for Static Music Emotion Recognition},
author={Pedro Lima Louro and Hugo Redinho and Ricardo Santos and Ricardo Malheiro and Renato Panda and Rui Pedro Paiva},
year={2024},
eprint={2407.06060},
archivePrefix={arXiv},
primaryClass={cs.SD},
url={https://arxiv.org/abs/2407.06060},
}

Acknowledgements

This work is funded by FCT - Foundation for Science and Technology, I.P., within the scope of the projects: MERGE - DOI: 10.54499/PTDC/CCI-COM/3171/2021 financed with national funds (PIDDAC) via the Portuguese State Budget; and project CISUC - UID/CEC/00326/2020 with funds from the European Social Fund, through the Regional Operational Program Centro 2020.

Renato Panda was supported by Ci2 - FCT UIDP/05567/2020.

Search
Clear search
Close search
Google apps
Main menu