6 datasets found
  1. Merge number of excel file,convert into csv file

    • kaggle.com
    zip
    Updated Mar 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aashirvad pandey (2024). Merge number of excel file,convert into csv file [Dataset]. https://www.kaggle.com/datasets/aashirvadpandey/merge-number-of-excel-fileconvert-into-csv-file
    Explore at:
    zip(6731 bytes)Available download formats
    Dataset updated
    Mar 30, 2024
    Authors
    Aashirvad pandey
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Project Description:

    Title: Pandas Data Manipulation and File Conversion

    Overview: This project aims to demonstrate the basic functionalities of Pandas, a powerful data manipulation library in Python. In this project, we will create a DataFrame, perform some data manipulation operations using Pandas, and then convert the DataFrame into both Excel and CSV formats.

    Key Objectives:

    1. DataFrame Creation: Utilize Pandas to create a DataFrame with sample data.
    2. Data Manipulation: Perform basic data manipulation tasks such as adding columns, filtering data, and performing calculations.
    3. File Conversion: Convert the DataFrame into Excel (.xlsx) and CSV (.csv) file formats.

    Tools and Libraries Used:

    • Python
    • Pandas

    Project Implementation:

    1. DataFrame Creation:

      • Import the Pandas library.
      • Create a DataFrame using either a dictionary, a list of dictionaries, or by reading data from an external source like a CSV file.
      • Populate the DataFrame with sample data representing various data types (e.g., integer, float, string, datetime).
    2. Data Manipulation:

      • Add new columns to the DataFrame representing derived data or computations based on existing columns.
      • Filter the DataFrame to include only specific rows based on certain conditions.
      • Perform basic calculations or transformations on the data, such as aggregation functions or arithmetic operations.
    3. File Conversion:

      • Utilize Pandas to convert the DataFrame into an Excel (.xlsx) file using the to_excel() function.
      • Convert the DataFrame into a CSV (.csv) file using the to_csv() function.
      • Save the generated files to the local file system for further analysis or sharing.

    Expected Outcome:

    Upon completion of this project, you will have gained a fundamental understanding of how to work with Pandas DataFrames, perform basic data manipulation tasks, and convert DataFrames into different file formats. This knowledge will be valuable for data analysis, preprocessing, and data export tasks in various data science and analytics projects.

    Conclusion:

    The Pandas library offers powerful tools for data manipulation and file conversion in Python. By completing this project, you will have acquired essential skills that are widely applicable in the field of data science and analytics. You can further extend this project by exploring more advanced Pandas functionalities or integrating it into larger data processing pipelines.in this data we add number of data and make that data a data frame.and save in single excel file as different sheet name and then convert that excel file in csv file .

  2. Excel file containing additional data too large to fit in a PDF,...

    • plos.figshare.com
    xlsx
    Updated Dec 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Odette Verdejo-Torres; David C. Klein; Lorena Novoa-Aponte; Jaime Carrazco-Carrillo; Denzel Bonilla-Pinto; Antonio Rivera; Arpie Bakhshian; Fa’alataitaua M. Fitisemanu; Martha L. Jiménez-González; Lyra Flinn; Aidan T. Pezacki; Antonio Lanzirotti; Luis Antonio Ortiz Frade; Christopher J. Chang; Juan G. Navea; Crysten E. Blaby-Haas; Sarah J. Hainer; Teresita Padilla-Benavides (2024). Excel file containing additional data too large to fit in a PDF, CUT&RUN–RNAseq merge analyses. [Dataset]. http://doi.org/10.1371/journal.pgen.1011495.s018
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Dec 26, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Odette Verdejo-Torres; David C. Klein; Lorena Novoa-Aponte; Jaime Carrazco-Carrillo; Denzel Bonilla-Pinto; Antonio Rivera; Arpie Bakhshian; Fa’alataitaua M. Fitisemanu; Martha L. Jiménez-González; Lyra Flinn; Aidan T. Pezacki; Antonio Lanzirotti; Luis Antonio Ortiz Frade; Christopher J. Chang; Juan G. Navea; Crysten E. Blaby-Haas; Sarah J. Hainer; Teresita Padilla-Benavides
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Excel file containing additional data too large to fit in a PDF, CUT&RUN–RNAseq merge analyses.

  3. Edited - NFL Combine - Performance Data 2009-2019

    • kaggle.com
    zip
    Updated Oct 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tyler Wolf (2022). Edited - NFL Combine - Performance Data 2009-2019 [Dataset]. https://www.kaggle.com/datasets/tylerpwolf/edited-nfl-combine-performance-data-20092019/data
    Explore at:
    zip(1262110 bytes)Available download formats
    Dataset updated
    Oct 31, 2022
    Authors
    Tyler Wolf
    Description

    Original file: https://www.kaggle.com/datasets/redlineracer/nfl-combine-performance-data-2009-2019

    Using NFL Combine data from 2009-2019, the information was cleaned and adjusted to conform to standard measurements in Excel. PivotTables were utilized to analyze the relationship between variables such as BMI, Draft Round, Teams, Schools, Players, Positions, and more. Additionally, a dashboard was created to present the findings in a clear and concise manner.

  4. d

    Replication Data for Exploring an extinct society through the lens of...

    • dataone.org
    Updated Dec 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wieczorek, Oliver; Malzahn, Melanie (2023). Replication Data for Exploring an extinct society through the lens of Habitus-Field theory and the Tocharian text corpus [Dataset]. http://doi.org/10.7910/DVN/UF8DHK
    Explore at:
    Dataset updated
    Dec 16, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Wieczorek, Oliver; Malzahn, Melanie
    Description

    The files and workflow will allow you to replicate the study titled "Exploring an extinct society through the lens of Habitus-Field theory and the Tocharian text corpus". This study aimed at utilizing the CEToM-corpus (https://cetom.univie.ac.at/) (Tocharian) to analyze the life-world of the elites of an extinct society situated in modern eastern China. To acquire the raw data needed for steps 1 & 2, please contact Melanie Malzahn melanie.malzahn@univie.ac.at. We conducted a mixed methods study, containing of close reading, content analysis, and multiple correspondence analysis (MCA). The excel file titled "fragments_architecture_combined.xlsx" allows for replication of the MCA and equates to the third step of the workflow outlined below. We used the following programming languages and packages to prepare the dataset and to analyze the data. Data preparation and merging procedures were achieved in python (version 3.9.10) with packages pandas (version 1.5.3), os (version 3.12.0), re (version 3.12.0), numpy (version 1.24.3), gensim (version 4.3.1), BeautifulSoup4 (version 4.12.2), pyasn1 (version 0.4.8), and langdetect (version 1.0.9). Multiple Correspondence Analyses were conducted in R (version 4.3.2) with the packages FactoMineR (version 2.9), factoextra (version 1.0.7), readxl version(1.4.3), tidyverse version(2.0.0), ggplot2 (version 3.4.4) and psych (version 2.3.9). After requesting the necessary files, please open the scripts in the order outlined bellow and execute the code-files to replicate the analysis: Preparatory step: Create a folder for the python and r-scripts downloadable in this repository. Open the file 0_create folders.py and declare a root folder in line 19. This first script will generate you the following folders: "tarim-brahmi_database" = Folder, which contains tocharian dictionaries and tocharian text fragments. "dictionaries" = contains tocharian A and tocharian B vocabularies, including linguistic features such as translations, meanings, part of speech tags etc. A full overview of the words is provided on https://cetom.univie.ac.at/?words. "fragments" = contains tocharian text fragments as xml-files. "word_corpus_data" = folder will contain excel-files of the corpus data after the first step. "Architectural_terms" = This folder contains the data on the architectural terms used in the dataset (e.g. dwelling, house). "regional_data" = This folder contains the data on the findsports (tocharian and modern chinese equivalent, e.g. Duldur-Akhur & Kucha). "mca_ready_data" = This is the folder, in which the excel-file with the merged data will be saved. Note that the prepared file named "fragments_architecture_combined.xlsx" can be saved into this directory. This allows you to skip steps 1 &2 and reproduce the MCA of the content analysis based on the third step of our workflow (R-Script titled 3_conduct_MCA.R). First step - run 1_read_xml-files.py: loops over the xml-files in folder dictionaries and identifies a) word metadata, including language (Tocharian A or B), keywords, part of speech, lemmata, word etymology, and loan sources. Then, it loops over the xml-textfiles and extracts a text id number, langauge (Tocharian A or B), text title, text genre, text subgenre, prose type, verse type, material on which the text is written, medium, findspot, the source text in tocharian, and the translation where available. After successful feature extraction, the resulting pandas dataframe object is exported to the word_corpus_data folder. Second step - run 2_merge_excel_files.py: merges all excel files (corpus, data on findspots, word data) and reproduces the content analysis, which was based upon close reading in the first place. Third step - run 3_conduct_MCA.R: recodes, prepares, and selects the variables necessary to conduct the MCA. Then produces the descriptive values, before conducitng the MCA, identifying typical texts per dimension, and exporting the png-files uploaded to this repository.

  5. d

    Community Database

    • catalog.data.gov
    • s.cnmilf.com
    • +3more
    Updated Oct 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact, Custodian) (2024). Community Database [Dataset]. https://catalog.data.gov/dataset/community-database1
    Explore at:
    Dataset updated
    Oct 19, 2024
    Dataset provided by
    (Point of Contact, Custodian)
    Description

    This excel spreadsheet is the result of merging at the port level of several of the in-house fisheries databases in combination with other demographic databases such as the U.S. census. The fisheries databases used include port listings, weighout (dealer) landings, permit information on homeports and owner cities of residence, dealer permit information, and logbook records. The database consolidated port names in line with USGS and Census conventions, and corrected typographical errors, non-conventional spellings, or other issues. Each row is a community, and there may be confidential data since not all communities have 3 or more entities for the various variables.

  6. Table S7 - Metagenomic and Metatranscriptomic Data

    • figshare.com
    xlsx
    Updated Jun 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lindsay Putman (2023). Table S7 - Metagenomic and Metatranscriptomic Data [Dataset]. http://doi.org/10.6084/m9.figshare.14372030.v4
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 10, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Lindsay Putman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cells containing metagenomic and metatranscriptomic data in associated excel file are colored using conditional formatting. Off white colors indicate low abundance while dark grey colors indicate high abundance of gene within a given sample.

    Samples are separated based on if they came from metagenomic or metatranscriptomic data (see merged headers in row 1). Metagenomic and metatranscriptomic samples are organized from highest to lowest measured pH (left to right). pH values are colored using conditional formatting where dark teal colors indicate high pH and light teal colors indicate low pH. Basic geochemical metadata associated with each sample is included in the table.

    mt = metatranscriptome

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Aashirvad pandey (2024). Merge number of excel file,convert into csv file [Dataset]. https://www.kaggle.com/datasets/aashirvadpandey/merge-number-of-excel-fileconvert-into-csv-file
Organization logo

Merge number of excel file,convert into csv file

merging the file and converting the file

Explore at:
zip(6731 bytes)Available download formats
Dataset updated
Mar 30, 2024
Authors
Aashirvad pandey
License

Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically

Description

Project Description:

Title: Pandas Data Manipulation and File Conversion

Overview: This project aims to demonstrate the basic functionalities of Pandas, a powerful data manipulation library in Python. In this project, we will create a DataFrame, perform some data manipulation operations using Pandas, and then convert the DataFrame into both Excel and CSV formats.

Key Objectives:

  1. DataFrame Creation: Utilize Pandas to create a DataFrame with sample data.
  2. Data Manipulation: Perform basic data manipulation tasks such as adding columns, filtering data, and performing calculations.
  3. File Conversion: Convert the DataFrame into Excel (.xlsx) and CSV (.csv) file formats.

Tools and Libraries Used:

  • Python
  • Pandas

Project Implementation:

  1. DataFrame Creation:

    • Import the Pandas library.
    • Create a DataFrame using either a dictionary, a list of dictionaries, or by reading data from an external source like a CSV file.
    • Populate the DataFrame with sample data representing various data types (e.g., integer, float, string, datetime).
  2. Data Manipulation:

    • Add new columns to the DataFrame representing derived data or computations based on existing columns.
    • Filter the DataFrame to include only specific rows based on certain conditions.
    • Perform basic calculations or transformations on the data, such as aggregation functions or arithmetic operations.
  3. File Conversion:

    • Utilize Pandas to convert the DataFrame into an Excel (.xlsx) file using the to_excel() function.
    • Convert the DataFrame into a CSV (.csv) file using the to_csv() function.
    • Save the generated files to the local file system for further analysis or sharing.

Expected Outcome:

Upon completion of this project, you will have gained a fundamental understanding of how to work with Pandas DataFrames, perform basic data manipulation tasks, and convert DataFrames into different file formats. This knowledge will be valuable for data analysis, preprocessing, and data export tasks in various data science and analytics projects.

Conclusion:

The Pandas library offers powerful tools for data manipulation and file conversion in Python. By completing this project, you will have acquired essential skills that are widely applicable in the field of data science and analytics. You can further extend this project by exploring more advanced Pandas functionalities or integrating it into larger data processing pipelines.in this data we add number of data and make that data a data frame.and save in single excel file as different sheet name and then convert that excel file in csv file .

Search
Clear search
Close search
Google apps
Main menu