This geodatabase reflects the U.S. Geological Survey’s (USGS) ongoing commitment to its mission of understanding the nature and distribution of global mineral commodity supply chains by updating and publishing the georeferenced locations of mineral commodity production and processing facilities, mineral exploration and development sites, and mineral commodity exporting ports in Africa. The geodatabase and geospatial data layers serve to create a new geographic information product in the form of a geospatial portable document format (PDF) map. The geodatabase contains data layers from USGS, foreign governmental, and open-source sources as follows: (1) mineral production and processing facilities, (2) mineral exploration and development sites, (3) mineral occurrence sites and deposits, (4) undiscovered mineral resource tracts for Gabon and Mauritania, (5) undiscovered mineral resource tracts for potash, platinum-group elements, and copper, (6) coal occurrence areas, (7) electric power generating facilities, (8) electric power transmission lines, (9) liquefied natural gas terminals, (10) oil and gas pipelines, (11) undiscovered, technically recoverable conventional and continuous hydrocarbon resources (by USGS geologic/petroleum province), (12) cumulative production, and recoverable conventional resources (by oil- and gas-producing nation), (13) major mineral exporting maritime ports, (14) railroads, (15) major roads, (16) major cities, (17) major lakes, (18) major river systems, (19) first-level administrative division (ADM1) boundaries for all countries in Africa, and (20) international boundaries for all countries in Africa.
National-scale geologic, geophysical, and mineral resource raster and vector data covering the United States, Canada, and Australia are provided in this data release. The data were compiled as part of the tri-national Critical Minerals Mapping Initiative (CMMI). The CMMI, established in 2019, is an international science collaboration between the U.S. Geological Survey (USGS), Geoscience Australia (GA), and the Geological Survey of Canada (GSC). One aspect of the CMMI is to use national- to global-scale earth science data to map where critical mineral prospectivity may exist using advanced machine learning approaches (Kelley, 2020). The geoscience information presented in this report include the training and evidential layers that cover all three countries and underpin the resultant prospectivity models for basin-hosted Pb-Zn mineralization described in Lawley and others (2021). It is expected that these data layers will be useful to many regional- to continental-scale studies related to a wide range of earth science research. Therefore, the data layers are organized using widely accepted GIS formats in the same map projection to increase efficiency and effectiveness of future studies. All datasets have a common geographic projection in decimal degrees using a WGS84 datum. Data for the various training and evidential layers were either derived for this study or were extracted from previous national to global-scale compilations. Data from outside work are provided here as a courtesy for completeness of the model and should be cited as the original source. Original references are provided on each child page. Where possible, data for the United States were merged to data for Canada to provide composite data that allow for continuity and seamless analyses of the earth science data across the two countries. Earth science data provided in this report include training data for the models. Training data include a mineral resource database of Pb-Zn deposits and occurrences related to either carbonate-hosted (Mississippi Valley type-MVT) or clastic-dominated (aka sedex) Pb-Zn mineralization. Evidential layers that were used as input to the models include GeoTIFF grid files consisting of ground, airborne, and satellite geophysical data (magnetic, gravity, tomography, seismic) and several related derivative products. Geologic layers incorporated into the models include shapefiles of modified lithology and faults for the United States, Canada and Australia. A global database of ancient and modern passive margins is provided here as well as a link to a database mapping the global distribution of black shale units from a previous USGS study. GeoTIFF grids of the final prospectivity models for MVT and for clastic-dominated Pb-Zn mineralization across the US, Canada, and Australia from Lawley and others (2021) are also included. Each child page describes the particular data layer and related derivative products if applicable. Kelley, K.D., 2020, International geoscience collaboration to support critical mineral discovery: U.S. Geological Survey Fact Sheet 2020–3035, 2 p., https://doi.org/10.3133/fs20203035. Lawley, C.J.M., McCafferty, A.E., Graham, G.E., Huston, D.L., Kelley, K.D., Czarnota, K., Paradis, S., Peter, J.M., Hayward, N., Barlow, M., Emsbo, P., Coyan, J., San Juan, C.A., and Gadd, M.G., 2022, Data-driven prospectivity modelling of sediment-hosted Zn-Pb mineral systems and their critical raw materials: Ore Geology Reviews, v. 141, no. 104635, https://doi.org/10.1016/j.oregeorev.2021.104635.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The U.S. Geological Survey (USGS) has compiled a geodatabase containing mineral-related geospatial data for 10 countries of interest in Southwest Asia (area of study): Afghanistan, Cambodia, Laos, India, Indonesia, Iran, Nepal, North Korea, Pakistan, and Thailand. The data can be used in analyses of the extractive fuel and nonfuel mineral industries and related economic and physical infrastructure integral for the successful operation of the mineral industries within the area of study as well as the movement of mineral products across domestic and global markets. This geodatabase reflects the USGS ongoing commitment to its mission of understanding the nature and distribution of global mineral commodity supply chains by updating and publishing the georeferenced locations of mineral commodity production and processing facilities, mineral exploration and development sites, and mineral commodity exporting ports for the countries in the area of study. The geodatabase contains data feat ...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about US Minerals Production
http://tupa.gtk.fi/paikkatieto/lisenssi/gtk_peruslisenssi_grundlicens_basic_licence_1.pdfhttp://tupa.gtk.fi/paikkatieto/lisenssi/gtk_peruslisenssi_grundlicens_basic_licence_1.pdf
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
The GTK’s Mineral Deposit database contains all mineral deposits, occurrences and prospects in Finland. Structure of the new database was created in 2012 and it is based on global geostan-dards (GeoSciML and EarthResourceML) and classifications related to them. The database is in Oracle, data products are extracted from the primary database. During 2013 GTK’s separate mineral deposit databases (Au, Zn, Ni, PGE, U, Cu, Industrial minerals, FODD, old ore deposit database) were combined into a single entity. New database contains extensive amount of information about mineral occurrence feature along with its associated commodities, exploration activities, holding history, mineral resource and re-serve estimates, mining activity, production and geology (genetic type, host and wall rocks, min-erals, metamorphism, alteration, age, texture, structure etc.) Database will be updated whenever new data (e.g. resource estimate) is available or new deposit is found. Entries contain references to all published literature and other primary sources of data. Also figures (maps, cross sections, photographs etc.) can be linked to mineral deposit data. Data is based on all public information on the deposits available including published literature, archive reports, press releases, companies’ web pages, and interviews of exploration geologists. Database contains 33 linked tables with 216 data fields. Detailed description of the tables and fields can be found in separate document. (http://tupa/metaviite/MDD_FieldDescription.pdf) The data products extracted from the database are available on Mineral Deposits and Exploration map service (http://gtkdata.gtk.fi/MDaE/index.html) and from Hakku -service (http://hakku.gtk.fi).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Location of all current and historic mineral tenements issued under the Mining Act, 1971. Available format: ESRI Shape, MAPINFO Tab, Google Earth KMZ, WMS and WFS Download Instructions: From SARIG http://map.sarig.sa.gov.au/Shortcut/MineralTenements select 'Active Layers' and click the download icon.
This data release contains the U.S. salient statistics and world production data extracted from the SODA ASH data sheet of the USGS Mineral Commodity Summaries 2025.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data release contains the U.S. salient statistics and world production data extracted from the STONE (DIMENSION) data sheet of the USGS Mineral Commodity Summaries 2025.
The Critical Minerals in Archived Mine Samples Database (CMDB) contains chemistry and geologic information for historic ore and ore-related rock samples from mineral deposits in the United States. In addition, the database contains samples from archetypal deposits from 27 other countries in North America, South America, Asia, Africa and Europe. Samples were obtained from archived ore collections under the U.S. Geological Survey's project titled “Quick Assessment of Rare and Critical Metals in Ore Deposits: A National Assessment” (2008 to 2013) in an effort to begin an assessment of the Nations' previously mined ore deposits for critical minerals. Mineralized and altered rock samples were provided by the Colorado School of Mines—Ransome collection, Mackay School of Mines—Stanford and Keck collections, and by the personal collections of Don Bryant and David Leach.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
(Link to Metadata) MRDSVT is an extract from the Mineral Resources Data System (MRDS) covering the State of Vermont only. MRDS database contains the records provided in the Mineral Resource Data System (MRDS) of USGS and the Mineral Availability System/Mineral Industry Locator System (MAS/MILS) originated in the U.S. Bureau of Mines, which is now part of USGS. The MRDS is a large and complex relational database developed over several decades by hundreds of researchers and reporters. This product is a digest in which the fields chosen are those most likely to contain valid information.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Following a commission from the Department of the Environment, the British Geological Survey and the Geological Survey of Northern Ireland produced a series of Mineral Resources Maps of Northern Ireland. The maps are intended to assist strategic decision-making in respect of mineral extraction and the protection of important mineral resources against sterilisation. Six digitally generated maps at a scale of 1:100 000 scale are available. The data were produced by the collation and interpretation of mineral resource data principally held by the Geological Survey of Northern Ireland.
This data release contains the U.S. salient statistics and world production data extracted from the SILVER data sheet of the USGS Mineral Commodity Summaries 2025.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data release contains the U.S. salient statistics and world production data extracted from the MANGANESE data sheet of the USGS Mineral Commodity Summaries 2024.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data release contains the U.S. salient statistics and world production data extracted from the GOLD data sheet of the USGS Mineral Commodity Summaries 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about Saudi Arabia Minerals Production
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about Indonesia Minerals Production
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about Egypt Minerals Production
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about India Minerals Production
The Critical Minerals (CM) Data Dashboard provides data-driven insights to help unlock the potential of conventional and unconventional CM resources in the United States. The dashboard focuses on 12 CM essential for producing zero-emission transportation and clean power technology. More information about these CM and potential resources is available in our CM Story Map. Dashboard data sets can be filtered geographically using the options provided along the top of the dashboard. Data sets can also be filtered by various attributes using the options in the expandable side panel on the left side of the screen. The data sets in this dashboard were compiled from multiple sources including the USGS, USEPA, OSMRE, DHS, and EarthJustice. Users are encouraged to provide feedback/suggestions on the function and content of the dashboard, as well as any issues that may arise.
This geodatabase reflects the U.S. Geological Survey’s (USGS) ongoing commitment to its mission of understanding the nature and distribution of global mineral commodity supply chains by updating and publishing the georeferenced locations of mineral commodity production and processing facilities, mineral exploration and development sites, and mineral commodity exporting ports in Africa. The geodatabase and geospatial data layers serve to create a new geographic information product in the form of a geospatial portable document format (PDF) map. The geodatabase contains data layers from USGS, foreign governmental, and open-source sources as follows: (1) mineral production and processing facilities, (2) mineral exploration and development sites, (3) mineral occurrence sites and deposits, (4) undiscovered mineral resource tracts for Gabon and Mauritania, (5) undiscovered mineral resource tracts for potash, platinum-group elements, and copper, (6) coal occurrence areas, (7) electric power generating facilities, (8) electric power transmission lines, (9) liquefied natural gas terminals, (10) oil and gas pipelines, (11) undiscovered, technically recoverable conventional and continuous hydrocarbon resources (by USGS geologic/petroleum province), (12) cumulative production, and recoverable conventional resources (by oil- and gas-producing nation), (13) major mineral exporting maritime ports, (14) railroads, (15) major roads, (16) major cities, (17) major lakes, (18) major river systems, (19) first-level administrative division (ADM1) boundaries for all countries in Africa, and (20) international boundaries for all countries in Africa.