100+ datasets found
  1. Data from: Comparison of predictive performance of data mining algorithms in...

    • scielo.figshare.com
    jpeg
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Senol Celik; Ecevit Eyduran; Koksal Karadas; Mohammad Masood Tariq (2023). Comparison of predictive performance of data mining algorithms in predicting body weight in Mengali rams of Pakistan [Dataset]. http://doi.org/10.6084/m9.figshare.5719009.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    SciELOhttp://www.scielo.org/
    Authors
    Senol Celik; Ecevit Eyduran; Koksal Karadas; Mohammad Masood Tariq
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pakistan
    Description

    ABSTRACT The present study aimed at comparing predictive performance of some data mining algorithms (CART, CHAID, Exhaustive CHAID, MARS, MLP, and RBF) in biometrical data of Mengali rams. To compare the predictive capability of the algorithms, the biometrical data regarding body (body length, withers height, and heart girth) and testicular (testicular length, scrotal length, and scrotal circumference) measurements of Mengali rams in predicting live body weight were evaluated by most goodness of fit criteria. In addition, age was considered as a continuous independent variable. In this context, MARS data mining algorithm was used for the first time to predict body weight in two forms, without (MARS_1) and with interaction (MARS_2) terms. The superiority order in the predictive accuracy of the algorithms was found as CART > CHAID ≈ Exhaustive CHAID > MARS_2 > MARS_1 > RBF > MLP. Moreover, all tested algorithms provided a strong predictive accuracy for estimating body weight. However, MARS is the only algorithm that generated a prediction equation for body weight. Therefore, it is hoped that the available results might present a valuable contribution in terms of predicting body weight and describing the relationship between the body weight and body and testicular measurements in revealing breed standards and the conservation of indigenous gene sources for Mengali sheep breeding. Therefore, it will be possible to perform more profitable and productive sheep production. Use of data mining algorithms is useful for revealing the relationship between body weight and testicular traits in describing breed standards of Mengali sheep.

  2. The performance of data mining algorithm given worst case/best case...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shang-Ming Zhou; Fabiola Fernandez-Gutierrez; Jonathan Kennedy; Roxanne Cooksey; Mark Atkinson; Spiros Denaxas; Stefan Siebert; William G. Dixon; Terence W. O’Neill; Ernest Choy; Cathie Sudlow; Sinead Brophy (2023). The performance of data mining algorithm given worst case/best case assumptions. [Dataset]. http://doi.org/10.1371/journal.pone.0154515.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Shang-Ming Zhou; Fabiola Fernandez-Gutierrez; Jonathan Kennedy; Roxanne Cooksey; Mark Atkinson; Spiros Denaxas; Stefan Siebert; William G. Dixon; Terence W. O’Neill; Ernest Choy; Cathie Sudlow; Sinead Brophy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The performance of data mining algorithm given worst case/best case assumptions.

  3. Datasets used for evaluating the customized version of Apriori algorithm.

    • plos.figshare.com
    zip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Disha Tandon; Mohammed Monzoorul Haque; Sharmila S. Mande (2023). Datasets used for evaluating the customized version of Apriori algorithm. [Dataset]. http://doi.org/10.1371/journal.pone.0154493.s001
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Disha Tandon; Mohammed Monzoorul Haque; Sharmila S. Mande
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A zip archive containing microbial abundance tables which were employed for deciphering association rules using the customised version of the Apriori algorithm. (ZIP)

  4. d

    Data from: A Generic Local Algorithm for Mining Data Streams in Large...

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). A Generic Local Algorithm for Mining Data Streams in Large Distributed Systems [Dataset]. https://catalog.data.gov/dataset/a-generic-local-algorithm-for-mining-data-streams-in-large-distributed-systems
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    In a large network of computers or wireless sensors, each of the components (henceforth, peers) has some data about the global state of the system. Much of the system's functionality such as message routing, information retrieval and load sharing relies on modeling the global state. We refer to the outcome of the function (e.g., the load experienced by each peer) as the emph{model} of the system. Since the state of the system is constantly changing, it is necessary to keep the models up-to-date. Computing global data mining models e.g. decision trees, k-means clustering in large distributed systems may be very costly due to the scale of the system and due to communication cost, which may be high. The cost further increases in a dynamic scenario when the data changes rapidly. In this paper we describe a two step approach for dealing with these costs. First, we describe a highly efficient emph{local} algorithm which can be used to monitor a wide class of data mining models. Then, we use this algorithm as a feedback loop for the monitoring of complex functions of the data such as its k-means clustering. The theoretical claims are corroborated with a thorough experimental analysis.

  5. Grocery Store dataset for data mining

    • kaggle.com
    zip
    Updated Mar 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Honey Patel (2021). Grocery Store dataset for data mining [Dataset]. https://www.kaggle.com/honeypatel2158/grocery-store-dataset-for-data-mining
    Explore at:
    zip(7990 bytes)Available download formats
    Dataset updated
    Mar 9, 2021
    Authors
    Honey Patel
    Description

    Dataset

    This dataset was created by Honey Patel

    Contents

  6. Market Basket Analysis

    • kaggle.com
    zip
    Updated Dec 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aslan Ahmedov (2021). Market Basket Analysis [Dataset]. https://www.kaggle.com/datasets/aslanahmedov/market-basket-analysis
    Explore at:
    zip(23875170 bytes)Available download formats
    Dataset updated
    Dec 9, 2021
    Authors
    Aslan Ahmedov
    Description

    Market Basket Analysis

    Market basket analysis with Apriori algorithm

    The retailer wants to target customers with suggestions on itemset that a customer is most likely to purchase .I was given dataset contains data of a retailer; the transaction data provides data around all the transactions that have happened over a period of time. Retailer will use result to grove in his industry and provide for customer suggestions on itemset, we be able increase customer engagement and improve customer experience and identify customer behavior. I will solve this problem with use Association Rules type of unsupervised learning technique that checks for the dependency of one data item on another data item.

    Introduction

    Association Rule is most used when you are planning to build association in different objects in a set. It works when you are planning to find frequent patterns in a transaction database. It can tell you what items do customers frequently buy together and it allows retailer to identify relationships between the items.

    An Example of Association Rules

    Assume there are 100 customers, 10 of them bought Computer Mouth, 9 bought Mat for Mouse and 8 bought both of them. - bought Computer Mouth => bought Mat for Mouse - support = P(Mouth & Mat) = 8/100 = 0.08 - confidence = support/P(Mat for Mouse) = 0.08/0.09 = 0.89 - lift = confidence/P(Computer Mouth) = 0.89/0.10 = 8.9 This just simple example. In practice, a rule needs the support of several hundred transactions, before it can be considered statistically significant, and datasets often contain thousands or millions of transactions.

    Strategy

    • Data Import
    • Data Understanding and Exploration
    • Transformation of the data – so that is ready to be consumed by the association rules algorithm
    • Running association rules
    • Exploring the rules generated
    • Filtering the generated rules
    • Visualization of Rule

    Dataset Description

    • File name: Assignment-1_Data
    • List name: retaildata
    • File format: . xlsx
    • Number of Row: 522065
    • Number of Attributes: 7

      • BillNo: 6-digit number assigned to each transaction. Nominal.
      • Itemname: Product name. Nominal.
      • Quantity: The quantities of each product per transaction. Numeric.
      • Date: The day and time when each transaction was generated. Numeric.
      • Price: Product price. Numeric.
      • CustomerID: 5-digit number assigned to each customer. Nominal.
      • Country: Name of the country where each customer resides. Nominal.

    imagehttps://user-images.githubusercontent.com/91852182/145270162-fc53e5a3-4ad1-4d06-b0e0-228aabcf6b70.png">

    Libraries in R

    First, we need to load required libraries. Shortly I describe all libraries.

    • arules - Provides the infrastructure for representing, manipulating and analyzing transaction data and patterns (frequent itemsets and association rules).
    • arulesViz - Extends package 'arules' with various visualization. techniques for association rules and item-sets. The package also includes several interactive visualizations for rule exploration.
    • tidyverse - The tidyverse is an opinionated collection of R packages designed for data science.
    • readxl - Read Excel Files in R.
    • plyr - Tools for Splitting, Applying and Combining Data.
    • ggplot2 - A system for 'declaratively' creating graphics, based on "The Grammar of Graphics". You provide the data, tell 'ggplot2' how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details.
    • knitr - Dynamic Report generation in R.
    • magrittr- Provides a mechanism for chaining commands with a new forward-pipe operator, %>%. This operator will forward a value, or the result of an expression, into the next function call/expression. There is flexible support for the type of right-hand side expressions.
    • dplyr - A fast, consistent tool for working with data frame like objects, both in memory and out of memory.
    • tidyverse - This package is designed to make it easy to install and load multiple 'tidyverse' packages in a single step.

    imagehttps://user-images.githubusercontent.com/91852182/145270210-49c8e1aa-9753-431b-a8d5-99601bc76cb5.png">

    Data Pre-processing

    Next, we need to upload Assignment-1_Data. xlsx to R to read the dataset.Now we can see our data in R.

    imagehttps://user-images.githubusercontent.com/91852182/145270229-514f0983-3bbb-4cd3-be64-980e92656a02.png"> imagehttps://user-images.githubusercontent.com/91852182/145270251-6f6f6472-8817-435c-a995-9bc4bfef10d1.png">

    After we will clear our data frame, will remove missing values.

    imagehttps://user-images.githubusercontent.com/91852182/145270286-05854e1a-2b6c-490e-ab30-9e99e731eacb.png">

    To apply Association Rule mining, we need to convert dataframe into transaction data to make all items that are bought together in one invoice will be in ...

  7. Designing a more efficient, effective and safe Medical Emergency Team (MET)...

    • plos.figshare.com
    pdf
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christoph Bergmeir; Irma Bilgrami; Christopher Bain; Geoffrey I. Webb; Judit Orosz; David Pilcher (2023). Designing a more efficient, effective and safe Medical Emergency Team (MET) service using data analysis [Dataset]. http://doi.org/10.1371/journal.pone.0188688
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Christoph Bergmeir; Irma Bilgrami; Christopher Bain; Geoffrey I. Webb; Judit Orosz; David Pilcher
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionHospitals have seen a rise in Medical Emergency Team (MET) reviews. We hypothesised that the commonest MET calls result in similar treatments. Our aim was to design a pre-emptive management algorithm that allowed direct institution of treatment to patients without having to wait for attendance of the MET team and to model its potential impact on MET call incidence and patient outcomes.MethodsData was extracted for all MET calls from the hospital database. Association rule data mining techniques were used to identify the most common combinations of MET call causes, outcomes and therapies.ResultsThere were 13,656 MET calls during the 34-month study period in 7936 patients. The most common MET call was for hypotension [31%, (2459/7936)]. These MET calls were strongly associated with the immediate administration of intra-venous fluid (70% [1714/2459] v 13% [739/5477] p

  8. A Local Distributed Peer-to-Peer Algorithm Using Multi-Party Optimization...

    • data.nasa.gov
    Updated Mar 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). A Local Distributed Peer-to-Peer Algorithm Using Multi-Party Optimization Based Privacy Preservation for Data Mining Primitive Computation - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/a-local-distributed-peer-to-peer-algorithm-using-multi-party-optimization-based-privacy-pr
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    This paper proposes a scalable, local privacy-preserving algorithm for distributed peer-to-peer (P2P) data aggregation useful for many advanced data mining/analysis tasks such as average/sum computation, decision tree induction, feature selection, and more. Unlike most multi-party privacy-preserving data mining algorithms, this approach works in an asynchronous manner through local interactions and therefore, is highly scalable. It particularly deals with the distributed computation of the sum of a set of numbers stored at different peers in a P2P network in the context of a P2P web mining application. The proposed optimization-based privacy-preserving technique for computing the sum allows different peers to specify different privacy requirements without having to adhere to a global set of parameters for the chosen privacy model. Since distributed sum computation is a frequently used primitive, the proposed approach is likely to have significant impact on many data mining tasks such as multi-party privacypreserving clustering, frequent itemset mining, and statistical aggregate computation.

  9. Survey on Association Rule Mining Using "APRIORI" Algorithm

    • figshare.com
    • search.datacite.org
    pdf
    Updated Jan 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yogesh Khaladkar; Pramod warale (2016). Survey on Association Rule Mining Using "APRIORI" Algorithm [Dataset]. http://doi.org/10.6084/m9.figshare.1393101.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jan 19, 2016
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Yogesh Khaladkar; Pramod warale
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Association rule is an important technique in data mining.

  10. Number of association rules generated using the Apriori rule mining approach...

    • plos.figshare.com
    • figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Disha Tandon; Mohammed Monzoorul Haque; Sharmila S. Mande (2023). Number of association rules generated using the Apriori rule mining approach with various datasets. [Dataset]. http://doi.org/10.1371/journal.pone.0154493.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Disha Tandon; Mohammed Monzoorul Haque; Sharmila S. Mande
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Summarised information pertaining to (a) the number of samples, (b) the number of generated association rules (total as well as rules that involve 3 or more genera), (c) the unique number of microbial genera involved in the identified association rules, (d) execution time, and (e) the number of rules generated using an alternative rule mining strategy (detailed in discussion section of the manuscript).

  11. m

    Amharic text dataset extracted from memes for hate speech detection or...

    • data.mendeley.com
    Updated Jun 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mequanent Degu (2023). Amharic text dataset extracted from memes for hate speech detection or classification [Dataset]. http://doi.org/10.17632/gw3fdtw5v7.2
    Explore at:
    Dataset updated
    Jun 8, 2023
    Authors
    Mequanent Degu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    the dataset is collected from social media such as facebook and telegram. the dataset is further processed. the collection are orginal_cleaned: this dataset is neither stemed nor stopword are remove: stopword_removed: in this dataset stopwords are removed but not stemmed and in stemed datset is stemmed and stopwords are removed. stemming is done using hornmorpho developed by Michael Gesser( available at https://github.com/hltdi/HornMorpho) all datasets are normalized and free from noise such as punctuation marks and emojs.

  12. S

    Trajectory Hotspot Mining Algorithm Based on Co-location Pattern

    • scidb.cn
    Updated Sep 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    yan rui bin (2022). Trajectory Hotspot Mining Algorithm Based on Co-location Pattern [Dataset]. http://doi.org/10.57760/sciencedb.j00133.00127
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 26, 2022
    Dataset provided by
    Science Data Bank
    Authors
    yan rui bin
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Trajectory hotspot mining algorithms NDTTJ and NDTTT based on Co-location Pattern, trajectory hotspot mining algorithm TTHS based on graph databaseAlgorithm experiment processMain references

  13. d

    Data from: Mining Distance-Based Outliers in Near Linear Time

    • catalog.data.gov
    • datasets.ai
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Mining Distance-Based Outliers in Near Linear Time [Dataset]. https://catalog.data.gov/dataset/mining-distance-based-outliers-in-near-linear-time
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Dashlink
    Description

    Full title: Mining Distance-Based Outliers in Near Linear Time with Randomization and a Simple Pruning Rule Abstract: Defining outliers by their distance to neighboring examples is a popular approach to finding unusual examples in a data set. Recently, much work has been conducted with the goal of finding fast algorithms for this task. We show that a simple nested loop algorithm that in the worst case is quadratic can give near linear time performance when the data is in random order and a simple pruning rule is used. We test our algorithm on real high-dimensional data sets with millions of examples and show that the near linear scaling holds over several orders of magnitude. Our average case analysis suggests that much of the efficiency is because the time to process non-outliers, which are the majority of examples, does not depend on the size of the data set.

  14. Data supporting the Master thesis "Monitoring von Open Data Praktiken -...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    zip
    Updated Nov 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Katharina Zinke; Katharina Zinke (2024). Data supporting the Master thesis "Monitoring von Open Data Praktiken - Herausforderungen beim Auffinden von Datenpublikationen am Beispiel der Publikationen von Forschenden der TU Dresden" [Dataset]. http://doi.org/10.5281/zenodo.14196539
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 21, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Katharina Zinke; Katharina Zinke
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Dresden
    Description

    Data supporting the Master thesis "Monitoring von Open Data Praktiken - Herausforderungen beim Auffinden von Datenpublikationen am Beispiel der Publikationen von Forschenden der TU Dresden" (Monitoring open data practices - challenges in finding data publications using the example of publications by researchers at TU Dresden) - Katharina Zinke, Institut für Bibliotheks- und Informationswissenschaften, Humboldt-Universität Berlin, 2023

    This ZIP-File contains the data the thesis is based on, interim exports of the results and the R script with all pre-processing, data merging and analyses carried out. The documentation of the additional, explorative analysis is also available. The actual PDFs and text files of the scientific papers used are not included as they are published open access.

    The folder structure is shown below with the file names and a brief description of the contents of each file. For details concerning the analyses approach, please refer to the master's thesis (publication following soon).

    ## Data sources

    Folder 01_SourceData/

    - PLOS-Dataset_v2_Mar23.csv (PLOS-OSI dataset)

    - ScopusSearch_ExportResults.csv (export of Scopus search results from Scopus)

    - ScopusSearch_ExportResults.ris (export of Scopus search results from Scopus)

    - Zotero_Export_ScopusSearch.csv (export of the file names and DOIs of the Scopus search results from Zotero)

    ## Automatic classification

    Folder 02_AutomaticClassification/

    - (NOT INCLUDED) PDFs folder (Folder for PDFs of all publications identified by the Scopus search, named AuthorLastName_Year_PublicationTitle_Title)

    - (NOT INCLUDED) PDFs_to_text folder (Folder for all texts extracted from the PDFs by ODDPub, named AuthorLastName_Year_PublicationTitle_Title)

    - PLOS_ScopusSearch_matched.csv (merge of the Scopus search results with the PLOS_OSI dataset for the files contained in both)

    - oddpub_results_wDOIs.csv (results file of the ODDPub classification)

    - PLOS_ODDPub.csv (merge of the results file of the ODDPub classification with the PLOS-OSI dataset for the publications contained in both)

    ## Manual coding

    Folder 03_ManualCheck/

    - CodeSheet_ManualCheck.txt (Code sheet with descriptions of the variables for manual coding)

    - ManualCheck_2023-06-08.csv (Manual coding results file)

    - PLOS_ODDPub_Manual.csv (Merge of the results file of the ODDPub and PLOS-OSI classification with the results file of the manual coding)

    ## Explorative analysis for the discoverability of open data

    Folder04_FurtherAnalyses

    Proof_of_of_Concept_Open_Data_Monitoring.pdf (Description of the explorative analysis of the discoverability of open data publications using the example of a researcher) - in German

    ## R-Script

    Analyses_MA_OpenDataMonitoring.R (R-Script for preparing, merging and analyzing the data and for performing the ODDPub algorithm)

  15. The Insurance Company (TIC) Benchmark

    • kaggle.com
    zip
    Updated May 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kush Shah (2020). The Insurance Company (TIC) Benchmark [Dataset]. https://www.kaggle.com/datasets/kushshah95/the-insurance-company-tic-benchmark/code
    Explore at:
    zip(268454 bytes)Available download formats
    Dataset updated
    May 27, 2020
    Authors
    Kush Shah
    Description

    This data set used in the CoIL 2000 Challenge contains information on customers of an insurance company. The data consists of 86 variables and includes product usage data and socio-demographic data

    DETAILED DATA DESCRIPTION

    THE INSURANCE COMPANY (TIC) 2000

    (c) Sentient Machine Research 2000

    DISCLAIMER

    This dataset is owned and supplied by the Dutch data mining company Sentient Machine Research, and is based on real-world business data. You are allowed to use this dataset and accompanying information for non-commercial research and education purposes only. It is explicitly not allowed to use this dataset for commercial education or demonstration purposes. For any other use, please contact Peter van der Putten, info@smr.nl.

    This dataset has been used in the CoIL Challenge 2000 data mining competition. For papers describing results on this dataset, see the TIC 2000 homepage: http://www.wi.leidenuniv.nl/~putten/library/cc2000/

    REFERENCE P. van der Putten and M. van Someren (eds). CoIL Challenge 2000: The Insurance Company Case. Published by Sentient Machine Research, Amsterdam. Also a Leiden Institute of Advanced Computer Science Technical Report 2000-09. June 22, 2000. See http://www.liacs.nl/~putten/library/cc2000/

    RELEVANT FILES

    tic_2000_train_data.csv: Dataset to train and validate prediction models and build a description (5822 customer records). Each record consists of 86 attributes, containing sociodemographic data (attribute 1-43) and product ownership (attributes 44-86). The sociodemographic data is derived from zip codes. All customers living in areas with the same zip code have the same sociodemographic attributes. Attribute 86, "CARAVAN: Number of mobile home policies", is the target variable.

    tic_2000_eval_data.csv: Dataset for predictions (4000 customer records). It has the same format as TICDATA2000.txt, only the target is missing. Participants are supposed to return the list of predicted targets only. All datasets are in CSV format. The meaning of the attributes and attribute values is given dictionary.csv

    tic_2000_target_data.csv Targets for the evaluation set.

    dictionary.txt: Data description with numerical labeled categories descriptions. It has columnar description data and the labels of the dummy/Labeled encoding.

    Original Task description Link: http://liacs.leidenuniv.nl/~puttenpwhvander/library/cc2000/problem.html UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/datasets/Insurance+Company+Benchmark+%28COIL+2000%29

  16. c

    Data from: Local L2 Thresholding Based Data Mining in Peer-to-Peer Systems

    • s.cnmilf.com
    • datasets.ai
    • +1more
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Local L2 Thresholding Based Data Mining in Peer-to-Peer Systems [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/local-l2-thresholding-based-data-mining-in-peer-to-peer-systems
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    In a large network of computers, wireless sensors, or mobile devices, each of the components (hence, peers) has some data about the global status of the system. Many of the functions of the system, such as routing decisions, search strategies, data cleansing, and the assignment of mutual trust, depend on the global status. Therefore, it is essential that the system be able to detect, and react to, changes in its global status. Computing global predicates in such systems is usually very costly. Mainly because of their scale, and in some cases (e.g., sensor networks) also because of the high cost of communication. The cost further increases when the data changes rapidly (due to state changes, node failure, etc.) and computation has to follow these changes. In this paper we describe a two step approach for dealing with these costs. First, we describe a highly efficient local algorithm which detect when the L2 norm of the average data surpasses a threshold. Then, we use this algorithm as a feedback loop for the monitoring of complex predicates on the data – such as the data’s k-means clustering. The efficiency of the L2 algorithm guarantees that so long as the clustering results represent the data (i.e., the data is stationary) few resources are required. When the data undergoes an epoch change – a change in the underlying distribution – and the model no longer represents it, the feedback loop indicates this and the model is rebuilt. Furthermore, the existence of a feedback loop allows using approximate and “best-effort ” methods for constructing the model; if an ill-fit model is built the feedback loop would indicate so, and the model would be rebuilt.

  17. Table 2 - Modeling and comparing data mining algorithms for prediction of...

    • figshare.com
    xls
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alireza Mosayebi; Barat Mojaradi; Ali Bonyadi Naeini; Seyed Hamid Khodadad Hosseini (2023). Table 2 - Modeling and comparing data mining algorithms for prediction of recurrence of breast cancer [Dataset]. http://doi.org/10.1371/journal.pone.0237658.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Alireza Mosayebi; Barat Mojaradi; Ali Bonyadi Naeini; Seyed Hamid Khodadad Hosseini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Table 2 - Modeling and comparing data mining algorithms for prediction of recurrence of breast cancer

  18. Characteristics that Favor Freq-Itemset Algorithms

    • kaggle.com
    Updated Oct 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeff Heaton (2020). Characteristics that Favor Freq-Itemset Algorithms [Dataset]. https://www.kaggle.com/jeffheaton/characteristics-that-favor-freqitemset-algorithms
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 24, 2020
    Dataset provided by
    Kaggle
    Authors
    Jeff Heaton
    License

    http://www.gnu.org/licenses/lgpl-3.0.htmlhttp://www.gnu.org/licenses/lgpl-3.0.html

    Description

    Source Paper

    This dataset is from my paper:

    Heaton, J. (2016, March). Comparing dataset characteristics that favor the Apriori, Eclat or FP-Growth frequent itemset mining algorithms. In SoutheastCon 2016 (pp. 1-7). IEEE.

    Frequent itemset mining is a popular data mining technique. Apriori, Eclat, and FP-Growth are among the most common algorithms for frequent itemset mining. Considerable research has been performed to compare the relative performance between these three algorithms, by evaluating the scalability of each algorithm as the dataset size increases. While scalability as data size increases is important, previous papers have not examined the performance impact of similarly sized datasets that contain different itemset characteristics. This paper explores the effects that two dataset characteristics can have on the performance of these three frequent itemset algorithms. To perform this empirical analysis, a dataset generator is created to measure the effects of frequent item density and the maximum transaction size on performance. The generated datasets contain the same number of rows. This provides some insight into dataset characteristics that are conducive to each algorithm. The results of this paper's research demonstrate Eclat and FP-Growth both handle increases in maximum transaction size and frequent itemset density considerably better than the Apriori algorithm.

    Files Generated

    We generated two datasets that allow us to adjust two independent variables to create a total of 20 different transaction sets. We also provide the Python script that generated this data in a notebook. This Python script accepts the following parameters to specify the transaction set to produce:

    • Transaction/Basket count: 5 million default
    • Number of items: 50,000 default
    • Number of frequent sets: 100 default
    • Max transaction/basket size: independent variable, 5-100 range
    • Frequent set density: independent variable, 0.1 to 0.8 range

    Files contained in this dataset reside in two folders: * freq-items-pct - We vary the frequent set density in these transaction sets. * freq-items-tsz - We change the maximum number of items per basket in these transaction sets.

    While you can vary basket count, the number of frequent sets, and the number of items in the script, they will remain fixed at this paper's above values. We determined that the basket count only had a small positive correlation.

    File Content

    The following listing shows the type of data generated for this research. Here we present an example file created with ten baskets out of 100 items, two frequent itemsets, a maximum basket size of 10, and a density of 0.5.

    I36 I94 
    I71 I13 I91 I89 I34
    F6 F5 F3 F4 
    I86 
    I39 I16 I49 I62 I31 I54 I91 
    I22 I31 
    I70 I85 I78 I63 
    F4 F3 F1 F6 F0 I69 I44 
    I82 I50 I9 I31 I57 I20 
    F4 F3 F1 F6 F0 I87
    

    As you can see from the above file, the items are either prefixed with “I” or “F.” The “F” prefix indicates that this line contains one of the frequent itemsets. Items with the “I” prefix are not part of an intentional frequent itemset. Of course, “I” prefixed items might form frequent itemsets, as they are uniformly sampled from the number of things to fill out nonfrequent itemsets. Each basket will have a random size chosen, up to the maximum basket size. The frequent itsemset density specifies the probability of each line containing one of the intentional frequent itemsets. Because we used a density of 0.5, approximately half of the lines above include one of the two intentional frequent itemsets. A frequent itemset line may have additional random “I” prefixed items added to cause the line to reach the randomly chosen length for that line. If the frequent itemset selected does cause the generated sequence to exceed its randomly chosen length, no truncation will occur. The intentional frequent itemsets are all determined to be less than or equal to the maximum basket size.

  19. Application Research of Clustering on kmeans

    • kaggle.com
    zip
    Updated Feb 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ddpr raju (2021). Application Research of Clustering on kmeans [Dataset]. https://www.kaggle.com/ddprraju/tirupati-compus-school
    Explore at:
    zip(34507 bytes)Available download formats
    Dataset updated
    Feb 27, 2021
    Authors
    ddpr raju
    Description

    Dataset

    This dataset was created by ddpr raju

    Contents

  20. d

    Discovering Anomalous Aviation Safety Events Using Scalable Data Mining...

    • catalog.data.gov
    • s.cnmilf.com
    • +3more
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Discovering Anomalous Aviation Safety Events Using Scalable Data Mining Algorithms [Dataset]. https://catalog.data.gov/dataset/discovering-anomalous-aviation-safety-events-using-scalable-data-mining-algorithms
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    The worldwide civilian aviation system is one of the most complex dynamical systems created. Most modern commercial aircraft have onboard flight data recorders that record several hundred discrete and continuous parameters at approximately 1Hz for the entire duration of the flight. These data contain information about the flight control systems, actuators, engines, landing gear, avionics, and pilot commands. In this paper, recent advances in the development of a novel knowledge discovery process consisting of a suite of data mining techniques for identifying precursors to aviation safety incidents are discussed. The data mining techniques include scalable multiple-kernel learning for large-scale distributed anomaly detection. A novel multivariate time-series search algorithm is used to search for signatures of discovered anomalies on massive datasets. The process can identify operationally significant events due to environmental, mechanical, and human factors issues in the high-dimensional flight operations quality assurance data. All discovered anomalies are validated by a team of independent domain experts. This novel automated knowledge discovery process is aimed at complementing the state-of-the-art human-generated exceedance-based analysis that fails to discover previously unknown aviation safety incidents. In this paper, the discovery pipeline, the methods used, and some of the significant anomalies detected on real-world commercial aviation data are discussed.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Senol Celik; Ecevit Eyduran; Koksal Karadas; Mohammad Masood Tariq (2023). Comparison of predictive performance of data mining algorithms in predicting body weight in Mengali rams of Pakistan [Dataset]. http://doi.org/10.6084/m9.figshare.5719009.v1
Organization logo

Data from: Comparison of predictive performance of data mining algorithms in predicting body weight in Mengali rams of Pakistan

Related Article
Explore at:
jpegAvailable download formats
Dataset updated
Jun 4, 2023
Dataset provided by
SciELOhttp://www.scielo.org/
Authors
Senol Celik; Ecevit Eyduran; Koksal Karadas; Mohammad Masood Tariq
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Pakistan
Description

ABSTRACT The present study aimed at comparing predictive performance of some data mining algorithms (CART, CHAID, Exhaustive CHAID, MARS, MLP, and RBF) in biometrical data of Mengali rams. To compare the predictive capability of the algorithms, the biometrical data regarding body (body length, withers height, and heart girth) and testicular (testicular length, scrotal length, and scrotal circumference) measurements of Mengali rams in predicting live body weight were evaluated by most goodness of fit criteria. In addition, age was considered as a continuous independent variable. In this context, MARS data mining algorithm was used for the first time to predict body weight in two forms, without (MARS_1) and with interaction (MARS_2) terms. The superiority order in the predictive accuracy of the algorithms was found as CART > CHAID ≈ Exhaustive CHAID > MARS_2 > MARS_1 > RBF > MLP. Moreover, all tested algorithms provided a strong predictive accuracy for estimating body weight. However, MARS is the only algorithm that generated a prediction equation for body weight. Therefore, it is hoped that the available results might present a valuable contribution in terms of predicting body weight and describing the relationship between the body weight and body and testicular measurements in revealing breed standards and the conservation of indigenous gene sources for Mengali sheep breeding. Therefore, it will be possible to perform more profitable and productive sheep production. Use of data mining algorithms is useful for revealing the relationship between body weight and testicular traits in describing breed standards of Mengali sheep.

Search
Clear search
Close search
Google apps
Main menu