100+ datasets found
  1. Table_1_Data Mining Techniques in Analyzing Process Data: A Didactic.pdf

    • frontiersin.figshare.com
    pdf
    Updated Jun 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xin Qiao; Hong Jiao (2023). Table_1_Data Mining Techniques in Analyzing Process Data: A Didactic.pdf [Dataset]. http://doi.org/10.3389/fpsyg.2018.02231.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 7, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Xin Qiao; Hong Jiao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Due to increasing use of technology-enhanced educational assessment, data mining methods have been explored to analyse process data in log files from such assessment. However, most studies were limited to one data mining technique under one specific scenario. The current study demonstrates the usage of four frequently used supervised techniques, including Classification and Regression Trees (CART), gradient boosting, random forest, support vector machine (SVM), and two unsupervised methods, Self-organizing Map (SOM) and k-means, fitted to one assessment data. The USA sample (N = 426) from the 2012 Program for International Student Assessment (PISA) responding to problem-solving items is extracted to demonstrate the methods. After concrete feature generation and feature selection, classifier development procedures are implemented using the illustrated techniques. Results show satisfactory classification accuracy for all the techniques. Suggestions for the selection of classifiers are presented based on the research questions, the interpretability and the simplicity of the classifiers. Interpretations for the results from both supervised and unsupervised learning methods are provided.

  2. d

    Data from: Peer-to-Peer Data Mining, Privacy Issues, and Games

    • catalog.data.gov
    • s.cnmilf.com
    • +2more
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Peer-to-Peer Data Mining, Privacy Issues, and Games [Dataset]. https://catalog.data.gov/dataset/peer-to-peer-data-mining-privacy-issues-and-games
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    Peer-to-Peer (P2P) networks are gaining increasing popularity in many distributed applications such as file-sharing, network storage, web caching, sear- ching and indexing of relevant documents and P2P network-threat analysis. Many of these applications require scalable analysis of data over a P2P network. This paper starts by offering a brief overview of distributed data mining applications and algorithms for P2P environments. Next it discusses some of the privacy concerns with P2P data mining and points out the problems of existing privacy-preserving multi-party data mining techniques. It further points out that most of the nice assumptions of these existing privacy preserving techniques fall apart in real-life applications of privacy-preserving distributed data mining (PPDM). The paper offers a more realistic formulation of the PPDM problem as a multi-party game and points out some recent results.

  3. Designing a more efficient, effective and safe Medical Emergency Team (MET)...

    • plos.figshare.com
    pdf
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christoph Bergmeir; Irma Bilgrami; Christopher Bain; Geoffrey I. Webb; Judit Orosz; David Pilcher (2023). Designing a more efficient, effective and safe Medical Emergency Team (MET) service using data analysis [Dataset]. http://doi.org/10.1371/journal.pone.0188688
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Christoph Bergmeir; Irma Bilgrami; Christopher Bain; Geoffrey I. Webb; Judit Orosz; David Pilcher
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionHospitals have seen a rise in Medical Emergency Team (MET) reviews. We hypothesised that the commonest MET calls result in similar treatments. Our aim was to design a pre-emptive management algorithm that allowed direct institution of treatment to patients without having to wait for attendance of the MET team and to model its potential impact on MET call incidence and patient outcomes.MethodsData was extracted for all MET calls from the hospital database. Association rule data mining techniques were used to identify the most common combinations of MET call causes, outcomes and therapies.ResultsThere were 13,656 MET calls during the 34-month study period in 7936 patients. The most common MET call was for hypotension [31%, (2459/7936)]. These MET calls were strongly associated with the immediate administration of intra-venous fluid (70% [1714/2459] v 13% [739/5477] p

  4. d

    Data from: Discovering System Health Anomalies using Data Mining Techniques

    • catalog.data.gov
    • s.cnmilf.com
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Discovering System Health Anomalies using Data Mining Techniques [Dataset]. https://catalog.data.gov/dataset/discovering-system-health-anomalies-using-data-mining-techniques
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    We discuss a statistical framework that underlies envelope detection schemes as well as dynamical models based on Hidden Markov Models (HMM) that can encompass both discrete and continuous sensor measurements for use in Integrated System Health Management (ISHM) applications. The HMM allows for the rapid assimilation, analysis, and discovery of system anomalies. We motivate our work with a discussion of an aviation problem where the identification of anomalous sequences is essential for safety reasons. The data in this application are discrete and continuous sensor measurements and can be dealt with seamlessly using the methods described here to discover anomalous flights. We specifically treat the problem of discovering anomalous features in the time series that may be hidden from the sensor suite and compare those methods to standard envelope detection methods on test data designed to accentuate the differences between the two methods. Identification of these hidden anomalies is crucial to building stable, reusable, and cost-efficient systems. We also discuss a data mining framework for the analysis and discovery of anomalies in high-dimensional time series of sensor measurements that would be found in an ISHM system. We conclude with recommendations that describe the tradeoffs in building an integrated scalable platform for robust anomaly detection in ISHM applications.

  5. m

    Educational Attainment in North Carolina Public Schools: Use of statistical...

    • data.mendeley.com
    Updated Nov 14, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scott Herford (2018). Educational Attainment in North Carolina Public Schools: Use of statistical modeling, data mining techniques, and machine learning algorithms to explore 2014-2017 North Carolina Public School datasets. [Dataset]. http://doi.org/10.17632/6cm9wyd5g5.1
    Explore at:
    Dataset updated
    Nov 14, 2018
    Authors
    Scott Herford
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The purpose of data mining analysis is always to find patterns of the data using certain kind of techiques such as classification or regression. It is not always feasible to apply classification algorithms directly to dataset. Before doing any work on the data, the data has to be pre-processed and this process normally involves feature selection and dimensionality reduction. We tried to use clustering as a way to reduce the dimension of the data and create new features. Based on our project, after using clustering prior to classification, the performance has not improved much. The reason why it has not improved could be the features we selected to perform clustering are not well suited for it. Because of the nature of the data, classification tasks are going to provide more information to work with in terms of improving knowledge and overall performance metrics. From the dimensionality reduction perspective: It is different from Principle Component Analysis which guarantees finding the best linear transformation that reduces the number of dimensions with a minimum loss of information. Using clusters as a technique of reducing the data dimension will lose a lot of information since clustering techniques are based a metric of 'distance'. At high dimensions euclidean distance loses pretty much all meaning. Therefore using clustering as a "Reducing" dimensionality by mapping data points to cluster numbers is not always good since you may lose almost all the information. From the creating new features perspective: Clustering analysis creates labels based on the patterns of the data, it brings uncertainties into the data. By using clustering prior to classification, the decision on the number of clusters will highly affect the performance of the clustering, then affect the performance of classification. If the part of features we use clustering techniques on is very suited for it, it might increase the overall performance on classification. For example, if the features we use k-means on are numerical and the dimension is small, the overall classification performance may be better. We did not lock in the clustering outputs using a random_state in the effort to see if they were stable. Our assumption was that if the results vary highly from run to run which they definitely did, maybe the data just does not cluster well with the methods selected at all. Basically, the ramification we saw was that our results are not much better than random when applying clustering to the data preprocessing. Finally, it is important to ensure a feedback loop is in place to continuously collect the same data in the same format from which the models were created. This feedback loop can be used to measure the model real world effectiveness and also to continue to revise the models from time to time as things change.

  6. Survey Data - Entrepreneurs Data Mining

    • kaggle.com
    zip
    Updated Nov 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lay Christian (2024). Survey Data - Entrepreneurs Data Mining [Dataset]. https://www.kaggle.com/datasets/laychristian/survey-data-entrepreneurs-data-mining
    Explore at:
    zip(38815 bytes)Available download formats
    Dataset updated
    Nov 21, 2024
    Authors
    Lay Christian
    Description

    Title: Identifying Factors that Affect Entrepreneurs’ Use of Data Mining for Analytics Authors: Edward Matthew Dominica, Feylin Wijaya, Andrew Giovanni Winoto, Christian Conference: The 4th International Conference on Electrical, Computer, Communications, and Mechatronics Engineering https://www.iceccme.com/home

    This dataset was created to support research focused on understanding the factors influencing entrepreneurs’ adoption of data mining techniques for business analytics. The dataset contains carefully curated data points that reflect entrepreneurial behaviors, decision-making criteria, and the role of data mining in enhancing business insights.

    Researchers and practitioners can leverage this dataset to explore patterns, conduct statistical analyses, and build predictive models to gain a deeper understanding of entrepreneurial adoption of data mining.

    Intended Use: This dataset is designed for research and academic purposes, especially in the fields of business analytics, entrepreneurship, and data mining. It is suitable for conducting exploratory data analysis, hypothesis testing, and model development.

    Citation: If you use this dataset in your research or publication, please cite the paper presented at the ICECCME 2024 conference using the following format: Edward Matthew Dominica, Feylin Wijaya, Andrew Giovanni Winoto, Christian. Identifying Factors that Affect Entrepreneurs’ Use of Data Mining for Analytics. The 4th International Conference on Electrical, Computer, Communications, and Mechatronics Engineering (2024).

  7. e

    List of Top Schools of International Journal of Data Mining Techniques and...

    • exaly.com
    csv, json
    Updated Nov 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). List of Top Schools of International Journal of Data Mining Techniques and Applications sorted by citations [Dataset]. https://exaly.com/journal/91880/international-journal-of-data-mining-techniques-and-applications/citing-schools
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Nov 1, 2025
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    List of Top Schools of International Journal of Data Mining Techniques and Applications sorted by citations.

  8. D

    Data Mining Software Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Data Mining Software Report [Dataset]. https://www.marketresearchforecast.com/reports/data-mining-software-41235
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Mar 19, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Data Mining Software market is experiencing robust growth, driven by the increasing need for businesses to extract valuable insights from massive datasets. The market, estimated at $15 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033, reaching an estimated $45 billion by 2033. This expansion is fueled by several key factors. The burgeoning adoption of cloud-based solutions offers scalability and cost-effectiveness, attracting both large enterprises and SMEs. Furthermore, advancements in machine learning and artificial intelligence algorithms are enhancing the accuracy and efficiency of data mining processes, leading to better decision-making across various sectors like finance, healthcare, and marketing. The rise of big data analytics and the increasing availability of affordable, high-powered computing resources are also significant contributors to market growth. However, the market faces certain challenges. Data security and privacy concerns remain paramount, especially with the increasing volume of sensitive information being processed. The complexity of data mining software and the need for skilled professionals to operate and interpret the results present a barrier to entry for some businesses. The high initial investment cost associated with implementing sophisticated data mining solutions can also deter smaller organizations. Nevertheless, the ongoing technological advancements and the growing recognition of the strategic value of data-driven decision-making are expected to overcome these restraints and propel the market toward continued expansion. The market segmentation reveals a strong preference for cloud-based solutions, reflecting the industry's trend toward flexible and scalable IT infrastructure. Large enterprises currently dominate the market share, but SMEs are rapidly adopting data mining software, indicating promising future growth in this segment. Geographic analysis shows that North America and Europe are currently leading the market, but the Asia-Pacific region is poised for significant growth due to increasing digitalization and economic expansion in countries like China and India.

  9. Data from: Results obtained in a data mining process applied to a database...

    • scielo.figshare.com
    jpeg
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    E.M. Ruiz Lobaina; C. P. Romero Suárez (2023). Results obtained in a data mining process applied to a database containing bibliographic information concerning four segments of science. [Dataset]. http://doi.org/10.6084/m9.figshare.20011798.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    SciELOhttp://www.scielo.org/
    Authors
    E.M. Ruiz Lobaina; C. P. Romero Suárez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract The objective of this work is to improve the quality of the information that belongs to the database CubaCiencia, of the Institute of Scientific and Technological Information. This database has bibliographic information referring to four segments of science and is the main database of the Library Management System. The applied methodology was based on the Decision Trees, the Correlation Matrix, the 3D Scatter Plot, etc., which are techniques used by data mining, for the study of large volumes of information. The results achieved not only made it possible to improve the information in the database, but also provided truly useful patterns in the solution of the proposed objectives.

  10. Data Detective: The Warehouse Mystery!

    • kaggle.com
    zip
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rajarajeswari P (2025). Data Detective: The Warehouse Mystery! [Dataset]. https://www.kaggle.com/datasets/rajarajeswariprr/data-detective-the-warehouse-mystery
    Explore at:
    zip(19119 bytes)Available download formats
    Dataset updated
    Nov 25, 2025
    Authors
    Rajarajeswari P
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Activity Title: "Data Detective: The Warehouse Mystery!"

    (This file contains eight different datasets to practice data mining and data warehousing techniques. And this activity is curated for Data Science beginners.)

    Description: Divide students into groups and assign each a "mini-warehouse" (a pre-created, structured dataset with hidden patterns or trends).

    Each group acts as data detectives tasked with discovering: • Frequent patterns (association rules) • Anomalies (outliers) • Summaries (clustering or classification)

    Outcome: Present findings as visual dashboards or data storytelling reports.

  11. d

    Data Mining in Systems Health Management

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Data Mining in Systems Health Management [Dataset]. https://catalog.data.gov/dataset/data-mining-in-systems-health-management
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    This chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.

  12. Data from: Enriching time series datasets using Nonparametric kernel...

    • figshare.com
    pdf
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohamad Ivan Fanany (2023). Enriching time series datasets using Nonparametric kernel regression to improve forecasting accuracy [Dataset]. http://doi.org/10.6084/m9.figshare.1609661.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Mohamad Ivan Fanany
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Improving the accuracy of prediction on future values based on the past and current observations has been pursued by enhancing the prediction's methods, combining those methods or performing data pre-processing. In this paper, another approach is taken, namely by increasing the number of input in the dataset. This approach would be useful especially for a shorter time series data. By filling the in-between values in the time series, the number of training set can be increased, thus increasing the generalization capability of the predictor. The algorithm used to make prediction is Neural Network as it is widely used in literature for time series tasks. For comparison, Support Vector Regression is also employed. The dataset used in the experiment is the frequency of USPTO's patents and PubMed's scientific publications on the field of health, namely on Apnea, Arrhythmia, and Sleep Stages. Another time series data designated for NN3 Competition in the field of transportation is also used for benchmarking. The experimental result shows that the prediction performance can be significantly increased by filling in-between data in the time series. Furthermore, the use of detrend and deseasonalization which separates the data into trend, seasonal and stationary time series also improve the prediction performance both on original and filled dataset. The optimal number of increase on the dataset in this experiment is about five times of the length of original dataset.

  13. l

    LScDC Word-Category RIG Matrix

    • figshare.le.ac.uk
    pdf
    Updated Apr 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neslihan Suzen (2020). LScDC Word-Category RIG Matrix [Dataset]. http://doi.org/10.25392/leicester.data.12133431.v2
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Apr 28, 2020
    Dataset provided by
    University of Leicester
    Authors
    Neslihan Suzen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    LScDC Word-Category RIG MatrixApril 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk / suzenneslihan@hotmail.com)Supervised by Prof Alexander Gorban and Dr Evgeny MirkesGetting StartedThis file describes the Word-Category RIG Matrix for theLeicester Scientific Corpus (LSC) [1], the procedure to build the matrix and introduces the Leicester Scientific Thesaurus (LScT) with the construction process. The Word-Category RIG Matrix is a 103,998 by 252 matrix, where rows correspond to words of Leicester Scientific Dictionary-Core (LScDC) [2] and columns correspond to 252 Web of Science (WoS) categories [3, 4, 5]. Each entry in the matrix corresponds to a pair (category,word). Its value for the pair shows the Relative Information Gain (RIG) on the belonging of a text from the LSC to the category from observing the word in this text. The CSV file of Word-Category RIG Matrix in the published archive is presented with two additional columns of the sum of RIGs in categories and the maximum of RIGs over categories (last two columns of the matrix). So, the file ‘Word-Category RIG Matrix.csv’ contains a total of 254 columns.This matrix is created to be used in future research on quantifying of meaning in scientific texts under the assumption that words have scientifically specific meanings in subject categories and the meaning can be estimated by information gains from word to categories. LScT (Leicester Scientific Thesaurus) is a scientific thesaurus of English. The thesaurus includes a list of 5,000 words from the LScDC. We consider ordering the words of LScDC by the sum of their RIGs in categories. That is, words are arranged in their informativeness in the scientific corpus LSC. Therefore, meaningfulness of words evaluated by words’ average informativeness in the categories. We have decided to include the most informative 5,000 words in the scientific thesaurus. Words as a Vector of Frequencies in WoS CategoriesEach word of the LScDC is represented as a vector of frequencies in WoS categories. Given the collection of the LSC texts, each entry of the vector consists of the number of texts containing the word in the corresponding category.It is noteworthy that texts in a corpus do not necessarily belong to a single category, as they are likely to correspond to multidisciplinary studies, specifically in a corpus of scientific texts. In other words, categories may not be exclusive. There are 252 WoS categories and a text can be assigned to at least 1 and at most 6 categories in the LSC. Using the binary calculation of frequencies, we introduce the presence of a word in a category. We create a vector of frequencies for each word, where dimensions are categories in the corpus.The collection of vectors, with all words and categories in the entire corpus, can be shown in a table, where each entry corresponds to a pair (word,category). This table is build for the LScDC with 252 WoS categories and presented in published archive with this file. The value of each entry in the table shows how many times a word of LScDC appears in a WoS category. The occurrence of a word in a category is determined by counting the number of the LSC texts containing the word in a category. Words as a Vector of Relative Information Gains Extracted for CategoriesIn this section, we introduce our approach to representation of a word as a vector of relative information gains for categories under the assumption that meaning of a word can be quantified by their information gained for categories.For each category, a function is defined on texts that takes the value 1, if the text belongs to the category, and 0 otherwise. For each word, a function is defined on texts that takes the value 1 if the word belongs to the text, and 0 otherwise. Consider LSC as a probabilistic sample space (the space of equally probable elementary outcomes). For the Boolean random variables, the joint probability distribution, the entropy and information gains are defined.The information gain about the category from the word is the amount of information on the belonging of a text from the LSC to the category from observing the word in the text [6]. We used the Relative Information Gain (RIG) providing a normalised measure of the Information Gain. This provides the ability of comparing information gains for different categories. The calculations of entropy, Information Gains and Relative Information Gains can be found in the README file in the archive published. Given a word, we created a vector where each component of the vector corresponds to a category. Therefore, each word is represented as a vector of relative information gains. It is obvious that the dimension of vector for each word is the number of categories. The set of vectors is used to form the Word-Category RIG Matrix, in which each column corresponds to a category, each row corresponds to a word and each component is the relative information gain from the word to the category. In Word-Category RIG Matrix, a row vector represents the corresponding word as a vector of RIGs in categories. We note that in the matrix, a column vector represents RIGs of all words in an individual category. If we choose an arbitrary category, words can be ordered by their RIGs from the most informative to the least informative for the category. As well as ordering words in each category, words can be ordered by two criteria: sum and maximum of RIGs in categories. The top n words in this list can be considered as the most informative words in the scientific texts. For a given word, the sum and maximum of RIGs are calculated from the Word-Category RIG Matrix.RIGs for each word of LScDC in 252 categories are calculated and vectors of words are formed. We then form the Word-Category RIG Matrix for the LSC. For each word, the sum (S) and maximum (M) of RIGs in categories are calculated and added at the end of the matrix (last two columns of the matrix). The Word-Category RIG Matrix for the LScDC with 252 categories, the sum of RIGs in categories and the maximum of RIGs over categories can be found in the database.Leicester Scientific Thesaurus (LScT)Leicester Scientific Thesaurus (LScT) is a list of 5,000 words form the LScDC [2]. Words of LScDC are sorted in descending order by the sum (S) of RIGs in categories and the top 5,000 words are selected to be included in the LScT. We consider these 5,000 words as the most meaningful words in the scientific corpus. In other words, meaningfulness of words evaluated by words’ average informativeness in the categories and the list of these words are considered as a ‘thesaurus’ for science. The LScT with value of sum can be found as CSV file with the published archive. Published archive contains following files:1) Word_Category_RIG_Matrix.csv: A 103,998 by 254 matrix where columns are 252 WoS categories, the sum (S) and the maximum (M) of RIGs in categories (last two columns of the matrix), and rows are words of LScDC. Each entry in the first 252 columns is RIG from the word to the category. Words are ordered as in the LScDC.2) Word_Category_Frequency_Matrix.csv: A 103,998 by 252 matrix where columns are 252 WoS categories and rows are words of LScDC. Each entry of the matrix is the number of texts containing the word in the corresponding category. Words are ordered as in the LScDC.3) LScT.csv: List of words of LScT with sum (S) values. 4) Text_No_in_Cat.csv: The number of texts in categories. 5) Categories_in_Documents.csv: List of WoS categories for each document of the LSC.6) README.txt: Description of Word-Category RIG Matrix, Word-Category Frequency Matrix and LScT and forming procedures.7) README.pdf (same as 6 in PDF format)References[1] Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v2[2] Suzen, Neslihan (2019): LScDC (Leicester Scientific Dictionary-Core). figshare. Dataset. https://doi.org/10.25392/leicester.data.9896579.v3[3] Web of Science. (15 July). Available: https://apps.webofknowledge.com/[4] WoS Subject Categories. Available: https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html [5] Suzen, N., Mirkes, E. M., & Gorban, A. N. (2019). LScDC-new large scientific dictionary. arXiv preprint arXiv:1912.06858. [6] Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423.

  14. s

    Citation Trends for "An improvement of a data mining technique for early...

    • shibatadb.com
    Updated Oct 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yubetsu (2025). Citation Trends for "An improvement of a data mining technique for early detection of at-risk learners in distance learning environments" [Dataset]. https://www.shibatadb.com/article/MpYa94uC
    Explore at:
    Dataset updated
    Oct 12, 2025
    Dataset authored and provided by
    Yubetsu
    License

    https://www.shibatadb.com/license/data/proprietary/v1.0/license.txthttps://www.shibatadb.com/license/data/proprietary/v1.0/license.txt

    Time period covered
    2023
    Variables measured
    New Citations per Year
    Description

    Yearly citation counts for the publication titled "An improvement of a data mining technique for early detection of at-risk learners in distance learning environments".

  15. Discovering Anomalous Aviation Safety Events Using Scalable Data Mining...

    • data.nasa.gov
    • s.cnmilf.com
    • +3more
    Updated Mar 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Discovering Anomalous Aviation Safety Events Using Scalable Data Mining Algorithms [Dataset]. https://data.nasa.gov/dataset/discovering-anomalous-aviation-safety-events-using-scalable-data-mining-algorithms
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    The worldwide civilian aviation system is one of the most complex dynamical systems created. Most modern commercial aircraft have onboard flight data recorders that record several hundred discrete and continuous parameters at approximately 1Hz for the entire duration of the flight. These data contain information about the flight control systems, actuators, engines, landing gear, avionics, and pilot commands. In this paper, recent advances in the development of a novel knowledge discovery process consisting of a suite of data mining techniques for identifying precursors to aviation safety incidents are discussed. The data mining techniques include scalable multiple-kernel learning for large-scale distributed anomaly detection. A novel multivariate time-series search algorithm is used to search for signatures of discovered anomalies on massive datasets. The process can identify operationally significant events due to environmental, mechanical, and human factors issues in the high-dimensional flight operations quality assurance data. All discovered anomalies are validated by a team of independent domain experts. This novel automated knowledge discovery process is aimed at complementing the state-of-the-art human-generated exceedance-based analysis that fails to discover previously unknown aviation safety incidents. In this paper, the discovery pipeline, the methods used, and some of the significant anomalies detected on real-world commercial aviation data are discussed.

  16. G

    Privacy‑Preserving Data Mining Tools Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Privacy‑Preserving Data Mining Tools Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/privacypreserving-data-mining-tools-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Aug 29, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Privacy?Preserving Data Mining Tools Market Outlook



    According to our latest research, the global Privacy?Preserving Data Mining Tools market size reached USD 1.42 billion in 2024, reflecting robust adoption across diverse industries. The market is expected to exhibit a CAGR of 22.8% during the forecast period, propelling the market to USD 10.98 billion by 2033. This remarkable growth is driven by the increasing need for secure data analytics, stringent data protection regulations, and the rising frequency of data breaches, all of which are pushing organizations to adopt advanced privacy solutions.



    One of the primary growth factors for the Privacy?Preserving Data Mining Tools market is the exponential rise in data generation and the parallel escalation of privacy concerns. As organizations collect vast amounts of sensitive information, especially in sectors like healthcare and BFSI, the risk of data exposure and misuse grows. Governments worldwide are enacting stricter data protection laws, such as the GDPR in Europe and CCPA in California, compelling enterprises to integrate privacy?preserving technologies into their analytics workflows. These regulations not only mandate compliance but also foster consumer trust, making privacy?preserving data mining tools a strategic investment for businesses aiming to maintain a competitive edge while safeguarding user data.



    Another significant driver is the rapid digital transformation across industries, which necessitates the extraction of actionable insights from large, distributed data sets without compromising privacy. Privacy?preserving techniques, such as federated learning, homomorphic encryption, and differential privacy, are gaining traction as they allow organizations to collaborate and analyze data securely. The advent of cloud computing and the proliferation of connected devices further amplify the demand for scalable and secure data mining solutions. As enterprises embrace cloud-based analytics, the need for robust privacy-preserving mechanisms becomes paramount, fueling the adoption of advanced tools that can operate seamlessly in both on-premises and cloud environments.



    Moreover, the increasing sophistication of cyber threats and the growing awareness of the potential reputational and financial damage caused by data breaches are prompting organizations to prioritize data privacy. High-profile security incidents have underscored the vulnerabilities inherent in traditional data mining approaches, accelerating the shift towards privacy-preserving alternatives. The integration of artificial intelligence and machine learning with privacy-preserving technologies is also opening new avenues for innovation, enabling more granular and context-aware data analytics. This technological convergence is expected to further catalyze market growth, as organizations seek to harness the full potential of their data assets while maintaining stringent privacy standards.



    Privacy-Preserving Analytics is becoming a cornerstone in the modern data-driven landscape, offering organizations a way to extract valuable insights while maintaining stringent data privacy standards. This approach ensures that sensitive information remains protected even as it is analyzed, allowing businesses to comply with increasing regulatory demands without sacrificing the depth and breadth of their data analysis. By leveraging Privacy-Preserving Analytics, companies can foster greater trust among their customers and stakeholders, knowing that their data is being handled with the utmost care and security. This paradigm shift is not just about compliance; it’s about redefining how organizations approach data analytics in a world where privacy concerns are paramount.



    From a regional perspective, North America currently commands the largest share of the Privacy?Preserving Data Mining Tools market, driven by the presence of leading technology vendors, high awareness levels, and a robust regulatory framework. Europe follows closely, propelled by stringent data privacy laws and increasing investments in secure analytics infrastructure. The Asia Pacific region is witnessing the fastest growth, fueled by rapid digitalization, expanding IT ecosystems, and rising cybersecurity concerns in emerging economies such as China and India. Latin America and the Middle East & Africa are also experiencing steady growth, albeit from

  17. Data supporting the Master thesis "Monitoring von Open Data Praktiken -...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    zip
    Updated Nov 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Katharina Zinke; Katharina Zinke (2024). Data supporting the Master thesis "Monitoring von Open Data Praktiken - Herausforderungen beim Auffinden von Datenpublikationen am Beispiel der Publikationen von Forschenden der TU Dresden" [Dataset]. http://doi.org/10.5281/zenodo.14196539
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 21, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Katharina Zinke; Katharina Zinke
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Dresden
    Description

    Data supporting the Master thesis "Monitoring von Open Data Praktiken - Herausforderungen beim Auffinden von Datenpublikationen am Beispiel der Publikationen von Forschenden der TU Dresden" (Monitoring open data practices - challenges in finding data publications using the example of publications by researchers at TU Dresden) - Katharina Zinke, Institut für Bibliotheks- und Informationswissenschaften, Humboldt-Universität Berlin, 2023

    This ZIP-File contains the data the thesis is based on, interim exports of the results and the R script with all pre-processing, data merging and analyses carried out. The documentation of the additional, explorative analysis is also available. The actual PDFs and text files of the scientific papers used are not included as they are published open access.

    The folder structure is shown below with the file names and a brief description of the contents of each file. For details concerning the analyses approach, please refer to the master's thesis (publication following soon).

    ## Data sources

    Folder 01_SourceData/

    - PLOS-Dataset_v2_Mar23.csv (PLOS-OSI dataset)

    - ScopusSearch_ExportResults.csv (export of Scopus search results from Scopus)

    - ScopusSearch_ExportResults.ris (export of Scopus search results from Scopus)

    - Zotero_Export_ScopusSearch.csv (export of the file names and DOIs of the Scopus search results from Zotero)

    ## Automatic classification

    Folder 02_AutomaticClassification/

    - (NOT INCLUDED) PDFs folder (Folder for PDFs of all publications identified by the Scopus search, named AuthorLastName_Year_PublicationTitle_Title)

    - (NOT INCLUDED) PDFs_to_text folder (Folder for all texts extracted from the PDFs by ODDPub, named AuthorLastName_Year_PublicationTitle_Title)

    - PLOS_ScopusSearch_matched.csv (merge of the Scopus search results with the PLOS_OSI dataset for the files contained in both)

    - oddpub_results_wDOIs.csv (results file of the ODDPub classification)

    - PLOS_ODDPub.csv (merge of the results file of the ODDPub classification with the PLOS-OSI dataset for the publications contained in both)

    ## Manual coding

    Folder 03_ManualCheck/

    - CodeSheet_ManualCheck.txt (Code sheet with descriptions of the variables for manual coding)

    - ManualCheck_2023-06-08.csv (Manual coding results file)

    - PLOS_ODDPub_Manual.csv (Merge of the results file of the ODDPub and PLOS-OSI classification with the results file of the manual coding)

    ## Explorative analysis for the discoverability of open data

    Folder04_FurtherAnalyses

    Proof_of_of_Concept_Open_Data_Monitoring.pdf (Description of the explorative analysis of the discoverability of open data publications using the example of a researcher) - in German

    ## R-Script

    Analyses_MA_OpenDataMonitoring.R (R-Script for preparing, merging and analyzing the data and for performing the ODDPub algorithm)

  18. m

    Land use and land cover map from the Crepori National Forest, northern...

    • data.mendeley.com
    Updated Mar 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jackson Simionato (2021). Land use and land cover map from the Crepori National Forest, northern Brazil [Dataset]. http://doi.org/10.17632/zp3gpw8mhn.1
    Explore at:
    Dataset updated
    Mar 8, 2021
    Authors
    Jackson Simionato
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brazil, North Region
    Description

    This dataset include an ESRI Shapefile archive containing the land use and land cover classification for the year 2017 from a Brazilian Conservation Unit called Crepori National Forest (NFC). This is the most important result obtained in a study that sought to automatically identify artisanal mining areas in the Amazon Rainforest, using the GEOBIA approach together with data mining techniques.

  19. Modified Big SalesData

    • kaggle.com
    zip
    Updated Feb 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shubhra Rana (2025). Modified Big SalesData [Dataset]. https://www.kaggle.com/datasets/shubhrarana/modified-big-salesdata
    Explore at:
    zip(2360624 bytes)Available download formats
    Dataset updated
    Feb 26, 2025
    Authors
    Shubhra Rana
    License

    http://www.gnu.org/licenses/fdl-1.3.htmlhttp://www.gnu.org/licenses/fdl-1.3.html

    Description

    Modified and Cleaned data set from https://www.kaggle.com/datasets/pigment/big-sales-data.

    This can be used for EDA, Data Analytics, Data Mining and Visualizations.

    Will be uploading two more versions shortly.

    1. Denormalized Version of the data to optimize the storage
    2. Consolidated Data from all months together to perform data mining tasks like ARM.
  20. Dataprocessor.html

    • kaggle.com
    zip
    Updated Mar 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stickman117 (2023). Dataprocessor.html [Dataset]. https://www.kaggle.com/datasets/stickman117/dataprocessorhtml
    Explore at:
    zip(1678 bytes)Available download formats
    Dataset updated
    Mar 6, 2023
    Authors
    Stickman117
    Description

    Dataset

    This dataset was created by Stickman117

    Contents

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Xin Qiao; Hong Jiao (2023). Table_1_Data Mining Techniques in Analyzing Process Data: A Didactic.pdf [Dataset]. http://doi.org/10.3389/fpsyg.2018.02231.s001
Organization logo

Table_1_Data Mining Techniques in Analyzing Process Data: A Didactic.pdf

Related Article
Explore at:
pdfAvailable download formats
Dataset updated
Jun 7, 2023
Dataset provided by
Frontiers Mediahttp://www.frontiersin.org/
Authors
Xin Qiao; Hong Jiao
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Due to increasing use of technology-enhanced educational assessment, data mining methods have been explored to analyse process data in log files from such assessment. However, most studies were limited to one data mining technique under one specific scenario. The current study demonstrates the usage of four frequently used supervised techniques, including Classification and Regression Trees (CART), gradient boosting, random forest, support vector machine (SVM), and two unsupervised methods, Self-organizing Map (SOM) and k-means, fitted to one assessment data. The USA sample (N = 426) from the 2012 Program for International Student Assessment (PISA) responding to problem-solving items is extracted to demonstrate the methods. After concrete feature generation and feature selection, classifier development procedures are implemented using the illustrated techniques. Results show satisfactory classification accuracy for all the techniques. Suggestions for the selection of classifiers are presented based on the research questions, the interpretability and the simplicity of the classifiers. Interpretations for the results from both supervised and unsupervised learning methods are provided.

Search
Clear search
Close search
Google apps
Main menu