100+ datasets found
  1. Data Mining Tools Market - A Global and Regional Analysis

    • bisresearch.com
    csv, pdf
    Updated Nov 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bisresearch (2025). Data Mining Tools Market - A Global and Regional Analysis [Dataset]. https://bisresearch.com/industry-report/global-data-mining-tools-market.html
    Explore at:
    csv, pdfAvailable download formats
    Dataset updated
    Nov 30, 2025
    Dataset authored and provided by
    Bisresearch
    License

    https://bisresearch.com/privacy-policy-cookie-restriction-modehttps://bisresearch.com/privacy-policy-cookie-restriction-mode

    Time period covered
    2023 - 2033
    Area covered
    Worldwide
    Description

    The Data Mining Tools Market is expected to be valued at $1.24 billion in 2024, with an anticipated expansion at a CAGR of 11.63% to reach $3.73 billion by 2034.

  2. e

    Data Mining Tools Market Size, Share, Trend Analysis by 2033

    • emergenresearch.com
    pdf,excel,csv,ppt
    Updated Dec 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emergen Research (2024). Data Mining Tools Market Size, Share, Trend Analysis by 2033 [Dataset]. https://www.emergenresearch.com/industry-report/data-mining-tools-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Dec 19, 2024
    Dataset authored and provided by
    Emergen Research
    License

    https://www.emergenresearch.com/privacy-policyhttps://www.emergenresearch.com/privacy-policy

    Area covered
    Global
    Variables measured
    Base Year, No. of Pages, Growth Drivers, Forecast Period, Segments covered, Historical Data for, Pitfalls Challenges, 2033 Value Projection, Tables, Charts, and Figures, Forecast Period 2024 - 2033 CAGR, and 1 more
    Description

    The Data Mining Tools Market size is expected to reach a valuation of USD 3.33 billion in 2033 growing at a CAGR of 12.50%. The Data Mining Tools market research report classifies market by share, trend, demand, forecast and based on segmentation.

  3. Data Mining Market Size, Competitive Landscape, Growth Trends 2030

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). Data Mining Market Size, Competitive Landscape, Growth Trends 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/data-mining-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    The Data Mining Market is Segmented by Component (Tools [ETL and Data Preparation, Data-Mining Workbench, and More], Services [Professional Services, and More]), End-User Enterprise Size (Small and Medium Enterprises, Large Enterprises), Deployment (Cloud, On-Premise), End-User Industry (BFSI, IT and Telecom, Government and Defence, and More), and Geography. The Market Forecasts are Provided in Terms of Value (USD).

  4. G

    Data Mining Tools Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Data Mining Tools Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/data-mining-tools-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Aug 4, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Mining Tools Market Outlook




    According to our latest research, the global Data Mining Tools market size reached USD 1.93 billion in 2024, reflecting robust industry momentum. The market is expected to grow at a CAGR of 12.7% from 2025 to 2033, reaching a projected value of USD 5.69 billion by 2033. This growth is primarily driven by the increasing adoption of advanced analytics across diverse industries, rapid digital transformation, and the necessity for actionable insights from massive data volumes.




    One of the pivotal growth factors propelling the Data Mining Tools market is the exponential rise in data generation, particularly through digital channels, IoT devices, and enterprise applications. Organizations across sectors are leveraging data mining tools to extract meaningful patterns, trends, and correlations from structured and unstructured data. The need for improved decision-making, operational efficiency, and competitive advantage has made data mining an essential component of modern business strategies. Furthermore, advancements in artificial intelligence and machine learning are enhancing the capabilities of these tools, enabling predictive analytics, anomaly detection, and automation of complex analytical tasks, which further fuels market expansion.




    Another significant driver is the growing demand for customer-centric solutions in industries such as retail, BFSI, and healthcare. Data mining tools are increasingly being used for customer relationship management, targeted marketing, fraud detection, and risk management. By analyzing customer behavior and preferences, organizations can personalize their offerings, optimize marketing campaigns, and mitigate risks. The integration of data mining tools with cloud platforms and big data technologies has also simplified deployment and scalability, making these solutions accessible to small and medium-sized enterprises (SMEs) as well as large organizations. This democratization of advanced analytics is creating new growth avenues for vendors and service providers.




    The regulatory landscape and the increasing emphasis on data privacy and security are also shaping the development and adoption of Data Mining Tools. Compliance with frameworks such as GDPR, HIPAA, and CCPA necessitates robust data governance and transparent analytics processes. Vendors are responding by incorporating features like data masking, encryption, and audit trails into their solutions, thereby enhancing trust and adoption among regulated industries. Additionally, the emergence of industry-specific data mining applications, such as fraud detection in BFSI and predictive diagnostics in healthcare, is expanding the addressable market and fostering innovation.




    From a regional perspective, North America currently dominates the Data Mining Tools market owing to the early adoption of advanced analytics, strong presence of leading technology vendors, and high investments in digital transformation. However, the Asia Pacific region is emerging as a lucrative market, driven by rapid industrialization, expansion of IT infrastructure, and growing awareness of data-driven decision-making in countries like China, India, and Japan. Europe, with its focus on data privacy and digital innovation, also represents a significant market share, while Latin America and the Middle East & Africa are witnessing steady growth as organizations in these regions modernize their operations and adopt cloud-based analytics solutions.





    Component Analysis




    The Component segment of the Data Mining Tools market is bifurcated into Software and Services. Software remains the dominant segment, accounting for the majority of the market share in 2024. This dominance is attributed to the continuous evolution of data mining algorithms, the proliferation of user-friendly graphical interfaces, and the integration of advanced analytics capabilities such as machine learning, artificial intelligence, and natural language pro

  5. d

    Data from: Data Mining at NASA: From Theory to Applications

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Aug 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Data Mining at NASA: From Theory to Applications [Dataset]. https://catalog.data.gov/dataset/data-mining-at-nasa-from-theory-to-applications
    Explore at:
    Dataset updated
    Aug 23, 2025
    Dataset provided by
    Dashlink
    Description

    NASA has some of the largest and most complex data sources in the world, with data sources ranging from the earth sciences, space sciences, and massive distributed engineering data sets from commercial aircraft and spacecraft. This talk will discuss some of the issues and algorithms developed to analyze and discover patterns in these data sets. We will also provide an overview of a large research program in Integrated Vehicle Health Management. The goal of this program is to develop advanced technologies to automatically detect, diagnose, predict, and mitigate adverse events during the flight of an aircraft. A case study will be presented on a recent data mining analysis performed to support the Flight Readiness Review of the Space Shuttle Mission STS-119.

  6. e

    Statistical Analysis and Data Mining - impact-factor

    • exaly.com
    csv, json
    Updated Nov 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Statistical Analysis and Data Mining - impact-factor [Dataset]. https://exaly.com/journal/28577/statistical-analysis-and-data-mining
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Nov 1, 2025
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    The graph shows the changes in the impact factor of ^ and its corresponding percentile for the sake of comparison with the entire literature. Impact Factor is the most common scientometric index, which is defined by the number of citations of papers in two preceding years divided by the number of papers published in those years.

  7. Survey Data - Entrepreneurs Data Mining

    • kaggle.com
    zip
    Updated Nov 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lay Christian (2024). Survey Data - Entrepreneurs Data Mining [Dataset]. https://www.kaggle.com/datasets/laychristian/survey-data-entrepreneurs-data-mining
    Explore at:
    zip(38815 bytes)Available download formats
    Dataset updated
    Nov 21, 2024
    Authors
    Lay Christian
    Description

    Title: Identifying Factors that Affect Entrepreneurs’ Use of Data Mining for Analytics Authors: Edward Matthew Dominica, Feylin Wijaya, Andrew Giovanni Winoto, Christian Conference: The 4th International Conference on Electrical, Computer, Communications, and Mechatronics Engineering https://www.iceccme.com/home

    This dataset was created to support research focused on understanding the factors influencing entrepreneurs’ adoption of data mining techniques for business analytics. The dataset contains carefully curated data points that reflect entrepreneurial behaviors, decision-making criteria, and the role of data mining in enhancing business insights.

    Researchers and practitioners can leverage this dataset to explore patterns, conduct statistical analyses, and build predictive models to gain a deeper understanding of entrepreneurial adoption of data mining.

    Intended Use: This dataset is designed for research and academic purposes, especially in the fields of business analytics, entrepreneurship, and data mining. It is suitable for conducting exploratory data analysis, hypothesis testing, and model development.

    Citation: If you use this dataset in your research or publication, please cite the paper presented at the ICECCME 2024 conference using the following format: Edward Matthew Dominica, Feylin Wijaya, Andrew Giovanni Winoto, Christian. Identifying Factors that Affect Entrepreneurs’ Use of Data Mining for Analytics. The 4th International Conference on Electrical, Computer, Communications, and Mechatronics Engineering (2024).

  8. d

    Privacy Preserving Distributed Data Mining

    • catalog.data.gov
    • s.cnmilf.com
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Privacy Preserving Distributed Data Mining [Dataset]. https://catalog.data.gov/dataset/privacy-preserving-distributed-data-mining
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    Distributed data mining from privacy-sensitive multi-party data is likely to play an important role in the next generation of integrated vehicle health monitoring systems. For example, consider an airline manufacturer [tex]$\mathcal{C}$[/tex] manufacturing an aircraft model [tex]$A$[/tex] and selling it to five different airline operating companies [tex]$\mathcal{V}_1 \dots \mathcal{V}_5$[/tex]. These aircrafts, during their operation, generate huge amount of data. Mining this data can reveal useful information regarding the health and operability of the aircraft which can be useful for disaster management and prediction of efficient operating regimes. Now if the manufacturer [tex]$\mathcal{C}$[/tex] wants to analyze the performance data collected from different aircrafts of model-type [tex]$A$[/tex] belonging to different airlines then central collection of data for subsequent analysis may not be an option. It should be noted that the result of this analysis may be statistically more significant if the data for aircraft model [tex]$A$[/tex] across all companies were available to [tex]$\mathcal{C}$[/tex]. The potential problems arising out of such a data mining scenario are:

  9. Video-to-Model Data Set

    • figshare.com
    • commons.datacite.org
    xml
    Updated Mar 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sönke Knoch; Shreeraman Ponpathirkoottam; Tim Schwartz (2020). Video-to-Model Data Set [Dataset]. http://doi.org/10.6084/m9.figshare.12026850.v1
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Mar 24, 2020
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Sönke Knoch; Shreeraman Ponpathirkoottam; Tim Schwartz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data set belongs to the paper "Video-to-Model: Unsupervised Trace Extraction from Videos for Process Discovery and Conformance Checking in Manual Assembly", submitted on March 24, 2020, to the 18th International Conference on Business Process Management (BPM).Abstract: Manual activities are often hidden deep down in discrete manufacturing processes. For the elicitation and optimization of process behavior, complete information about the execution of Manual activities are required. Thus, an approach is presented on how execution level information can be extracted from videos in manual assembly. The goal is the generation of a log that can be used in state-of-the-art process mining tools. The test bed for the system was lightweight and scalable consisting of an assembly workstation equipped with a single RGB camera recording only the hand movements of the worker from top. A neural network based real-time object classifier was trained to detect the worker’s hands. The hand detector delivers the input for an algorithm, which generates trajectories reflecting the movement paths of the hands. Those trajectories are automatically assigned to work steps using the position of material boxes on the assembly shelf as reference points and hierarchical clustering of similar behaviors with dynamic time warping. The system has been evaluated in a task-based study with ten participants in a laboratory, but under realistic conditions. The generated logs have been loaded into the process mining toolkit ProM to discover the underlying process model and to detect deviations from both, instructions and ground truth, using conformance checking. The results show that process mining delivers insights about the assembly process and the system’s precision.The data set contains the generated and the annotated logs based on the video material gathered during the user study. In addition, the petri nets from the process discovery and conformance checking conducted with ProM (http://www.promtools.org) and the reference nets modeled with Yasper (http://www.yasper.org/) are provided.

  10. Z

    Data Analysis for the Systematic Literature Review of DL4SE

    • data.niaid.nih.gov
    • data-staging.niaid.nih.gov
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cody Watson; Nathan Cooper; David Nader; Kevin Moran; Denys Poshyvanyk (2024). Data Analysis for the Systematic Literature Review of DL4SE [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4768586
    Explore at:
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    Washington and Lee University
    College of William and Mary
    Authors
    Cody Watson; Nathan Cooper; David Nader; Kevin Moran; Denys Poshyvanyk
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data Analysis is the process that supports decision-making and informs arguments in empirical studies. Descriptive statistics, Exploratory Data Analysis (EDA), and Confirmatory Data Analysis (CDA) are the approaches that compose Data Analysis (Xia & Gong; 2014). An Exploratory Data Analysis (EDA) comprises a set of statistical and data mining procedures to describe data. We ran EDA to provide statistical facts and inform conclusions. The mined facts allow attaining arguments that would influence the Systematic Literature Review of DL4SE.

    The Systematic Literature Review of DL4SE requires formal statistical modeling to refine the answers for the proposed research questions and formulate new hypotheses to be addressed in the future. Hence, we introduce DL4SE-DA, a set of statistical processes and data mining pipelines that uncover hidden relationships among Deep Learning reported literature in Software Engineering. Such hidden relationships are collected and analyzed to illustrate the state-of-the-art of DL techniques employed in the software engineering context.

    Our DL4SE-DA is a simplified version of the classical Knowledge Discovery in Databases, or KDD (Fayyad, et al; 1996). The KDD process extracts knowledge from a DL4SE structured database. This structured database was the product of multiple iterations of data gathering and collection from the inspected literature. The KDD involves five stages:

    Selection. This stage was led by the taxonomy process explained in section xx of the paper. After collecting all the papers and creating the taxonomies, we organize the data into 35 features or attributes that you find in the repository. In fact, we manually engineered features from the DL4SE papers. Some of the features are venue, year published, type of paper, metrics, data-scale, type of tuning, learning algorithm, SE data, and so on.

    Preprocessing. The preprocessing applied was transforming the features into the correct type (nominal), removing outliers (papers that do not belong to the DL4SE), and re-inspecting the papers to extract missing information produced by the normalization process. For instance, we normalize the feature “metrics” into “MRR”, “ROC or AUC”, “BLEU Score”, “Accuracy”, “Precision”, “Recall”, “F1 Measure”, and “Other Metrics”. “Other Metrics” refers to unconventional metrics found during the extraction. Similarly, the same normalization was applied to other features like “SE Data” and “Reproducibility Types”. This separation into more detailed classes contributes to a better understanding and classification of the paper by the data mining tasks or methods.

    Transformation. In this stage, we omitted to use any data transformation method except for the clustering analysis. We performed a Principal Component Analysis to reduce 35 features into 2 components for visualization purposes. Furthermore, PCA also allowed us to identify the number of clusters that exhibit the maximum reduction in variance. In other words, it helped us to identify the number of clusters to be used when tuning the explainable models.

    Data Mining. In this stage, we used three distinct data mining tasks: Correlation Analysis, Association Rule Learning, and Clustering. We decided that the goal of the KDD process should be oriented to uncover hidden relationships on the extracted features (Correlations and Association Rules) and to categorize the DL4SE papers for a better segmentation of the state-of-the-art (Clustering). A clear explanation is provided in the subsection “Data Mining Tasks for the SLR od DL4SE”. 5.Interpretation/Evaluation. We used the Knowledge Discover to automatically find patterns in our papers that resemble “actionable knowledge”. This actionable knowledge was generated by conducting a reasoning process on the data mining outcomes. This reasoning process produces an argument support analysis (see this link).

    We used RapidMiner as our software tool to conduct the data analysis. The procedures and pipelines were published in our repository.

    Overview of the most meaningful Association Rules. Rectangles are both Premises and Conclusions. An arrow connecting a Premise with a Conclusion implies that given some premise, the conclusion is associated. E.g., Given that an author used Supervised Learning, we can conclude that their approach is irreproducible with a certain Support and Confidence.

    Support = Number of occurrences this statement is true divided by the amount of statements Confidence = The support of the statement divided by the number of occurrences of the premise

  11. e

    Statistical Analysis and Data Mining - if-computation

    • exaly.com
    csv, json
    Updated Nov 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Statistical Analysis and Data Mining - if-computation [Dataset]. https://exaly.com/journal/28577/statistical-analysis-and-data-mining/impact-factor
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Nov 1, 2025
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    This graph shows how the impact factor of ^ is computed. The left axis depicts the number of papers published in years X-1 and X-2, and the right axis displays their citations in year X.

  12. D

    Data Mining Tools Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Data Mining Tools Report [Dataset]. https://www.archivemarketresearch.com/reports/data-mining-tools-34258
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Feb 16, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The size of the Data Mining Tools market was valued at USD 571.4 million in 2024 and is projected to reach USD 882.13 million by 2033, with an expected CAGR of 6.4 % during the forecast period.

  13. d

    Distributed Data Mining in Peer-to-Peer Networks

    • catalog.data.gov
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Distributed Data Mining in Peer-to-Peer Networks [Dataset]. https://catalog.data.gov/dataset/distributed-data-mining-in-peer-to-peer-networks
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Dashlink
    Description

    Peer-to-peer (P2P) networks are gaining popularity in many applications such as file sharing, e-commerce, and social networking, many of which deal with rich, distributed data sources that can benefit from data mining. P2P networks are, in fact,well-suited to distributed data mining (DDM), which deals with the problem of data analysis in environments with distributed data,computing nodes,and users. This article offers an overview of DDM applications and algorithms for P2P environments,focusing particularly on local algorithms that perform data analysis by using computing primitives with limited communication overhead. The authors describe both exact and approximate local P2P data mining algorithms that work in a decentralized and communication-efficient manner.

  14. m

    Educational Attainment in North Carolina Public Schools: Use of statistical...

    • data.mendeley.com
    Updated Nov 14, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scott Herford (2018). Educational Attainment in North Carolina Public Schools: Use of statistical modeling, data mining techniques, and machine learning algorithms to explore 2014-2017 North Carolina Public School datasets. [Dataset]. http://doi.org/10.17632/6cm9wyd5g5.1
    Explore at:
    Dataset updated
    Nov 14, 2018
    Authors
    Scott Herford
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The purpose of data mining analysis is always to find patterns of the data using certain kind of techiques such as classification or regression. It is not always feasible to apply classification algorithms directly to dataset. Before doing any work on the data, the data has to be pre-processed and this process normally involves feature selection and dimensionality reduction. We tried to use clustering as a way to reduce the dimension of the data and create new features. Based on our project, after using clustering prior to classification, the performance has not improved much. The reason why it has not improved could be the features we selected to perform clustering are not well suited for it. Because of the nature of the data, classification tasks are going to provide more information to work with in terms of improving knowledge and overall performance metrics. From the dimensionality reduction perspective: It is different from Principle Component Analysis which guarantees finding the best linear transformation that reduces the number of dimensions with a minimum loss of information. Using clusters as a technique of reducing the data dimension will lose a lot of information since clustering techniques are based a metric of 'distance'. At high dimensions euclidean distance loses pretty much all meaning. Therefore using clustering as a "Reducing" dimensionality by mapping data points to cluster numbers is not always good since you may lose almost all the information. From the creating new features perspective: Clustering analysis creates labels based on the patterns of the data, it brings uncertainties into the data. By using clustering prior to classification, the decision on the number of clusters will highly affect the performance of the clustering, then affect the performance of classification. If the part of features we use clustering techniques on is very suited for it, it might increase the overall performance on classification. For example, if the features we use k-means on are numerical and the dimension is small, the overall classification performance may be better. We did not lock in the clustering outputs using a random_state in the effort to see if they were stable. Our assumption was that if the results vary highly from run to run which they definitely did, maybe the data just does not cluster well with the methods selected at all. Basically, the ramification we saw was that our results are not much better than random when applying clustering to the data preprocessing. Finally, it is important to ensure a feedback loop is in place to continuously collect the same data in the same format from which the models were created. This feedback loop can be used to measure the model real world effectiveness and also to continue to revise the models from time to time as things change.

  15. Data Mining Tools Market Size, Share, Growth, Forecast, By Component...

    • verifiedmarketresearch.com
    Updated Jun 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2025). Data Mining Tools Market Size, Share, Growth, Forecast, By Component (Software, Services), By Deployment Mode (On-Premise, Cloud-Based), By Function (Data Cleaning, Data Integration, Data Transformation, Data Visualization), By Application (Marketing, Fraud Detection & Risk Management, Cybersecurity, Customer Relationship Management (CRM)) [Dataset]. https://www.verifiedmarketresearch.com/product/data-mining-tools-market/
    Explore at:
    Dataset updated
    Jun 13, 2025
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Global
    Description

    Data Mining Tools Market size was valued at USD 915.42 Million in 2024 and is projected to reach USD 2171.21 Million by 2032, growing at a CAGR of 11.40% from 2026 to 2032.• Big Data Explosion: Exponential growth in data generation from IoT devices, social media, mobile applications, and digital transactions is creating massive datasets requiring advanced mining tools for analysis. Organizations need sophisticated solutions to extract meaningful insights from structured and unstructured data sources for competitive advantage.• Digital Transformation Initiatives: Accelerating digital transformation across industries is driving demand for data mining tools that enable data-driven decision making and business intelligence. Companies are investing in analytics capabilities to optimize operations, improve customer experiences, and develop new revenue streams through data monetization strategies.

  16. D

    Data Mining Software Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Data Mining Software Report [Dataset]. https://www.marketresearchforecast.com/reports/data-mining-software-41235
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Mar 19, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Data Mining Software market is experiencing robust growth, driven by the increasing need for businesses to extract valuable insights from massive datasets. The market, estimated at $15 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033, reaching an estimated $45 billion by 2033. This expansion is fueled by several key factors. The burgeoning adoption of cloud-based solutions offers scalability and cost-effectiveness, attracting both large enterprises and SMEs. Furthermore, advancements in machine learning and artificial intelligence algorithms are enhancing the accuracy and efficiency of data mining processes, leading to better decision-making across various sectors like finance, healthcare, and marketing. The rise of big data analytics and the increasing availability of affordable, high-powered computing resources are also significant contributors to market growth. However, the market faces certain challenges. Data security and privacy concerns remain paramount, especially with the increasing volume of sensitive information being processed. The complexity of data mining software and the need for skilled professionals to operate and interpret the results present a barrier to entry for some businesses. The high initial investment cost associated with implementing sophisticated data mining solutions can also deter smaller organizations. Nevertheless, the ongoing technological advancements and the growing recognition of the strategic value of data-driven decision-making are expected to overcome these restraints and propel the market toward continued expansion. The market segmentation reveals a strong preference for cloud-based solutions, reflecting the industry's trend toward flexible and scalable IT infrastructure. Large enterprises currently dominate the market share, but SMEs are rapidly adopting data mining software, indicating promising future growth in this segment. Geographic analysis shows that North America and Europe are currently leading the market, but the Asia-Pacific region is poised for significant growth due to increasing digitalization and economic expansion in countries like China and India.

  17. Orange dataset table

    • figshare.com
    xlsx
    Updated Mar 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rui Simões (2022). Orange dataset table [Dataset]. http://doi.org/10.6084/m9.figshare.19146410.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 4, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Rui Simões
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The complete dataset used in the analysis comprises 36 samples, each described by 11 numeric features and 1 target. The attributes considered were caspase 3/7 activity, Mitotracker red CMXRos area and intensity (3 h and 24 h incubations with both compounds), Mitosox oxidation (3 h incubation with the referred compounds) and oxidation rate, DCFDA fluorescence (3 h and 24 h incubations with either compound) and oxidation rate, and DQ BSA hydrolysis. The target of each instance corresponds to one of the 9 possible classes (4 samples per class): Control, 6.25, 12.5, 25 and 50 µM for 6-OHDA and 0.03, 0.06, 0.125 and 0.25 µM for rotenone. The dataset is balanced, it does not contain any missing values and data was standardized across features. The small number of samples prevented a full and strong statistical analysis of the results. Nevertheless, it allowed the identification of relevant hidden patterns and trends.

    Exploratory data analysis, information gain, hierarchical clustering, and supervised predictive modeling were performed using Orange Data Mining version 3.25.1 [41]. Hierarchical clustering was performed using the Euclidean distance metric and weighted linkage. Cluster maps were plotted to relate the features with higher mutual information (in rows) with instances (in columns), with the color of each cell representing the normalized level of a particular feature in a specific instance. The information is grouped both in rows and in columns by a two-way hierarchical clustering method using the Euclidean distances and average linkage. Stratified cross-validation was used to train the supervised decision tree. A set of preliminary empirical experiments were performed to choose the best parameters for each algorithm, and we verified that, within moderate variations, there were no significant changes in the outcome. The following settings were adopted for the decision tree algorithm: minimum number of samples in leaves: 2; minimum number of samples required to split an internal node: 5; stop splitting when majority reaches: 95%; criterion: gain ratio. The performance of the supervised model was assessed using accuracy, precision, recall, F-measure and area under the ROC curve (AUC) metrics.

  18. D

    Data Mining and Modeling Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Data Mining and Modeling Report [Dataset]. https://www.archivemarketresearch.com/reports/data-mining-and-modeling-25208
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Feb 14, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The size of the Data Mining and Modeling market was valued at USD XXX million in 2024 and is projected to reach USD XXX million by 2033, with an expected CAGR of XX % during the forecast period.

  19. Data Mining Software in Australia - Market Research Report (2015-2030)

    • ibisworld.com
    Updated Jan 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IBISWorld (2025). Data Mining Software in Australia - Market Research Report (2015-2030) [Dataset]. https://www.ibisworld.com/australia/employment/data-mining-software/5598/
    Explore at:
    Dataset updated
    Jan 8, 2025
    Dataset authored and provided by
    IBISWorld
    License

    https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/

    Time period covered
    2015 - 2030
    Area covered
    Australia
    Description

    Companies in this industry develop software for data mining. Data mining is the process of extracting patterns from large data sets.

  20. Privacy Preserving Distributed Data Mining - Dataset - NASA Open Data Portal...

    • data.nasa.gov
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Privacy Preserving Distributed Data Mining - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/privacy-preserving-distributed-data-mining
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    Distributed data mining from privacy-sensitive multi-party data is likely to play an important role in the next generation of integrated vehicle health monitoring systems. For example, consider an airline manufacturer [tex]$\mathcal{C}$[/tex] manufacturing an aircraft model [tex]$A$[/tex] and selling it to five different airline operating companies [tex]$\mathcal{V}_1 \dots \mathcal{V}_5$[/tex]. These aircrafts, during their operation, generate huge amount of data. Mining this data can reveal useful information regarding the health and operability of the aircraft which can be useful for disaster management and prediction of efficient operating regimes. Now if the manufacturer [tex]$\mathcal{C}$[/tex] wants to analyze the performance data collected from different aircrafts of model-type [tex]$A$[/tex] belonging to different airlines then central collection of data for subsequent analysis may not be an option. It should be noted that the result of this analysis may be statistically more significant if the data for aircraft model [tex]$A$[/tex] across all companies were available to [tex]$\mathcal{C}$[/tex]. The potential problems arising out of such a data mining scenario are:

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bisresearch (2025). Data Mining Tools Market - A Global and Regional Analysis [Dataset]. https://bisresearch.com/industry-report/global-data-mining-tools-market.html
Organization logo

Data Mining Tools Market - A Global and Regional Analysis

Explore at:
csv, pdfAvailable download formats
Dataset updated
Nov 30, 2025
Dataset authored and provided by
Bisresearch
License

https://bisresearch.com/privacy-policy-cookie-restriction-modehttps://bisresearch.com/privacy-policy-cookie-restriction-mode

Time period covered
2023 - 2033
Area covered
Worldwide
Description

The Data Mining Tools Market is expected to be valued at $1.24 billion in 2024, with an anticipated expansion at a CAGR of 11.63% to reach $3.73 billion by 2034.

Search
Clear search
Close search
Google apps
Main menu