100+ datasets found
  1. dataset data mining

    • kaggle.com
    zip
    Updated May 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IqbalPanre22021 (2025). dataset data mining [Dataset]. https://www.kaggle.com/datasets/iqbalpanre22021/dataset-data-mining
    Explore at:
    zip(17079 bytes)Available download formats
    Dataset updated
    May 21, 2025
    Authors
    IqbalPanre22021
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset

    This dataset was created by IqbalPanre22021

    Released under Apache 2.0

    Contents

  2. Ensemble Data Mining Methods - Dataset - NASA Open Data Portal

    • data.nasa.gov
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Ensemble Data Mining Methods - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/ensemble-data-mining-methods
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    Ensemble Data Mining Methods, also known as Committee Methods or Model Combiners, are machine learning methods that leverage the power of multiple models to achieve better prediction accuracy than any of the individual models could on their own. The basic goal when designing an ensemble is the same as when establishing a committee of people: each member of the committee should be as competent as possible, but the members should be complementary to one another. If the members are not complementary, i.e., if they always agree, then the committee is unnecessary---any one member is sufficient. If the members are complementary, then when one or a few members make an error, the probability is high that the remaining members can correct this error. Research in ensemble methods has largely revolved around designing ensembles consisting of competent yet complementary models.

  3. Survey Data - Entrepreneurs Data Mining

    • kaggle.com
    zip
    Updated Nov 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lay Christian (2024). Survey Data - Entrepreneurs Data Mining [Dataset]. https://www.kaggle.com/datasets/laychristian/survey-data-entrepreneurs-data-mining
    Explore at:
    zip(38815 bytes)Available download formats
    Dataset updated
    Nov 21, 2024
    Authors
    Lay Christian
    Description

    Title: Identifying Factors that Affect Entrepreneurs’ Use of Data Mining for Analytics Authors: Edward Matthew Dominica, Feylin Wijaya, Andrew Giovanni Winoto, Christian Conference: The 4th International Conference on Electrical, Computer, Communications, and Mechatronics Engineering https://www.iceccme.com/home

    This dataset was created to support research focused on understanding the factors influencing entrepreneurs’ adoption of data mining techniques for business analytics. The dataset contains carefully curated data points that reflect entrepreneurial behaviors, decision-making criteria, and the role of data mining in enhancing business insights.

    Researchers and practitioners can leverage this dataset to explore patterns, conduct statistical analyses, and build predictive models to gain a deeper understanding of entrepreneurial adoption of data mining.

    Intended Use: This dataset is designed for research and academic purposes, especially in the fields of business analytics, entrepreneurship, and data mining. It is suitable for conducting exploratory data analysis, hypothesis testing, and model development.

    Citation: If you use this dataset in your research or publication, please cite the paper presented at the ICECCME 2024 conference using the following format: Edward Matthew Dominica, Feylin Wijaya, Andrew Giovanni Winoto, Christian. Identifying Factors that Affect Entrepreneurs’ Use of Data Mining for Analytics. The 4th International Conference on Electrical, Computer, Communications, and Mechatronics Engineering (2024).

  4. Orange dataset table

    • figshare.com
    xlsx
    Updated Mar 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rui Simões (2022). Orange dataset table [Dataset]. http://doi.org/10.6084/m9.figshare.19146410.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 4, 2022
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Rui Simões
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The complete dataset used in the analysis comprises 36 samples, each described by 11 numeric features and 1 target. The attributes considered were caspase 3/7 activity, Mitotracker red CMXRos area and intensity (3 h and 24 h incubations with both compounds), Mitosox oxidation (3 h incubation with the referred compounds) and oxidation rate, DCFDA fluorescence (3 h and 24 h incubations with either compound) and oxidation rate, and DQ BSA hydrolysis. The target of each instance corresponds to one of the 9 possible classes (4 samples per class): Control, 6.25, 12.5, 25 and 50 µM for 6-OHDA and 0.03, 0.06, 0.125 and 0.25 µM for rotenone. The dataset is balanced, it does not contain any missing values and data was standardized across features. The small number of samples prevented a full and strong statistical analysis of the results. Nevertheless, it allowed the identification of relevant hidden patterns and trends.

    Exploratory data analysis, information gain, hierarchical clustering, and supervised predictive modeling were performed using Orange Data Mining version 3.25.1 [41]. Hierarchical clustering was performed using the Euclidean distance metric and weighted linkage. Cluster maps were plotted to relate the features with higher mutual information (in rows) with instances (in columns), with the color of each cell representing the normalized level of a particular feature in a specific instance. The information is grouped both in rows and in columns by a two-way hierarchical clustering method using the Euclidean distances and average linkage. Stratified cross-validation was used to train the supervised decision tree. A set of preliminary empirical experiments were performed to choose the best parameters for each algorithm, and we verified that, within moderate variations, there were no significant changes in the outcome. The following settings were adopted for the decision tree algorithm: minimum number of samples in leaves: 2; minimum number of samples required to split an internal node: 5; stop splitting when majority reaches: 95%; criterion: gain ratio. The performance of the supervised model was assessed using accuracy, precision, recall, F-measure and area under the ROC curve (AUC) metrics.

  5. d

    Ensemble Data Mining Methods

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Ensemble Data Mining Methods [Dataset]. https://catalog.data.gov/dataset/ensemble-data-mining-methods
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Dashlink
    Description

    Ensemble Data Mining Methods, also known as Committee Methods or Model Combiners, are machine learning methods that leverage the power of multiple models to achieve better prediction accuracy than any of the individual models could on their own. The basic goal when designing an ensemble is the same as when establishing a committee of people: each member of the committee should be as competent as possible, but the members should be complementary to one another. If the members are not complementary, i.e., if they always agree, then the committee is unnecessary---any one member is sufficient. If the members are complementary, then when one or a few members make an error, the probability is high that the remaining members can correct this error. Research in ensemble methods has largely revolved around designing ensembles consisting of competent yet complementary models.

  6. d

    Privacy Preserving Distributed Data Mining

    • catalog.data.gov
    • s.cnmilf.com
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Privacy Preserving Distributed Data Mining [Dataset]. https://catalog.data.gov/dataset/privacy-preserving-distributed-data-mining
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    Distributed data mining from privacy-sensitive multi-party data is likely to play an important role in the next generation of integrated vehicle health monitoring systems. For example, consider an airline manufacturer [tex]$\mathcal{C}$[/tex] manufacturing an aircraft model [tex]$A$[/tex] and selling it to five different airline operating companies [tex]$\mathcal{V}_1 \dots \mathcal{V}_5$[/tex]. These aircrafts, during their operation, generate huge amount of data. Mining this data can reveal useful information regarding the health and operability of the aircraft which can be useful for disaster management and prediction of efficient operating regimes. Now if the manufacturer [tex]$\mathcal{C}$[/tex] wants to analyze the performance data collected from different aircrafts of model-type [tex]$A$[/tex] belonging to different airlines then central collection of data for subsequent analysis may not be an option. It should be noted that the result of this analysis may be statistically more significant if the data for aircraft model [tex]$A$[/tex] across all companies were available to [tex]$\mathcal{C}$[/tex]. The potential problems arising out of such a data mining scenario are:

  7. Real Market Data for Association Rules

    • kaggle.com
    zip
    Updated Sep 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ruken Missonnier (2023). Real Market Data for Association Rules [Dataset]. https://www.kaggle.com/datasets/rukenmissonnier/real-market-data
    Explore at:
    zip(3068 bytes)Available download formats
    Dataset updated
    Sep 15, 2023
    Authors
    Ruken Missonnier
    Description

    1. Introduction

    Within the confines of this document, we embark on a comprehensive journey delving into the intricacies of a dataset meticulously curated for the purpose of association rules mining. This sophisticated data mining technique is a linchpin in the realms of market basket analysis. The dataset in question boasts an array of items commonly found in retail transactions, each meticulously encoded as a binary variable, with "1" denoting presence and "0" indicating absence in individual transactions.

    2. Dataset Overview

    Our dataset unfolds as an opulent tapestry of distinct columns, each dedicated to the representation of a specific item:

    • Bread
    • Honey
    • Bacon
    • Toothpaste
    • Banana
    • Apple
    • Hazelnut
    • Cheese
    • Meat
    • Carrot
    • Cucumber
    • Onion
    • Milk
    • Butter
    • ShavingFoam
    • Salt
    • Flour
    • HeavyCream
    • Egg
    • Olive
    • Shampoo
    • Sugar

    3. Purpose of the Dataset

    The raison d'être of this dataset is to serve as a catalyst for the discovery of intricate associations and patterns concealed within the labyrinthine network of customer transactions. Each row in this dataset mirrors a solitary transaction, while the values within each column serve as sentinels, indicating whether a particular item was welcomed into a transaction's embrace or relegated to the periphery.

    4. Data Format

    The data within this repository is rendered in a binary symphony, where the enigmatic "1" enunciates the acquisition of an item, and the stoic "0" signifies its conspicuous absence. This binary manifestation serves to distill the essence of the dataset, centering the focus on item presence, rather than the quantum thereof.

    5. Potential Applications

    This dataset unfurls its wings to encompass an assortment of prospective applications, including but not limited to:

    • Market Basket Analysis: Discerning items that waltz together in shopping carts, thus bestowing enlightenment upon the orchestration of product placement and marketing strategies.
    • Recommender Systems: Crafting bespoke product recommendations, meticulously tailored to each customer's historical transactional symphony.
    • Inventory Management: Masterfully fine-tuning stock levels for items that find kinship in frequent co-acquisition, thereby orchestrating a harmonious reduction in carrying costs and stockouts.
    • Customer Behavior Analysis: Peering into the depths of customer proclivities and purchase patterns, paving the way for the sculpting of exquisite marketing campaigns.

    6. Analysis Techniques

    The treasure trove of this dataset beckons the deployment of quintessential techniques, among them the venerable Apriori and FP-Growth algorithms. These stalwart algorithms are proficient at ferreting out the elusive frequent itemsets and invaluable association rules, shedding light on the arcane symphony of customer behavior and item co-occurrence patterns.

    7. Conclusion

    In closing, the association rules dataset unfurled before you offers an alluring odyssey, replete with the promise of discovering priceless patterns and affiliations concealed within the tapestry of transactional data. Through the artistry of data mining algorithms, businesses and analysts stand poised to unearth hitherto latent insights capable of steering the helm of strategic decisions, elevating the pantheon of customer experiences, and orchestrating the symphony of operational optimization.

  8. Data Mining at NASA: From Theory to Applications - Dataset - NASA Open Data...

    • data.nasa.gov
    Updated Mar 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Data Mining at NASA: From Theory to Applications - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/data-mining-at-nasa-from-theory-to-applications
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    NASA has some of the largest and most complex data sources in the world, with data sources ranging from the earth sciences, space sciences, and massive distributed engineering data sets from commercial aircraft and spacecraft. This talk will discuss some of the issues and algorithms developed to analyze and discover patterns in these data sets. We will also provide an overview of a large research program in Integrated Vehicle Health Management. The goal of this program is to develop advanced technologies to automatically detect, diagnose, predict, and mitigate adverse events during the flight of an aircraft. A case study will be presented on a recent data mining analysis performed to support the Flight Readiness Review of the Space Shuttle Mission STS-119.

  9. Data from: PTMTorrent: A Dataset for Mining Open-source Pre-trained Model...

    • figshare.com
    pdf
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wenxin Jiang; Nicholas Synovic; Purvish Jajal; Taylor R. Schorlemmer; Arav Tewari; Bhavesh Pareek; George K. Thiruvathukal; James C. Davis (2023). PTMTorrent: A Dataset for Mining Open-source Pre-trained Model Packages [Dataset]. http://doi.org/10.6084/m9.figshare.22009880.v4
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Wenxin Jiang; Nicholas Synovic; Purvish Jajal; Taylor R. Schorlemmer; Arav Tewari; Bhavesh Pareek; George K. Thiruvathukal; James C. Davis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Due to the cost of developing and training deep learning models from scratch, machine learning engineers have begun to reuse pre-trained models (PTMs) and fine-tune them for downstream tasks. PTM registries known as “model hubs” support engineers in distributing and reusing deep learning models. PTM packages include pre-trained weights, documentation, model architectures, datasets, and metadata. Mining the information in PTM packages will enable the discovery of engineering phenomena and tools to support software engineers. However, accessing this information is difficult — there are many PTM registries, and both the registries and the individual packages may have rate limiting for accessing the data.

    We present an open-source dataset, PTMTorrent, to facilitate the evaluation and understanding of PTM packages. This paper describes the creation, structure, usage, and limitations of the dataset. The dataset includes a snapshot of 5 model hubs and a total of 15,913 PTM packages. These packages are represented in a uniform data schema for cross-hub mining. We describe prior uses of this data and suggest research opportunities for mining using our dataset.

    We provide links to the PTM Dataset and PTM Torrent Source Code.

  10. d

    SIAM 2007 Text Mining Competition dataset

    • catalog.data.gov
    • data.nasa.gov
    • +1more
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). SIAM 2007 Text Mining Competition dataset [Dataset]. https://catalog.data.gov/dataset/siam-2007-text-mining-competition-dataset
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Dashlink
    Description

    Subject Area: Text Mining Description: This is the dataset used for the SIAM 2007 Text Mining competition. This competition focused on developing text mining algorithms for document classification. The documents in question were aviation safety reports that documented one or more problems that occurred during certain flights. The goal was to label the documents with respect to the types of problems that were described. This is a subset of the Aviation Safety Reporting System (ASRS) dataset, which is publicly available. How Data Was Acquired: The data for this competition came from human generated reports on incidents that occurred during a flight. Sample Rates, Parameter Description, and Format: There is one document per incident. The datasets are in raw text format. All documents for each set will be contained in a single file. Each row in this file corresponds to a single document. The first characters on each line of the file are the document number and a tilde separats the document number from the text itself. Anomalies/Faults: This is a document category classification problem.

  11. d

    Data Mining in Systems Health Management

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Data Mining in Systems Health Management [Dataset]. https://catalog.data.gov/dataset/data-mining-in-systems-health-management
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    This chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.

  12. w

    Dataset of book subjects that contain Learning Data Mining with Python

    • workwithdata.com
    Updated Nov 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2024). Dataset of book subjects that contain Learning Data Mining with Python [Dataset]. https://www.workwithdata.com/datasets/book-subjects?f=1&fcol0=j0-book&fop0=%3D&fval0=Learning+Data+Mining+with+Python&j=1&j0=books
    Explore at:
    Dataset updated
    Nov 7, 2024
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about book subjects. It has 2 rows and is filtered where the books is Learning Data Mining with Python. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.

  13. R

    Data Mining Test Dataset

    • universe.roboflow.com
    zip
    Updated Oct 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ons (2025). Data Mining Test Dataset [Dataset]. https://universe.roboflow.com/ons-eykpy/data-mining-test-fjlw4/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 20, 2025
    Dataset authored and provided by
    ons
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Cars Damage Cars Bounding Boxes
    Description

    Data Mining Test

    ## Overview
    
    Data Mining Test is a dataset for object detection tasks - it contains Cars Damage Cars annotations for 382 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  14. R

    Data Mining Kel 11 Dataset

    • universe.roboflow.com
    zip
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Mining (2025). Data Mining Kel 11 Dataset [Dataset]. https://universe.roboflow.com/data-mining-mtwls/data-mining-kel-11-zp4xe
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 29, 2025
    Dataset authored and provided by
    Data Mining
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Beras
    Description

    Data Mining Kel 11

    ## Overview
    
    Data Mining Kel 11 is a dataset for classification tasks - it contains Beras annotations for 59,785 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  15. Data Mining in Systems Health Management - Dataset - NASA Open Data Portal

    • data.nasa.gov
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Data Mining in Systems Health Management - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/data-mining-in-systems-health-management
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    This chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.

  16. Privacy Preserving Distributed Data Mining - Dataset - NASA Open Data Portal...

    • data.nasa.gov
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Privacy Preserving Distributed Data Mining - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/privacy-preserving-distributed-data-mining
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    Distributed data mining from privacy-sensitive multi-party data is likely to play an important role in the next generation of integrated vehicle health monitoring systems. For example, consider an airline manufacturer [tex]$\mathcal{C}$[/tex] manufacturing an aircraft model [tex]$A$[/tex] and selling it to five different airline operating companies [tex]$\mathcal{V}_1 \dots \mathcal{V}_5$[/tex]. These aircrafts, during their operation, generate huge amount of data. Mining this data can reveal useful information regarding the health and operability of the aircraft which can be useful for disaster management and prediction of efficient operating regimes. Now if the manufacturer [tex]$\mathcal{C}$[/tex] wants to analyze the performance data collected from different aircrafts of model-type [tex]$A$[/tex] belonging to different airlines then central collection of data for subsequent analysis may not be an option. It should be noted that the result of this analysis may be statistically more significant if the data for aircraft model [tex]$A$[/tex] across all companies were available to [tex]$\mathcal{C}$[/tex]. The potential problems arising out of such a data mining scenario are:

  17. Educational-Data-Mining

    • kaggle.com
    Updated Jan 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    sizlingdhairya (2023). Educational-Data-Mining [Dataset]. https://www.kaggle.com/datasets/sizlingdhairya1/educationaldatamining
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 18, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    sizlingdhairya
    Description

    The data consists of 6000 student entries from Balochistan.

  18. m

    Educational Attainment in North Carolina Public Schools: Use of statistical...

    • data.mendeley.com
    Updated Nov 14, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scott Herford (2018). Educational Attainment in North Carolina Public Schools: Use of statistical modeling, data mining techniques, and machine learning algorithms to explore 2014-2017 North Carolina Public School datasets. [Dataset]. http://doi.org/10.17632/6cm9wyd5g5.1
    Explore at:
    Dataset updated
    Nov 14, 2018
    Authors
    Scott Herford
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The purpose of data mining analysis is always to find patterns of the data using certain kind of techiques such as classification or regression. It is not always feasible to apply classification algorithms directly to dataset. Before doing any work on the data, the data has to be pre-processed and this process normally involves feature selection and dimensionality reduction. We tried to use clustering as a way to reduce the dimension of the data and create new features. Based on our project, after using clustering prior to classification, the performance has not improved much. The reason why it has not improved could be the features we selected to perform clustering are not well suited for it. Because of the nature of the data, classification tasks are going to provide more information to work with in terms of improving knowledge and overall performance metrics. From the dimensionality reduction perspective: It is different from Principle Component Analysis which guarantees finding the best linear transformation that reduces the number of dimensions with a minimum loss of information. Using clusters as a technique of reducing the data dimension will lose a lot of information since clustering techniques are based a metric of 'distance'. At high dimensions euclidean distance loses pretty much all meaning. Therefore using clustering as a "Reducing" dimensionality by mapping data points to cluster numbers is not always good since you may lose almost all the information. From the creating new features perspective: Clustering analysis creates labels based on the patterns of the data, it brings uncertainties into the data. By using clustering prior to classification, the decision on the number of clusters will highly affect the performance of the clustering, then affect the performance of classification. If the part of features we use clustering techniques on is very suited for it, it might increase the overall performance on classification. For example, if the features we use k-means on are numerical and the dimension is small, the overall classification performance may be better. We did not lock in the clustering outputs using a random_state in the effort to see if they were stable. Our assumption was that if the results vary highly from run to run which they definitely did, maybe the data just does not cluster well with the methods selected at all. Basically, the ramification we saw was that our results are not much better than random when applying clustering to the data preprocessing. Finally, it is important to ensure a feedback loop is in place to continuously collect the same data in the same format from which the models were created. This feedback loop can be used to measure the model real world effectiveness and also to continue to revise the models from time to time as things change.

  19. Data from: Enriching time series datasets using Nonparametric kernel...

    • figshare.com
    pdf
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohamad Ivan Fanany (2023). Enriching time series datasets using Nonparametric kernel regression to improve forecasting accuracy [Dataset]. http://doi.org/10.6084/m9.figshare.1609661.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Mohamad Ivan Fanany
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Improving the accuracy of prediction on future values based on the past and current observations has been pursued by enhancing the prediction's methods, combining those methods or performing data pre-processing. In this paper, another approach is taken, namely by increasing the number of input in the dataset. This approach would be useful especially for a shorter time series data. By filling the in-between values in the time series, the number of training set can be increased, thus increasing the generalization capability of the predictor. The algorithm used to make prediction is Neural Network as it is widely used in literature for time series tasks. For comparison, Support Vector Regression is also employed. The dataset used in the experiment is the frequency of USPTO's patents and PubMed's scientific publications on the field of health, namely on Apnea, Arrhythmia, and Sleep Stages. Another time series data designated for NN3 Competition in the field of transportation is also used for benchmarking. The experimental result shows that the prediction performance can be significantly increased by filling in-between data in the time series. Furthermore, the use of detrend and deseasonalization which separates the data into trend, seasonal and stationary time series also improve the prediction performance both on original and filled dataset. The optimal number of increase on the dataset in this experiment is about five times of the length of original dataset.

  20. Data from: An open dataset for intelligent recognition and classification of...

    • springernature.figshare.com
    bin
    Updated Jul 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xuhui Zhang; Wenjuan Yang; Bing Ma; Yanqun Wang; Yujia Wu; Jianxin Yan; Yongwei Liu; Chao Zhang; Jicheng Wan; Yue Wang; Mengyao Huang; Yuyang Li; Dian Zhao (2024). An open dataset for intelligent recognition and classification of abnormal condition in longwall mining [Dataset]. http://doi.org/10.6084/m9.figshare.22654945.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    Jul 8, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Xuhui Zhang; Wenjuan Yang; Bing Ma; Yanqun Wang; Yujia Wu; Jianxin Yan; Yongwei Liu; Chao Zhang; Jicheng Wan; Yue Wang; Mengyao Huang; Yuyang Li; Dian Zhao
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This work developed image dataset of underground longwall mining face (DsLMF+), which consists of 138004 images with annotation 6 categories of mine personnel, hydraulic support guard plate, large coal, towline, miners’ behaviour and mine safety helmet. All the labels of dataset are publicly available in YOLO format and COCO format.The dataset aims to support further research and advancement of the intelligent identification and classification of abnormal conditions for underground mining.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
IqbalPanre22021 (2025). dataset data mining [Dataset]. https://www.kaggle.com/datasets/iqbalpanre22021/dataset-data-mining
Organization logo

dataset data mining

Explore at:
zip(17079 bytes)Available download formats
Dataset updated
May 21, 2025
Authors
IqbalPanre22021
License

Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically

Description

Dataset

This dataset was created by IqbalPanre22021

Released under Apache 2.0

Contents

Search
Clear search
Close search
Google apps
Main menu