100+ datasets found
  1. D

    Data Mining Tools Market Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Feb 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Data Mining Tools Market Report [Dataset]. https://www.marketresearchforecast.com/reports/data-mining-tools-market-1722
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Feb 3, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Mining Tools Market size was valued at USD 1.01 USD billion in 2023 and is projected to reach USD 1.99 USD billion by 2032, exhibiting a CAGR of 10.2 % during the forecast period. The growing adoption of data-driven decision-making and the increasing need for business intelligence are major factors driving market growth. Data mining refers to filtering, sorting, and classifying data from larger datasets to reveal subtle patterns and relationships, which helps enterprises identify and solve complex business problems through data analysis. Data mining software tools and techniques allow organizations to foresee future market trends and make business-critical decisions at crucial times. Data mining is an essential component of data science that employs advanced data analytics to derive insightful information from large volumes of data. Businesses rely heavily on data mining to undertake analytics initiatives in the organizational setup. The analyzed data sourced from data mining is used for varied analytics and business intelligence (BI) applications, which consider real-time data analysis along with some historical pieces of information. Recent developments include: May 2023 – WiMi Hologram Cloud Inc. introduced a new data interaction system developed by combining neural network technology and data mining. Using real-time interaction, the system can offer reliable and safe information transmission., May 2023 – U.S. Data Mining Group, Inc., operating in bitcoin mining site, announced a hosting contract to deploy 150,000 bitcoins in partnership with major companies such as TeslaWatt, Sphere 3D, Marathon Digital, and more. The company is offering industry turn-key solutions for curtailment, accounting, and customer relations., April 2023 – Artificial intelligence and single-cell biotech analytics firm, One Biosciences, launched a single cell data mining algorithm called ‘MAYA’. The algorithm is for cancer patients to detect therapeutic vulnerabilities., May 2022 – Europe-based Solarisbank, a banking-as-a-service provider, announced its partnership with Snowflake to boost its cloud data strategy. Using the advanced cloud infrastructure, the company can enhance data mining efficiency and strengthen its banking position.. Key drivers for this market are: Increasing Focus on Customer Satisfaction to Drive Market Growth. Potential restraints include: Requirement of Skilled Technical Resources Likely to Hamper Market Growth. Notable trends are: Incorporation of Data Mining and Machine Learning Solutions to Propel Market Growth.

  2. s

    Online Feature Selection and Its Applications

    • researchdata.smu.edu.sg
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HOI Steven; Jialei WANG; Peilin ZHAO; Rong JIN (2023). Online Feature Selection and Its Applications [Dataset]. http://doi.org/10.25440/smu.12062733.v1
    Explore at:
    Dataset updated
    May 31, 2023
    Dataset provided by
    SMU Research Data Repository (RDR)
    Authors
    HOI Steven; Jialei WANG; Peilin ZHAO; Rong JIN
    License

    https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html

    Description

    Feature selection is an important technique for data mining before a machine learning algorithm is applied. Despite its importance, most studies of feature selection are restricted to batch learning. Unlike traditional batch learning methods, online learning represents a promising family of efficient and scalable machine learning algorithms for large-scale applications. Most existing studies of online learning require accessing all the attributes/features of training instances. Such a classical setting is not always appropriate for real-world applications when data instances are of high dimensionality or it is expensive to acquire the full set of attributes/features. To address this limitation, we investigate the problem of Online Feature Selection (OFS) in which an online learner is only allowed to maintain a classifier involved only a small and fixed number of features. The key challenge of Online Feature Selection is how to make accurate prediction using a small and fixed number of active features. This is in contrast to the classical setup of online learning where all the features can be used for prediction. We attempt to tackle this challenge by studying sparsity regularization and truncation techniques. Specifically, this article addresses two different tasks of online feature selection: (1) learning with full input where an learner is allowed to access all the features to decide the subset of active features, and (2) learning with partial input where only a limited number of features is allowed to be accessed for each instance by the learner. We present novel algorithms to solve each of the two problems and give their performance analysis. We evaluate the performance of the proposed algorithms for online feature selection on several public datasets, and demonstrate their applications to real-world problems including image classification in computer vision and microarray gene expression analysis in bioinformatics. The encouraging results of our experiments validate the efficacy and efficiency of the proposed techniques.Related Publication: Hoi, S. C., Wang, J., Zhao, P., & Jin, R. (2012). Online feature selection for mining big data. In Proceedings of the 1st International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications (pp. 93-100). ACM. http://dx.doi.org/10.1145/2351316.2351329 Full text available in InK: http://ink.library.smu.edu.sg/sis_research/2402/ Wang, J., Zhao, P., Hoi, S. C., & Jin, R. (2014). Online feature selection and its applications. IEEE Transactions on Knowledge and Data Engineering, 26(3), 698-710. http://dx.doi.org/10.1109/TKDE.2013.32 Full text available in InK: http://ink.library.smu.edu.sg/sis_research/2277/

  3. m

    Educational Attainment in North Carolina Public Schools: Use of statistical...

    • data.mendeley.com
    Updated Nov 14, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scott Herford (2018). Educational Attainment in North Carolina Public Schools: Use of statistical modeling, data mining techniques, and machine learning algorithms to explore 2014-2017 North Carolina Public School datasets. [Dataset]. http://doi.org/10.17632/6cm9wyd5g5.1
    Explore at:
    Dataset updated
    Nov 14, 2018
    Authors
    Scott Herford
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    North Carolina
    Description

    The purpose of data mining analysis is always to find patterns of the data using certain kind of techiques such as classification or regression. It is not always feasible to apply classification algorithms directly to dataset. Before doing any work on the data, the data has to be pre-processed and this process normally involves feature selection and dimensionality reduction. We tried to use clustering as a way to reduce the dimension of the data and create new features. Based on our project, after using clustering prior to classification, the performance has not improved much. The reason why it has not improved could be the features we selected to perform clustering are not well suited for it. Because of the nature of the data, classification tasks are going to provide more information to work with in terms of improving knowledge and overall performance metrics. From the dimensionality reduction perspective: It is different from Principle Component Analysis which guarantees finding the best linear transformation that reduces the number of dimensions with a minimum loss of information. Using clusters as a technique of reducing the data dimension will lose a lot of information since clustering techniques are based a metric of 'distance'. At high dimensions euclidean distance loses pretty much all meaning. Therefore using clustering as a "Reducing" dimensionality by mapping data points to cluster numbers is not always good since you may lose almost all the information. From the creating new features perspective: Clustering analysis creates labels based on the patterns of the data, it brings uncertainties into the data. By using clustering prior to classification, the decision on the number of clusters will highly affect the performance of the clustering, then affect the performance of classification. If the part of features we use clustering techniques on is very suited for it, it might increase the overall performance on classification. For example, if the features we use k-means on are numerical and the dimension is small, the overall classification performance may be better. We did not lock in the clustering outputs using a random_state in the effort to see if they were stable. Our assumption was that if the results vary highly from run to run which they definitely did, maybe the data just does not cluster well with the methods selected at all. Basically, the ramification we saw was that our results are not much better than random when applying clustering to the data preprocessing. Finally, it is important to ensure a feedback loop is in place to continuously collect the same data in the same format from which the models were created. This feedback loop can be used to measure the model real world effectiveness and also to continue to revise the models from time to time as things change.

  4. Data Mining and Modeling Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Data Mining and Modeling Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-data-mining-and-modeling-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Sep 23, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Mining and Modeling Market Outlook




    The global data mining and modeling market size was valued at approximately $28.5 billion in 2023 and is projected to reach $70.8 billion by 2032, growing at a compound annual growth rate (CAGR) of 10.5% during the forecast period. This remarkable growth can be attributed to the increasing complexity and volume of data generated across various industries, necessitating robust tools and techniques for effective data analysis and decision-making processes.




    One of the primary growth factors driving the data mining and modeling market is the exponential increase in data generation owing to advancements in digital technology. Modern enterprises generate extensive data from numerous sources such as social media platforms, IoT devices, and transactional databases. The need to make sense of this vast information trove has led to a surge in the adoption of data mining and modeling tools. These tools help organizations uncover hidden patterns, correlations, and insights, thereby enabling more informed decision-making and strategic planning.




    Another significant growth driver is the increasing adoption of artificial intelligence (AI) and machine learning (ML) technologies. Data mining and modeling are critical components of AI and ML algorithms, which rely on large datasets to learn and make predictions. As businesses strive to stay competitive, they are increasingly investing in AI-driven analytics solutions. This trend is particularly prevalent in sectors such as healthcare, finance, and retail, where predictive analytics can provide a substantial competitive edge. Moreover, advancements in big data technologies are further bolstering the capabilities of data mining and modeling solutions, making them more effective and efficient.




    The burgeoning demand for business intelligence (BI) and analytics solutions is also a major factor propelling the market. Organizations are increasingly recognizing the value of data-driven insights in identifying market trends, customer preferences, and operational inefficiencies. Data mining and modeling tools form the backbone of sophisticated BI platforms, enabling companies to transform raw data into actionable intelligence. This demand is further amplified by the growing importance of regulatory compliance and risk management, particularly in highly regulated industries such as banking, financial services, and healthcare.




    From a regional perspective, North America currently dominates the data mining and modeling market, owing to the early adoption of advanced technologies and the presence of major market players. However, Asia Pacific is expected to witness the highest growth rate during the forecast period, driven by rapid digital transformation initiatives and increasing investments in AI and big data technologies. Europe also holds a significant market share, supported by stringent data protection regulations and a strong focus on innovation.



    Component Analysis




    The data mining and modeling market by component is broadly segmented into software and services. The software segment encompasses various tools and platforms that facilitate data mining and modeling processes. These software solutions range from basic data analysis tools to advanced platforms integrated with AI and ML capabilities. The increasing complexity of data and the need for real-time analytics are driving the demand for sophisticated software solutions. Companies are investing in custom and off-the-shelf software to enhance their data handling and analytical capabilities, thereby gaining a competitive edge.




    The services segment includes consulting, implementation, training, and support services. As organizations strive to leverage data mining and modeling tools effectively, the demand for professional services is on the rise. Consulting services help businesses identify the right tools and strategies for their specific needs, while implementation services ensure the seamless integration of these tools into existing systems. Training services are crucial for building in-house expertise, enabling teams to maximize the benefits of data mining and modeling solutions. Support services ensure the ongoing maintenance and optimization of these tools, addressing any technical issues that may arise.




    The software segment is expected to dominate the market throughout the forecast period, driven by continuous advancements in te

  5. e

    Overview of data mining and predictive analytics

    • paper.erudition.co.in
    html
    Updated Dec 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Einetic (2023). Overview of data mining and predictive analytics [Dataset]. https://paper.erudition.co.in/makaut/btech-in-computer-science-and-engineering-artificial-intelligence-and-machine-learning/6/data-mining
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Dec 2, 2023
    Dataset authored and provided by
    Einetic
    License

    https://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms

    Description

    Question Paper Solutions of chapter Overview of data mining and predictive analytics of Data Mining, 6th Semester , B.Tech in Computer Science & Engineering (Artificial Intelligence and Machine Learning)

  6. The utility of the image analytics tool developed within the Orange Data...

    • figshare.com
    zip
    Updated Dec 16, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dongsu Park; Maurizio Zuccotti; Silvia Garagna; Riccardo Bellazzi; Uroš Petrovič; Gad Shaulsky; Blaž Zupan (2019). The utility of the image analytics tool developed within the Orange Data Mining suite [Dataset]. http://doi.org/10.6084/m9.figshare.9632276.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 16, 2019
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Dongsu Park; Maurizio Zuccotti; Silvia Garagna; Riccardo Bellazzi; Uroš Petrovič; Gad Shaulsky; Blaž Zupan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data in this repository comprises four different image sets to showcase the transfer learning approach and illustrate the utility of the image analytics tool developed within the Orange Data Mining suite (http://orange.biolab.si). Each of the four image sets is available in a separate zip file. List of images with additional annotations and information on the image classification is also available in the four Excel files. The images include progenitor cells in mouse bone healing, identification of developmental competence in mouse oocytes, sub-cellular protein localization in yeast, and developmental morphology of social amoebae.

  7. i

    A novel fusion Python application of data mining techniques to evaluate...

    • ieee-dataport.org
    Updated Jun 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Kayode (2020). A novel fusion Python application of data mining techniques to evaluate airborne magnetic datasets [Dataset]. https://ieee-dataport.org/open-access/novel-fusion-python-application-data-mining-techniques-evaluate-airborne-magnetic
    Explore at:
    Dataset updated
    Jun 8, 2020
    Authors
    John Kayode
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Depths to the various subsurface anomalies have been the primary interest in all the applications of magnetic methods of geophysical prospection. Depths to the subsurface geologic features of interest are more valuable and superior to all other properties in any correct subsurface geologic structural interpretations.

  8. W

    Ensemble Data Mining Methods

    • cloud.csiss.gmu.edu
    • catalog.data.gov
    • +1more
    pdf
    Updated Jan 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2020). Ensemble Data Mining Methods [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/ensemble-data-mining-methods
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jan 29, 2020
    Dataset provided by
    United States
    Description

    Ensemble Data Mining Methods, also known as Committee Methods or Model Combiners, are machine learning methods that leverage the power of multiple models to achieve better prediction accuracy than any of the individual models could on their own. The basic goal when designing an ensemble is the same as when establishing a committee of people: each member of the committee should be as competent as possible, but the members should be complementary to one another. If the members are not complementary, i.e., if they always agree, then the committee is unnecessary---any one member is sufficient. If the members are complementary, then when one or a few members make an error, the probability is high that the remaining members can correct this error. Research in ensemble methods has largely revolved around designing ensembles consisting of competent yet complementary models.

  9. D

    Data Mining Software Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Data Mining Software Report [Dataset]. https://www.marketresearchforecast.com/reports/data-mining-software-41235
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Mar 19, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Data Mining Software market is experiencing robust growth, driven by the increasing need for businesses to extract valuable insights from massive datasets. The market, estimated at $15 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033, reaching an estimated $45 billion by 2033. This expansion is fueled by several key factors. The burgeoning adoption of cloud-based solutions offers scalability and cost-effectiveness, attracting both large enterprises and SMEs. Furthermore, advancements in machine learning and artificial intelligence algorithms are enhancing the accuracy and efficiency of data mining processes, leading to better decision-making across various sectors like finance, healthcare, and marketing. The rise of big data analytics and the increasing availability of affordable, high-powered computing resources are also significant contributors to market growth. However, the market faces certain challenges. Data security and privacy concerns remain paramount, especially with the increasing volume of sensitive information being processed. The complexity of data mining software and the need for skilled professionals to operate and interpret the results present a barrier to entry for some businesses. The high initial investment cost associated with implementing sophisticated data mining solutions can also deter smaller organizations. Nevertheless, the ongoing technological advancements and the growing recognition of the strategic value of data-driven decision-making are expected to overcome these restraints and propel the market toward continued expansion. The market segmentation reveals a strong preference for cloud-based solutions, reflecting the industry's trend toward flexible and scalable IT infrastructure. Large enterprises currently dominate the market share, but SMEs are rapidly adopting data mining software, indicating promising future growth in this segment. Geographic analysis shows that North America and Europe are currently leading the market, but the Asia-Pacific region is poised for significant growth due to increasing digitalization and economic expansion in countries like China and India.

  10. D

    Data Mining Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Mining Software Report [Dataset]. https://www.datainsightsmarket.com/reports/data-mining-software-1423491
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Jun 8, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Mining Software market is experiencing robust growth, driven by the increasing need for businesses to extract actionable insights from massive datasets. The market's expansion is fueled by several key factors: the proliferation of big data, advancements in machine learning algorithms, and the growing adoption of cloud-based data analytics solutions. Businesses across various sectors, including finance, healthcare, and retail, are leveraging data mining software to improve operational efficiency, enhance customer experience, and gain a competitive edge. The market is segmented by software type (e.g., predictive analytics, text mining, etc.), deployment model (cloud, on-premise), and industry vertical. While the competitive landscape is crowded with both established players like SAS and IBM, and emerging niche providers, the market is expected to consolidate somewhat as larger companies acquire smaller, specialized firms. This consolidation will likely lead to more integrated and comprehensive data mining solutions. The projected Compound Annual Growth Rate (CAGR) suggests a significant increase in market size over the forecast period (2025-2033). While precise figures are unavailable, assuming a conservative CAGR of 15% and a 2025 market size of $5 billion (a reasonable estimate given the size and growth of related markets), we can project substantial growth. Challenges remain, however, including the need for skilled data scientists to manage and interpret the results, as well as concerns about data security and privacy. Addressing these challenges will be crucial for continued market expansion. The increasing availability of open-source tools also presents a challenge to established vendors, demanding innovation and competitive pricing strategies.

  11. m

    pinterest_dataset

    • data.mendeley.com
    Updated Oct 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juan Carlos Gomez (2017). pinterest_dataset [Dataset]. http://doi.org/10.17632/fs4k2zc5j5.2
    Explore at:
    Dataset updated
    Oct 27, 2017
    Authors
    Juan Carlos Gomez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset with 72000 pins from 117 users in Pinterest. Each pin contains a short raw text and an image. The images are processed using a pretrained Convolutional Neural Network and transformed into a vector of 4096 features.

    This dataset was used in the paper "User Identification in Pinterest Through the Refinement of a Cascade Fusion of Text and Images" to idenfity specific users given their comments. The paper is publishe in the Research in Computing Science Journal, as part of the LKE 2017 conference. The dataset includes the splits used in the paper.

    There are nine files. text_test, text_train and text_val, contain the raw text of each pin in the corresponding split of the data. imag_test, imag_train and imag_val contain the image features of each pin in the corresponding split of the data. train_user and val_test_users contain the index of the user of each pin (between 0 and 116). There is a correspondance one-to-one among the test, train and validation files for images, text and users. There are 400 pins per user in the train set, and 100 pins per user in the validation and test sets each one.

    If you have questions regarding the data, write to: jc dot gomez at ugto dot mx

  12. D

    Data Mining Tools Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Data Mining Tools Report [Dataset]. https://www.marketreportanalytics.com/reports/data-mining-tools-56275
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 3, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Data Mining Tools market, valued at $612.4 million in 2025, is projected to experience robust growth, driven by the increasing volume and variety of data generated across industries and the rising need for extracting actionable insights. The Compound Annual Growth Rate (CAGR) of 6.7% from 2025 to 2033 signifies a substantial expansion, propelled by several key factors. The burgeoning adoption of cloud-based data mining tools offers scalability and cost-effectiveness, attracting businesses of all sizes. Furthermore, advancements in artificial intelligence (AI) and machine learning (ML) are enhancing the capabilities of these tools, enabling more sophisticated analytics and predictive modeling. Specific application areas like BFSI (Banking, Financial Services, and Insurance), Healthcare and Life Sciences, and Telecom and IT are significant contributors to market growth, fueled by the need for risk management, personalized medicine, and customer relationship management respectively. While data security and privacy concerns represent a potential restraint, the overall market outlook remains positive, driven by continuous technological innovations and increasing digitalization across industries. The market segmentation reveals a preference for cloud-based solutions over on-premises deployments, reflecting the growing demand for flexible and scalable analytics infrastructure. Leading players like IBM, SAS Institute, and Oracle are consolidating their market share through strategic partnerships and continuous product development. However, the emergence of agile and specialized data mining startups is also intensifying competition. Geographic distribution shows strong growth in North America and Europe, driven by early adoption of advanced analytics techniques. However, the Asia-Pacific region is expected to emerge as a significant growth driver in the coming years due to increasing digitalization and government initiatives promoting data-driven decision-making. The historical period (2019-2024) likely saw a similar growth trajectory, setting the stage for the forecasted expansion during 2025-2033. The continued integration of data mining tools with other business intelligence platforms is expected to further fuel market expansion.

  13. D

    Data Mining and Modeling Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Mining and Modeling Report [Dataset]. https://www.datainsightsmarket.com/reports/data-mining-and-modeling-1947982
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    May 26, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Mining and Modeling market is experiencing robust growth, driven by the exponential increase in data volume and the rising need for businesses to extract actionable insights for strategic decision-making. The market, estimated at $25 billion in 2025, is projected to expand at a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $75 billion by 2033. This growth is fueled by several key factors, including the increasing adoption of cloud-based data mining solutions, the development of sophisticated analytical tools capable of handling big data, and the growing demand for predictive analytics across diverse sectors such as finance, healthcare, and retail. Furthermore, advancements in artificial intelligence (AI) and machine learning (ML) are significantly enhancing the capabilities of data mining and modeling tools, enabling more accurate predictions and deeper insights. The market is segmented by various deployment models (cloud, on-premise), analytical techniques (regression, classification, clustering), and industry verticals. The major restraints on market growth include the high cost of implementation and maintenance of data mining and modeling solutions, the scarcity of skilled professionals proficient in advanced analytical techniques, and concerns about data privacy and security. However, these challenges are being gradually addressed through the development of user-friendly tools, the emergence of specialized training programs, and the increasing adoption of robust security measures. The competitive landscape is characterized by a mix of established players like SAS and IBM, along with several specialized providers like Symbrium, Coheris, and Expert System. These companies are constantly innovating to enhance their offerings and cater to the evolving needs of businesses across various industries. The market's trajectory indicates a promising future driven by ongoing technological advancements and the increasing importance of data-driven decision-making in a rapidly evolving business environment.

  14. e

    Data from: Supervised Learning for classification

    • paper.erudition.co.in
    html
    Updated Dec 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Einetic (2023). Supervised Learning for classification [Dataset]. https://paper.erudition.co.in/makaut/btech-in-computer-science-and-engineering-artificial-intelligence-and-machine-learning/6/data-mining
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Dec 2, 2023
    Dataset authored and provided by
    Einetic
    License

    https://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms

    Description

    Question Paper Solutions of chapter Supervised Learning for classification of Data Mining, 6th Semester , B.Tech in Computer Science & Engineering (Artificial Intelligence and Machine Learning)

  15. Data from: Historical Data Mining Deep Dive into Machine Learning-Aided 2D...

    • acs.figshare.com
    • figshare.com
    xlsx
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Krittapong Deshsorn; Panwad Chavalekvirat; Somrudee Deepaisarn; Ho-Chiao Chuang; Pawin Iamprasertkun (2025). Historical Data Mining Deep Dive into Machine Learning-Aided 2D Materials Research in Electrochemical Applications [Dataset]. http://doi.org/10.1021/acsmaterialsau.5c00030.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 23, 2025
    Dataset provided by
    ACS Publications
    Authors
    Krittapong Deshsorn; Panwad Chavalekvirat; Somrudee Deepaisarn; Ho-Chiao Chuang; Pawin Iamprasertkun
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Machine learning transforms the landscape of 2D materials design, particularly in accelerating discovery, optimization, and screening processes. This review has delved into the historical and ongoing integration of machine learning in 2D materials for electrochemical energy applications, using the Knowledge Discovery in Databases (KDD) approach to guide the research through data mining from the Scopus database using analysis of citations, keywords, and trends. The topics will first focus on a “macro” scope, where hundreds of literature reports are computer analyzed for key insights, such as year analysis, publication origin, and word co-occurrence using heat maps and network graphs. Afterward, the focus will be narrowed down into a more specific “micro” scope obtained from the “macro” overview, which is intended to dive deep into machine learning usage. From the gathered insights, this work highlights how machine learning, density functional theory (DFT), and traditional experimentation are jointly advancing the field of materials science. Overall, the resulting review offers a comprehensive analysis, touching on essential applications such as batteries, fuel cells, supercapacitors, and synthesis processes while showcasing machine learning techniques that enhance the identification of critical material properties.

  16. MOESM4 of Deep-learning: investigating deep neural networks hyper-parameters...

    • springernature.figshare.com
    xlsx
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexios Koutsoukas; Keith Monaghan; Xiaoli Li; Jun Huan (2023). MOESM4 of Deep-learning: investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data [Dataset]. http://doi.org/10.6084/m9.figshare.c.3814018_D4.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Alexios Koutsoukas; Keith Monaghan; Xiaoli Li; Jun Huan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Additional file 4. Results of parameter selection.

  17. D

    Data Mining Tools Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Jun 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Data Mining Tools Report [Dataset]. https://www.archivemarketresearch.com/reports/data-mining-tools-556785
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Jun 14, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global market for data mining tools is experiencing robust growth, projected to reach $882.8 million in 2025. While the provided CAGR is missing, considering the rapid advancements in artificial intelligence, machine learning, and big data analytics, a conservative estimate of the Compound Annual Growth Rate (CAGR) for the forecast period (2025-2033) would be around 15%. This signifies a significant expansion of the market, driven by the increasing need for businesses to extract valuable insights from massive datasets for improved decision-making, enhanced operational efficiency, and competitive advantage. Key drivers include the rising adoption of cloud-based data mining solutions, the proliferation of big data, and growing investments in advanced analytics capabilities across various sectors like healthcare, finance, and retail. Furthermore, the continuous development of sophisticated algorithms and user-friendly interfaces is making data mining accessible to a wider range of users, fueling market growth. The market is highly competitive, with established players like IBM, SAS Institute, Oracle, and Microsoft alongside emerging innovative companies like H2O.ai and Dataiku vying for market share. The segmentation of the market is diverse, encompassing various deployment models (cloud, on-premise), application types (predictive modeling, customer segmentation, fraud detection), and industry verticals. While restraints such as the high cost of implementation and the need for specialized skills can hinder wider adoption, the overall market outlook remains positive. The predicted CAGR of 15% suggests the market will likely exceed $3 billion by 2033, driven by continued technological innovation, increasing data volumes, and the growing recognition of data mining's crucial role in achieving business success in an increasingly data-driven world.

  18. f

    Table_1_Data Mining and Machine Learning Models for Predicting Drug Likeness...

    • figshare.com
    txt
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abraham Yosipof; Rita C. Guedes; Alfonso T. García-Sosa (2023). Table_1_Data Mining and Machine Learning Models for Predicting Drug Likeness and Their Disease or Organ Category.CSV [Dataset]. http://doi.org/10.3389/fchem.2018.00162.s001
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Frontiers
    Authors
    Abraham Yosipof; Rita C. Guedes; Alfonso T. García-Sosa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data mining approaches can uncover underlying patterns in chemical and pharmacological property space decisive for drug discovery and development. Two of the most common approaches are visualization and machine learning methods. Visualization methods use dimensionality reduction techniques in order to reduce multi-dimension data into 2D or 3D representations with a minimal loss of information. Machine learning attempts to find correlations between specific activities or classifications for a set of compounds and their features by means of recurring mathematical models. Both models take advantage of the different and deep relationships that can exist between features of compounds, and helpfully provide classification of compounds based on such features or in case of visualization methods uncover underlying patterns in the feature space. Drug-likeness has been studied from several viewpoints, but here we provide the first implementation in chemoinformatics of the t-Distributed Stochastic Neighbor Embedding (t-SNE) method for the visualization and the representation of chemical space, and the use of different machine learning methods separately and together to form a new ensemble learning method called AL Boost. The models obtained from AL Boost synergistically combine decision tree, random forests (RF), support vector machine (SVM), artificial neural network (ANN), k nearest neighbors (kNN), and logistic regression models. In this work, we show that together they form a predictive model that not only improves the predictive force but also decreases bias. This resulted in a corrected classification rate of over 0.81, as well as higher sensitivity and specificity rates for the models. In addition, separation and good models were also achieved for disease categories such as antineoplastic compounds and nervous system diseases, among others. Such models can be used to guide decision on the feature landscape of compounds and their likeness to either drugs or other characteristics, such as specific or multiple disease-category(ies) or organ(s) of action of a molecule.

  19. Data from: Classification of word levels with usage frequency, expert...

    • zenodo.org
    • explore.openaire.eu
    application/gzip
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Onur Guzey; Gihad Sohsah; Muhammed Unal; Onur Guzey; Gihad Sohsah; Muhammed Unal (2020). Classification of word levels with usage frequency, expert opinions and machine learning [Dataset]. http://doi.org/10.5281/zenodo.12501
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Onur Guzey; Gihad Sohsah; Muhammed Unal; Onur Guzey; Gihad Sohsah; Muhammed Unal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset includes classification of English words according to CEFR language levels. It can be used in various educational applications including determining levels of text that is appropriate for students learning English.

    For each word, part-of-speech, the word lemma and usage frequency is provided. For words that have no survey results, a machine learning based methodology is used to predict levels. These predictions are also included as a separate file. This data is released as part of the submission process to British Journal of Educational Technology Special Issue on Open Data.

    The included readme.pdf file contains a detailed description of data.

  20. Data from: PTMTorrent: A Dataset for Mining Open-source Pre-trained Model...

    • figshare.com
    pdf
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wenxin Jiang; Nicholas Synovic; Purvish Jajal; Taylor R. Schorlemmer; Arav Tewari; Bhavesh Pareek; George K. Thiruvathukal; James C. Davis (2023). PTMTorrent: A Dataset for Mining Open-source Pre-trained Model Packages [Dataset]. http://doi.org/10.6084/m9.figshare.22009880.v4
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Wenxin Jiang; Nicholas Synovic; Purvish Jajal; Taylor R. Schorlemmer; Arav Tewari; Bhavesh Pareek; George K. Thiruvathukal; James C. Davis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Due to the cost of developing and training deep learning models from scratch, machine learning engineers have begun to reuse pre-trained models (PTMs) and fine-tune them for downstream tasks. PTM registries known as “model hubs” support engineers in distributing and reusing deep learning models. PTM packages include pre-trained weights, documentation, model architectures, datasets, and metadata. Mining the information in PTM packages will enable the discovery of engineering phenomena and tools to support software engineers. However, accessing this information is difficult — there are many PTM registries, and both the registries and the individual packages may have rate limiting for accessing the data.

    We present an open-source dataset, PTMTorrent, to facilitate the evaluation and understanding of PTM packages. This paper describes the creation, structure, usage, and limitations of the dataset. The dataset includes a snapshot of 5 model hubs and a total of 15,913 PTM packages. These packages are represented in a uniform data schema for cross-hub mining. We describe prior uses of this data and suggest research opportunities for mining using our dataset.

    We provide links to the PTM Dataset and PTM Torrent Source Code.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Market Research Forecast (2025). Data Mining Tools Market Report [Dataset]. https://www.marketresearchforecast.com/reports/data-mining-tools-market-1722

Data Mining Tools Market Report

Explore at:
pdf, ppt, docAvailable download formats
Dataset updated
Feb 3, 2025
Dataset authored and provided by
Market Research Forecast
License

https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

Time period covered
2025 - 2033
Area covered
Global
Variables measured
Market Size
Description

The Data Mining Tools Market size was valued at USD 1.01 USD billion in 2023 and is projected to reach USD 1.99 USD billion by 2032, exhibiting a CAGR of 10.2 % during the forecast period. The growing adoption of data-driven decision-making and the increasing need for business intelligence are major factors driving market growth. Data mining refers to filtering, sorting, and classifying data from larger datasets to reveal subtle patterns and relationships, which helps enterprises identify and solve complex business problems through data analysis. Data mining software tools and techniques allow organizations to foresee future market trends and make business-critical decisions at crucial times. Data mining is an essential component of data science that employs advanced data analytics to derive insightful information from large volumes of data. Businesses rely heavily on data mining to undertake analytics initiatives in the organizational setup. The analyzed data sourced from data mining is used for varied analytics and business intelligence (BI) applications, which consider real-time data analysis along with some historical pieces of information. Recent developments include: May 2023 – WiMi Hologram Cloud Inc. introduced a new data interaction system developed by combining neural network technology and data mining. Using real-time interaction, the system can offer reliable and safe information transmission., May 2023 – U.S. Data Mining Group, Inc., operating in bitcoin mining site, announced a hosting contract to deploy 150,000 bitcoins in partnership with major companies such as TeslaWatt, Sphere 3D, Marathon Digital, and more. The company is offering industry turn-key solutions for curtailment, accounting, and customer relations., April 2023 – Artificial intelligence and single-cell biotech analytics firm, One Biosciences, launched a single cell data mining algorithm called ‘MAYA’. The algorithm is for cancer patients to detect therapeutic vulnerabilities., May 2022 – Europe-based Solarisbank, a banking-as-a-service provider, announced its partnership with Snowflake to boost its cloud data strategy. Using the advanced cloud infrastructure, the company can enhance data mining efficiency and strengthen its banking position.. Key drivers for this market are: Increasing Focus on Customer Satisfaction to Drive Market Growth. Potential restraints include: Requirement of Skilled Technical Resources Likely to Hamper Market Growth. Notable trends are: Incorporation of Data Mining and Machine Learning Solutions to Propel Market Growth.

Search
Clear search
Close search
Google apps
Main menu