100+ datasets found
  1. d

    Data Mining in Systems Health Management

    • catalog.data.gov
    • data.nasa.gov
    • +2more
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Data Mining in Systems Health Management [Dataset]. https://catalog.data.gov/dataset/data-mining-in-systems-health-management
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    This chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.

  2. g

    Data Mining in Systems Health Management | gimi9.com

    • gimi9.com
    Updated Dec 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Data Mining in Systems Health Management | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_data-mining-in-systems-health-management/
    Explore at:
    Dataset updated
    Dec 5, 2024
    Description

    🇺🇸 미국

  3. d

    Data from: Data Mining at NASA: From Theory to Applications

    • catalog.data.gov
    • data.nasa.gov
    • +3more
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Data Mining at NASA: From Theory to Applications [Dataset]. https://catalog.data.gov/dataset/data-mining-at-nasa-from-theory-to-applications
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    NASA has some of the largest and most complex data sources in the world, with data sources ranging from the earth sciences, space sciences, and massive distributed engineering data sets from commercial aircraft and spacecraft. This talk will discuss some of the issues and algorithms developed to analyze and discover patterns in these data sets. We will also provide an overview of a large research program in Integrated Vehicle Health Management. The goal of this program is to develop advanced technologies to automatically detect, diagnose, predict, and mitigate adverse events during the flight of an aircraft. A case study will be presented on a recent data mining analysis performed to support the Flight Readiness Review of the Space Shuttle Mission STS-119.

  4. Video-to-Model Data Set

    • figshare.com
    • commons.datacite.org
    xml
    Updated Mar 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sönke Knoch; Shreeraman Ponpathirkoottam; Tim Schwartz (2020). Video-to-Model Data Set [Dataset]. http://doi.org/10.6084/m9.figshare.12026850.v1
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Mar 24, 2020
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Sönke Knoch; Shreeraman Ponpathirkoottam; Tim Schwartz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data set belongs to the paper "Video-to-Model: Unsupervised Trace Extraction from Videos for Process Discovery and Conformance Checking in Manual Assembly", submitted on March 24, 2020, to the 18th International Conference on Business Process Management (BPM).Abstract: Manual activities are often hidden deep down in discrete manufacturing processes. For the elicitation and optimization of process behavior, complete information about the execution of Manual activities are required. Thus, an approach is presented on how execution level information can be extracted from videos in manual assembly. The goal is the generation of a log that can be used in state-of-the-art process mining tools. The test bed for the system was lightweight and scalable consisting of an assembly workstation equipped with a single RGB camera recording only the hand movements of the worker from top. A neural network based real-time object classifier was trained to detect the worker’s hands. The hand detector delivers the input for an algorithm, which generates trajectories reflecting the movement paths of the hands. Those trajectories are automatically assigned to work steps using the position of material boxes on the assembly shelf as reference points and hierarchical clustering of similar behaviors with dynamic time warping. The system has been evaluated in a task-based study with ten participants in a laboratory, but under realistic conditions. The generated logs have been loaded into the process mining toolkit ProM to discover the underlying process model and to detect deviations from both, instructions and ground truth, using conformance checking. The results show that process mining delivers insights about the assembly process and the system’s precision.The data set contains the generated and the annotated logs based on the video material gathered during the user study. In addition, the petri nets from the process discovery and conformance checking conducted with ProM (http://www.promtools.org) and the reference nets modeled with Yasper (http://www.yasper.org/) are provided.

  5. Data Mining and Modeling Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Data Mining and Modeling Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-data-mining-and-modeling-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Sep 23, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Mining and Modeling Market Outlook




    The global data mining and modeling market size was valued at approximately $28.5 billion in 2023 and is projected to reach $70.8 billion by 2032, growing at a compound annual growth rate (CAGR) of 10.5% during the forecast period. This remarkable growth can be attributed to the increasing complexity and volume of data generated across various industries, necessitating robust tools and techniques for effective data analysis and decision-making processes.




    One of the primary growth factors driving the data mining and modeling market is the exponential increase in data generation owing to advancements in digital technology. Modern enterprises generate extensive data from numerous sources such as social media platforms, IoT devices, and transactional databases. The need to make sense of this vast information trove has led to a surge in the adoption of data mining and modeling tools. These tools help organizations uncover hidden patterns, correlations, and insights, thereby enabling more informed decision-making and strategic planning.




    Another significant growth driver is the increasing adoption of artificial intelligence (AI) and machine learning (ML) technologies. Data mining and modeling are critical components of AI and ML algorithms, which rely on large datasets to learn and make predictions. As businesses strive to stay competitive, they are increasingly investing in AI-driven analytics solutions. This trend is particularly prevalent in sectors such as healthcare, finance, and retail, where predictive analytics can provide a substantial competitive edge. Moreover, advancements in big data technologies are further bolstering the capabilities of data mining and modeling solutions, making them more effective and efficient.




    The burgeoning demand for business intelligence (BI) and analytics solutions is also a major factor propelling the market. Organizations are increasingly recognizing the value of data-driven insights in identifying market trends, customer preferences, and operational inefficiencies. Data mining and modeling tools form the backbone of sophisticated BI platforms, enabling companies to transform raw data into actionable intelligence. This demand is further amplified by the growing importance of regulatory compliance and risk management, particularly in highly regulated industries such as banking, financial services, and healthcare.




    From a regional perspective, North America currently dominates the data mining and modeling market, owing to the early adoption of advanced technologies and the presence of major market players. However, Asia Pacific is expected to witness the highest growth rate during the forecast period, driven by rapid digital transformation initiatives and increasing investments in AI and big data technologies. Europe also holds a significant market share, supported by stringent data protection regulations and a strong focus on innovation.



    Component Analysis




    The data mining and modeling market by component is broadly segmented into software and services. The software segment encompasses various tools and platforms that facilitate data mining and modeling processes. These software solutions range from basic data analysis tools to advanced platforms integrated with AI and ML capabilities. The increasing complexity of data and the need for real-time analytics are driving the demand for sophisticated software solutions. Companies are investing in custom and off-the-shelf software to enhance their data handling and analytical capabilities, thereby gaining a competitive edge.




    The services segment includes consulting, implementation, training, and support services. As organizations strive to leverage data mining and modeling tools effectively, the demand for professional services is on the rise. Consulting services help businesses identify the right tools and strategies for their specific needs, while implementation services ensure the seamless integration of these tools into existing systems. Training services are crucial for building in-house expertise, enabling teams to maximize the benefits of data mining and modeling solutions. Support services ensure the ongoing maintenance and optimization of these tools, addressing any technical issues that may arise.




    The software segment is expected to dominate the market throughout the forecast period, driven by continuous advancements in te

  6. d

    Privacy Preserving Distributed Data Mining

    • catalog.data.gov
    • datadiscoverystudio.org
    • +2more
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Privacy Preserving Distributed Data Mining [Dataset]. https://catalog.data.gov/dataset/privacy-preserving-distributed-data-mining
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    Distributed data mining from privacy-sensitive multi-party data is likely to play an important role in the next generation of integrated vehicle health monitoring systems. For example, consider an airline manufacturer [tex]$\mathcal{C}$[/tex] manufacturing an aircraft model [tex]$A$[/tex] and selling it to five different airline operating companies [tex]$\mathcal{V}_1 \dots \mathcal{V}_5$[/tex]. These aircrafts, during their operation, generate huge amount of data. Mining this data can reveal useful information regarding the health and operability of the aircraft which can be useful for disaster management and prediction of efficient operating regimes. Now if the manufacturer [tex]$\mathcal{C}$[/tex] wants to analyze the performance data collected from different aircrafts of model-type [tex]$A$[/tex] belonging to different airlines then central collection of data for subsequent analysis may not be an option. It should be noted that the result of this analysis may be statistically more significant if the data for aircraft model [tex]$A$[/tex] across all companies were available to [tex]$\mathcal{C}$[/tex]. The potential problems arising out of such a data mining scenario are:

  7. Lifesciences Data Mining and Visualization Market Report | Global Forecast...

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Lifesciences Data Mining and Visualization Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-lifesciences-data-mining-and-visualization-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Sep 5, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Lifesciences Data Mining and Visualization Market Outlook



    The global market size for Lifesciences Data Mining and Visualization was valued at approximately USD 1.5 billion in 2023 and is projected to reach around USD 4.3 billion by 2032, growing at a compound annual growth rate (CAGR) of 12.5% during the forecast period. The growth of this market is driven by the increasing demand for sophisticated data analysis tools in the life sciences sector, advancements in analytical technologies, and the rising volume of complex biological data generated from research and clinical trials.



    One of the primary growth factors for the Lifesciences Data Mining and Visualization market is the burgeoning amount of data generated from various life sciences applications, such as genomics, proteomics, and clinical trials. With the advent of high-throughput technologies, researchers and healthcare professionals are now capable of generating vast amounts of data, which necessitates the use of advanced data mining and visualization tools to derive actionable insights. These tools not only help in managing and interpreting large datasets but also in uncovering hidden patterns and relationships, thereby accelerating research and development processes.



    Another significant driver is the increasing adoption of artificial intelligence (AI) and machine learning (ML) algorithms in the life sciences domain. These technologies have proven to be invaluable in enhancing data analysis capabilities, enabling more precise and predictive modeling of biological systems. By integrating AI and ML with data mining and visualization platforms, researchers can achieve higher accuracy in identifying potential drug targets, understanding disease mechanisms, and personalizing treatment plans. This trend is expected to continue, further propelling the market's growth.



    Moreover, the rising emphasis on personalized medicine and the need for precision in healthcare is fueling the demand for data mining and visualization tools. Personalized medicine relies heavily on the analysis of individual genetic, proteomic, and metabolomic profiles to tailor treatments specifically to patients' unique characteristics. The ability to visualize these complex datasets in an understandable and actionable manner is critical for the successful implementation of personalized medicine strategies, thereby boosting the demand for advanced data analysis tools.



    From a regional perspective, North America is anticipated to dominate the Lifesciences Data Mining and Visualization market, owing to the presence of a robust healthcare infrastructure, significant investments in research and development, and a high adoption rate of advanced technologies. The European market is also expected to witness substantial growth, driven by increasing government initiatives to support life sciences research and the presence of leading biopharmaceutical companies. The Asia Pacific region is projected to experience the fastest growth, attributed to the expanding healthcare sector, rising investments in biotechnology research, and the increasing adoption of data analytics solutions.



    Component Analysis



    The Lifesciences Data Mining and Visualization market is segmented by component into software and services. The software segment is expected to hold a significant share of the market, driven by the continuous advancements in data mining algorithms and visualization techniques. Software solutions are critical in processing large volumes of complex biological data, facilitating real-time analysis, and providing intuitive visual representations that aid in decision-making. The increasing integration of AI and ML into these software solutions is further enhancing their capabilities, making them indispensable tools in life sciences research.



    The services segment, on the other hand, is projected to grow at a considerable rate, as organizations seek specialized expertise to manage and interpret their data. Services include consulting, implementation, and maintenance, as well as training and support. The demand for these services is driven by the need to ensure optimal utilization of data mining software and to keep up with the rapid pace of technological advancements. Moreover, many life sciences organizations lack the in-house expertise required to handle large-scale data analytics projects, thereby turning to external service providers for assistance.



    Within the software segment, there is a growing trend towards the development of integrated platforms that combine multiple functionalities, such as data collection, pre

  8. m

    DataCo SMART SUPPLY CHAIN FOR BIG DATA ANALYSIS

    • data.mendeley.com
    Updated Mar 12, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Constante (2019). DataCo SMART SUPPLY CHAIN FOR BIG DATA ANALYSIS [Dataset]. http://doi.org/10.17632/8gx2fvg2k6.1
    Explore at:
    Dataset updated
    Mar 12, 2019
    Authors
    Fabian Constante
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A DataSet of Supply Chains used by the company DataCo Global was used for the analysis. Dataset of Supply Chain , which allows the use of Machine Learning Algorithms and R Software. Areas of important registered activities : Provisioning , Production , Sales , Commercial Distribution.It also allows the correlation of Structured Data with Unstructured Data for knowledge generation.

    Types of Products : Clothing , Sports , and Electronic Supplies

    Additionally it is attached in another file called DescriptionDataCoSupplyChain.csv, the description of each of the variables of the DataCoSupplyChainDatasetc.csv.

  9. d

    Data from: Discovering System Health Anomalies using Data Mining Techniques

    • catalog.data.gov
    • data.nasa.gov
    • +2more
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Discovering System Health Anomalies using Data Mining Techniques [Dataset]. https://catalog.data.gov/dataset/discovering-system-health-anomalies-using-data-mining-techniques
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    We discuss a statistical framework that underlies envelope detection schemes as well as dynamical models based on Hidden Markov Models (HMM) that can encompass both discrete and continuous sensor measurements for use in Integrated System Health Management (ISHM) applications. The HMM allows for the rapid assimilation, analysis, and discovery of system anomalies. We motivate our work with a discussion of an aviation problem where the identification of anomalous sequences is essential for safety reasons. The data in this application are discrete and continuous sensor measurements and can be dealt with seamlessly using the methods described here to discover anomalous flights. We specifically treat the problem of discovering anomalous features in the time series that may be hidden from the sensor suite and compare those methods to standard envelope detection methods on test data designed to accentuate the differences between the two methods. Identification of these hidden anomalies is crucial to building stable, reusable, and cost-efficient systems. We also discuss a data mining framework for the analysis and discovery of anomalies in high-dimensional time series of sensor measurements that would be found in an ISHM system. We conclude with recommendations that describe the tradeoffs in building an integrated scalable platform for robust anomaly detection in ISHM applications.

  10. f

    Data from: Improving the semantic quality of conceptual models through text...

    • figshare.com
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tom Willaert (2023). Improving the semantic quality of conceptual models through text mining. A proof of concept [Dataset]. http://doi.org/10.6084/m9.figshare.6951608.v1
    Explore at:
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Authors
    Tom Willaert
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Python code generated in the context of the dissertation 'Improving the semantic quality of conceptual models through text mining. A proof of concept' (Postgraduate studies Big Data & Analytics for Business and Management, KU Leuven Faculty of Economics and Business, 2018)

  11. e

    Data Warehousing and Data Mining

    • paper.erudition.co.in
    html
    Updated Jun 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Einetic (2025). Data Warehousing and Data Mining [Dataset]. https://paper.erudition.co.in/makaut/master-of-business-administration-2023-24/2/management-information-system/erp-crm-scm
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jun 16, 2025
    Dataset authored and provided by
    Einetic
    License

    https://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms

    Description

    Question Paper Solutions of chapter Data Warehousing and Data Mining of Management Information System, 2nd Semester , Master of Business Administration (2023-24)

  12. Z

    Predictive Analytics Market - by Software Solutions (Data Mining &...

    • zionmarketresearch.com
    pdf
    Updated Jun 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zion Market Research (2025). Predictive Analytics Market - by Software Solutions (Data Mining & Management, Decision Support Systems, Fraud & Security Intelligence, Financial Intelligence, Customer Intelligence, and Others), By Delivery Mode (Cloud-Based Technology and On-Premise Deployment), By End-User (BFSI, Telecom & IT, Healthcare, Transport & Logistics, Government & Utilities, and Others) and by Application (Customer & Channel, Sales and Marketing, Finance & Risk, and Other Applications), and By Region - Global and Regional Industry Overview, Comprehensive Analysis, Historical Data, and Forecasts 2024-2032 [Dataset]. https://www.zionmarketresearch.com/report/predictive-analytic-market
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 21, 2025
    Dataset authored and provided by
    Zion Market Research
    License

    https://www.zionmarketresearch.com/privacy-policyhttps://www.zionmarketresearch.com/privacy-policy

    Time period covered
    2022 - 2030
    Area covered
    Global
    Description

    Global Predictive Analytics Market size worth at USD 16.19 Billion in 2023 and projected to USD 113.8 Billion by 2032, with a CAGR of around 24.19% between 2024-2032.

  13. D

    Data Mining Tools Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Data Mining Tools Report [Dataset]. https://www.marketreportanalytics.com/reports/data-mining-tools-56275
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 3, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Data Mining Tools market, valued at $612.4 million in 2025, is projected to experience robust growth, driven by the increasing volume and variety of data generated across industries and the rising need for extracting actionable insights. The Compound Annual Growth Rate (CAGR) of 6.7% from 2025 to 2033 signifies a substantial expansion, propelled by several key factors. The burgeoning adoption of cloud-based data mining tools offers scalability and cost-effectiveness, attracting businesses of all sizes. Furthermore, advancements in artificial intelligence (AI) and machine learning (ML) are enhancing the capabilities of these tools, enabling more sophisticated analytics and predictive modeling. Specific application areas like BFSI (Banking, Financial Services, and Insurance), Healthcare and Life Sciences, and Telecom and IT are significant contributors to market growth, fueled by the need for risk management, personalized medicine, and customer relationship management respectively. While data security and privacy concerns represent a potential restraint, the overall market outlook remains positive, driven by continuous technological innovations and increasing digitalization across industries. The market segmentation reveals a preference for cloud-based solutions over on-premises deployments, reflecting the growing demand for flexible and scalable analytics infrastructure. Leading players like IBM, SAS Institute, and Oracle are consolidating their market share through strategic partnerships and continuous product development. However, the emergence of agile and specialized data mining startups is also intensifying competition. Geographic distribution shows strong growth in North America and Europe, driven by early adoption of advanced analytics techniques. However, the Asia-Pacific region is expected to emerge as a significant growth driver in the coming years due to increasing digitalization and government initiatives promoting data-driven decision-making. The historical period (2019-2024) likely saw a similar growth trajectory, setting the stage for the forecasted expansion during 2025-2033. The continued integration of data mining tools with other business intelligence platforms is expected to further fuel market expansion.

  14. m

    Helpdesk

    • data.mendeley.com
    Updated Dec 1, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ilya Verenich (2016). Helpdesk [Dataset]. http://doi.org/10.17632/39bp3vv62t.1
    Explore at:
    Dataset updated
    Dec 1, 2016
    Authors
    Ilya Verenich
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This dataset contains events from a ticketing management process of the help desk of an Italian software company. The process consists of 9 activities, and all cases start with the insertion of a new ticket into the ticketing management system. Each case ends when the issue is resolved and the ticket is closed. This log contains 3804 process instances (a.k.a "cases") and 13710 events

  15. Hospital Database Management System SQL Project

    • kaggle.com
    Updated May 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew Dolcimascolo-Garrett (2024). Hospital Database Management System SQL Project [Dataset]. https://www.kaggle.com/datasets/andrewdolcigarrett/hospital-database-management-system-sql-project/versions/1
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 9, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Andrew Dolcimascolo-Garrett
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Andrew Dolcimascolo-Garrett

    Released under MIT

    Contents

  16. f

    Document Processing Event Logs

    • figshare.com
    xml
    Updated Jun 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Almir Djedović (2023). Document Processing Event Logs [Dataset]. http://doi.org/10.4121/uuid:6df27e59-6221-4ca2-9cc4-65c66588c6eb
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Jun 11, 2023
    Dataset provided by
    4TU.ResearchData
    Authors
    Almir Djedović
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The given set of data contains information about the process of document processing. The process of processing documents contains the following activities: Receiving a Document, Creating a new Case, Investing Document into a new Case and so on. The data set contains information about the event name, event type, time of the event's execution and the participant whose execution the event is related to. The data is formatted in the MXML format in order to be used for the process mining analysis using tools such as ProM and so on.

  17. m

    Data from: Las Vegas Strip

    • data.mendeley.com
    Updated Jul 29, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sérgio Moro (2017). Las Vegas Strip [Dataset]. http://doi.org/10.17632/tsf9sjdwh2.1
    Explore at:
    Dataset updated
    Jul 29, 2017
    Authors
    Sérgio Moro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Las Vegas Strip, Las Vegas
    Description

    This dataset includes quantitative and categorical features from online reviews from 21 hotels located in Las Vegas Strip, extracted from TripAdvisor (http://www.tripadvisor.com). All the 504 reviews were collected between January and August of 2016. The dataset contains 504 records and 20 tuned features (as of “status = included”, from Table 1 of the article mentioned below), 24 per hotel (two per each month, randomly selected), regarding the year of 2015.

  18. b

    Open Data for Access and Mining

    • bioregistry.io
    • registry.identifiers.org
    Updated Apr 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Open Data for Access and Mining [Dataset]. https://bioregistry.io/odam
    Explore at:
    Dataset updated
    Apr 22, 2021
    Description

    Experimental data table management software to make research data accessible and available for reuse with minimal effort on the part of the data provider. Designed to manage experimental data tables in an easy way for users, ODAM provides a model for structuring both data and metadata that facilitates data handling and analysis. It also encourages data dissemination according to FAIR principles by making the data interoperable and reusable by both humans and machines, allowing the dataset to be explored and then extracted in whole or in part as needed.

  19. m

    Data Mining Software Market Industry Size, Share & Insights for 2033

    • marketresearchintellect.com
    Updated Jul 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Intellect (2020). Data Mining Software Market Industry Size, Share & Insights for 2033 [Dataset]. https://www.marketresearchintellect.com/product/global-data-mining-software-market-size-and-forecast-2/
    Explore at:
    Dataset updated
    Jul 27, 2020
    Dataset authored and provided by
    Market Research Intellect
    License

    https://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy

    Area covered
    Global
    Description

    Explore the growth potential of Market Research Intellect's report_name, valued at current_value in 2024, with a forecasted market size of forecast_value by 2033, growing at a CAGR of cagr_value from 2026 to 2033.

  20. r

    International Journal of Engineering and Advanced Technology Publication fee...

    • researchhelpdesk.org
    Updated Jun 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2022). International Journal of Engineering and Advanced Technology Publication fee - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/publication-fee/552/international-journal-of-engineering-and-advanced-technology
    Explore at:
    Dataset updated
    Jun 25, 2022
    Dataset authored and provided by
    Research Help Desk
    Description

    International Journal of Engineering and Advanced Technology Publication fee - ResearchHelpDesk - International Journal of Engineering and Advanced Technology (IJEAT) is having Online-ISSN 2249-8958, bi-monthly international journal, being published in the months of February, April, June, August, October, and December by Blue Eyes Intelligence Engineering & Sciences Publication (BEIESP) Bhopal (M.P.), India since the year 2011. It is academic, online, open access, double-blind, peer-reviewed international journal. It aims to publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. All submitted papers will be reviewed by the board of committee of IJEAT. Aim of IJEAT Journal disseminate original, scientific, theoretical or applied research in the field of Engineering and allied fields. dispense a platform for publishing results and research with a strong empirical component. aqueduct the significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. seek original and unpublished research papers based on theoretical or experimental works for the publication globally. publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. impart a platform for publishing results and research with a strong empirical component. create a bridge for a significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. solicit original and unpublished research papers, based on theoretical or experimental works. Scope of IJEAT International Journal of Engineering and Advanced Technology (IJEAT) covers all topics of all engineering branches. Some of them are Computer Science & Engineering, Information Technology, Electronics & Communication, Electrical and Electronics, Electronics and Telecommunication, Civil Engineering, Mechanical Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. The main topic includes but not limited to: 1. Smart Computing and Information Processing Signal and Speech Processing Image Processing and Pattern Recognition WSN Artificial Intelligence and machine learning Data mining and warehousing Data Analytics Deep learning Bioinformatics High Performance computing Advanced Computer networking Cloud Computing IoT Parallel Computing on GPU Human Computer Interactions 2. Recent Trends in Microelectronics and VLSI Design Process & Device Technologies Low-power design Nanometer-scale integrated circuits Application specific ICs (ASICs) FPGAs Nanotechnology Nano electronics and Quantum Computing 3. Challenges of Industry and their Solutions, Communications Advanced Manufacturing Technologies Artificial Intelligence Autonomous Robots Augmented Reality Big Data Analytics and Business Intelligence Cyber Physical Systems (CPS) Digital Clone or Simulation Industrial Internet of Things (IIoT) Manufacturing IOT Plant Cyber security Smart Solutions – Wearable Sensors and Smart Glasses System Integration Small Batch Manufacturing Visual Analytics Virtual Reality 3D Printing 4. Internet of Things (IoT) Internet of Things (IoT) & IoE & Edge Computing Distributed Mobile Applications Utilizing IoT Security, Privacy and Trust in IoT & IoE Standards for IoT Applications Ubiquitous Computing Block Chain-enabled IoT Device and Data Security and Privacy Application of WSN in IoT Cloud Resources Utilization in IoT Wireless Access Technologies for IoT Mobile Applications and Services for IoT Machine/ Deep Learning with IoT & IoE Smart Sensors and Internet of Things for Smart City Logic, Functional programming and Microcontrollers for IoT Sensor Networks, Actuators for Internet of Things Data Visualization using IoT IoT Application and Communication Protocol Big Data Analytics for Social Networking using IoT IoT Applications for Smart Cities Emulation and Simulation Methodologies for IoT IoT Applied for Digital Contents 5. Microwaves and Photonics Microwave filter Micro Strip antenna Microwave Link design Microwave oscillator Frequency selective surface Microwave Antenna Microwave Photonics Radio over fiber Optical communication Optical oscillator Optical Link design Optical phase lock loop Optical devices 6. Computation Intelligence and Analytics Soft Computing Advance Ubiquitous Computing Parallel Computing Distributed Computing Machine Learning Information Retrieval Expert Systems Data Mining Text Mining Data Warehousing Predictive Analysis Data Management Big Data Analytics Big Data Security 7. Energy Harvesting and Wireless Power Transmission Energy harvesting and transfer for wireless sensor networks Economics of energy harvesting communications Waveform optimization for wireless power transfer RF Energy Harvesting Wireless Power Transmission Microstrip Antenna design and application Wearable Textile Antenna Luminescence Rectenna 8. Advance Concept of Networking and Database Computer Network Mobile Adhoc Network Image Security Application Artificial Intelligence and machine learning in the Field of Network and Database Data Analytic High performance computing Pattern Recognition 9. Machine Learning (ML) and Knowledge Mining (KM) Regression and prediction Problem solving and planning Clustering Classification Neural information processing Vision and speech perception Heterogeneous and streaming data Natural language processing Probabilistic Models and Methods Reasoning and inference Marketing and social sciences Data mining Knowledge Discovery Web mining Information retrieval Design and diagnosis Game playing Streaming data Music Modelling and Analysis Robotics and control Multi-agent systems Bioinformatics Social sciences Industrial, financial and scientific applications of all kind 10. Advanced Computer networking Computational Intelligence Data Management, Exploration, and Mining Robotics Artificial Intelligence and Machine Learning Computer Architecture and VLSI Computer Graphics, Simulation, and Modelling Digital System and Logic Design Natural Language Processing and Machine Translation Parallel and Distributed Algorithms Pattern Recognition and Analysis Systems and Software Engineering Nature Inspired Computing Signal and Image Processing Reconfigurable Computing Cloud, Cluster, Grid and P2P Computing Biomedical Computing Advanced Bioinformatics Green Computing Mobile Computing Nano Ubiquitous Computing Context Awareness and Personalization, Autonomic and Trusted Computing Cryptography and Applied Mathematics Security, Trust and Privacy Digital Rights Management Networked-Driven Multicourse Chips Internet Computing Agricultural Informatics and Communication Community Information Systems Computational Economics, Digital Photogrammetric Remote Sensing, GIS and GPS Disaster Management e-governance, e-Commerce, e-business, e-Learning Forest Genomics and Informatics Healthcare Informatics Information Ecology and Knowledge Management Irrigation Informatics Neuro-Informatics Open Source: Challenges and opportunities Web-Based Learning: Innovation and Challenges Soft computing Signal and Speech Processing Natural Language Processing 11. Communications Microstrip Antenna Microwave Radar and Satellite Smart Antenna MIMO Antenna Wireless Communication RFID Network and Applications 5G Communication 6G Communication 12. Algorithms and Complexity Sequential, Parallel And Distributed Algorithms And Data Structures Approximation And Randomized Algorithms Graph Algorithms And Graph Drawing On-Line And Streaming Algorithms Analysis Of Algorithms And Computational Complexity Algorithm Engineering Web Algorithms Exact And Parameterized Computation Algorithmic Game Theory Computational Biology Foundations Of Communication Networks Computational Geometry Discrete Optimization 13. Software Engineering and Knowledge Engineering Software Engineering Methodologies Agent-based software engineering Artificial intelligence approaches to software engineering Component-based software engineering Embedded and ubiquitous software engineering Aspect-based software engineering Empirical software engineering Search-Based Software engineering Automated software design and synthesis Computer-supported cooperative work Automated software specification Reverse engineering Software Engineering Techniques and Production Perspectives Requirements engineering Software analysis, design and modelling Software maintenance and evolution Software engineering tools and environments Software engineering decision support Software design patterns Software product lines Process and workflow management Reflection and metadata approaches Program understanding and system maintenance Software domain modelling and analysis Software economics Multimedia and hypermedia software engineering Software engineering case study and experience reports Enterprise software, middleware, and tools Artificial intelligent methods, models, techniques Artificial life and societies Swarm intelligence Smart Spaces Autonomic computing and agent-based systems Autonomic computing Adaptive Systems Agent architectures, ontologies, languages and protocols Multi-agent systems Agent-based learning and knowledge discovery Interface agents Agent-based auctions and marketplaces Secure mobile and multi-agent systems Mobile agents SOA and Service-Oriented Systems Service-centric software engineering Service oriented requirements engineering Service oriented architectures Middleware for service based systems Service discovery and composition Service level

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dashlink (2025). Data Mining in Systems Health Management [Dataset]. https://catalog.data.gov/dataset/data-mining-in-systems-health-management

Data Mining in Systems Health Management

Explore at:
11 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Apr 10, 2025
Dataset provided by
Dashlink
Description

This chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.

Search
Clear search
Close search
Google apps
Main menu