100+ datasets found
  1. d

    Ensemble Data Mining Methods

    • catalog.data.gov
    • cloud.csiss.gmu.edu
    • +1more
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Ensemble Data Mining Methods [Dataset]. https://catalog.data.gov/dataset/ensemble-data-mining-methods
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Dashlink
    Description

    Ensemble Data Mining Methods, also known as Committee Methods or Model Combiners, are machine learning methods that leverage the power of multiple models to achieve better prediction accuracy than any of the individual models could on their own. The basic goal when designing an ensemble is the same as when establishing a committee of people: each member of the committee should be as competent as possible, but the members should be complementary to one another. If the members are not complementary, i.e., if they always agree, then the committee is unnecessary---any one member is sufficient. If the members are complementary, then when one or a few members make an error, the probability is high that the remaining members can correct this error. Research in ensemble methods has largely revolved around designing ensembles consisting of competent yet complementary models.

  2. Ensemble Data Mining Methods - Dataset - NASA Open Data Portal

    • data.nasa.gov
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Ensemble Data Mining Methods - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/ensemble-data-mining-methods
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    Ensemble Data Mining Methods, also known as Committee Methods or Model Combiners, are machine learning methods that leverage the power of multiple models to achieve better prediction accuracy than any of the individual models could on their own. The basic goal when designing an ensemble is the same as when establishing a committee of people: each member of the committee should be as competent as possible, but the members should be complementary to one another. If the members are not complementary, i.e., if they always agree, then the committee is unnecessary---any one member is sufficient. If the members are complementary, then when one or a few members make an error, the probability is high that the remaining members can correct this error. Research in ensemble methods has largely revolved around designing ensembles consisting of competent yet complementary models.

  3. Data from: Peer-to-Peer Data Mining, Privacy Issues, and Games

    • data.nasa.gov
    • s.cnmilf.com
    • +3more
    Updated Mar 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Peer-to-Peer Data Mining, Privacy Issues, and Games [Dataset]. https://data.nasa.gov/dataset/peer-to-peer-data-mining-privacy-issues-and-games
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    Peer-to-Peer (P2P) networks are gaining increasing popularity in many distributed applications such as file-sharing, network storage, web caching, sear- ching and indexing of relevant documents and P2P network-threat analysis. Many of these applications require scalable analysis of data over a P2P network. This paper starts by offering a brief overview of distributed data mining applications and algorithms for P2P environments. Next it discusses some of the privacy concerns with P2P data mining and points out the problems of existing privacy-preserving multi-party data mining techniques. It further points out that most of the nice assumptions of these existing privacy preserving techniques fall apart in real-life applications of privacy-preserving distributed data mining (PPDM). The paper offers a more realistic formulation of the PPDM problem as a multi-party game and points out some recent results.

  4. i

    A novel fusion Python application of data mining techniques to evaluate...

    • ieee-dataport.org
    Updated Jun 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Kayode (2020). A novel fusion Python application of data mining techniques to evaluate airborne magnetic datasets [Dataset]. https://ieee-dataport.org/open-access/novel-fusion-python-application-data-mining-techniques-evaluate-airborne-magnetic
    Explore at:
    Dataset updated
    Jun 8, 2020
    Authors
    John Kayode
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Depths to the various subsurface anomalies have been the primary interest in all the applications of magnetic methods of geophysical prospection. Depths to the subsurface geologic features of interest are more valuable and superior to all other properties in any correct subsurface geologic structural interpretations.

  5. c

    Data from: Discovering System Health Anomalies using Data Mining Techniques

    • s.cnmilf.com
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    • +2more
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Discovering System Health Anomalies using Data Mining Techniques [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/discovering-system-health-anomalies-using-data-mining-techniques
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    We discuss a statistical framework that underlies envelope detection schemes as well as dynamical models based on Hidden Markov Models (HMM) that can encompass both discrete and continuous sensor measurements for use in Integrated System Health Management (ISHM) applications. The HMM allows for the rapid assimilation, analysis, and discovery of system anomalies. We motivate our work with a discussion of an aviation problem where the identification of anomalous sequences is essential for safety reasons. The data in this application are discrete and continuous sensor measurements and can be dealt with seamlessly using the methods described here to discover anomalous flights. We specifically treat the problem of discovering anomalous features in the time series that may be hidden from the sensor suite and compare those methods to standard envelope detection methods on test data designed to accentuate the differences between the two methods. Identification of these hidden anomalies is crucial to building stable, reusable, and cost-efficient systems. We also discuss a data mining framework for the analysis and discovery of anomalies in high-dimensional time series of sensor measurements that would be found in an ISHM system. We conclude with recommendations that describe the tradeoffs in building an integrated scalable platform for robust anomaly detection in ISHM applications.

  6. f

    Table_1_Data Mining Techniques in Analyzing Process Data: A Didactic.pdf

    • frontiersin.figshare.com
    pdf
    Updated Jun 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xin Qiao; Hong Jiao (2023). Table_1_Data Mining Techniques in Analyzing Process Data: A Didactic.pdf [Dataset]. http://doi.org/10.3389/fpsyg.2018.02231.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 7, 2023
    Dataset provided by
    Frontiers
    Authors
    Xin Qiao; Hong Jiao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Due to increasing use of technology-enhanced educational assessment, data mining methods have been explored to analyse process data in log files from such assessment. However, most studies were limited to one data mining technique under one specific scenario. The current study demonstrates the usage of four frequently used supervised techniques, including Classification and Regression Trees (CART), gradient boosting, random forest, support vector machine (SVM), and two unsupervised methods, Self-organizing Map (SOM) and k-means, fitted to one assessment data. The USA sample (N = 426) from the 2012 Program for International Student Assessment (PISA) responding to problem-solving items is extracted to demonstrate the methods. After concrete feature generation and feature selection, classifier development procedures are implemented using the illustrated techniques. Results show satisfactory classification accuracy for all the techniques. Suggestions for the selection of classifiers are presented based on the research questions, the interpretability and the simplicity of the classifiers. Interpretations for the results from both supervised and unsupervised learning methods are provided.

  7. m

    Educational Attainment in North Carolina Public Schools: Use of statistical...

    • data.mendeley.com
    Updated Nov 14, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scott Herford (2018). Educational Attainment in North Carolina Public Schools: Use of statistical modeling, data mining techniques, and machine learning algorithms to explore 2014-2017 North Carolina Public School datasets. [Dataset]. http://doi.org/10.17632/6cm9wyd5g5.1
    Explore at:
    Dataset updated
    Nov 14, 2018
    Authors
    Scott Herford
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    North Carolina
    Description

    The purpose of data mining analysis is always to find patterns of the data using certain kind of techiques such as classification or regression. It is not always feasible to apply classification algorithms directly to dataset. Before doing any work on the data, the data has to be pre-processed and this process normally involves feature selection and dimensionality reduction. We tried to use clustering as a way to reduce the dimension of the data and create new features. Based on our project, after using clustering prior to classification, the performance has not improved much. The reason why it has not improved could be the features we selected to perform clustering are not well suited for it. Because of the nature of the data, classification tasks are going to provide more information to work with in terms of improving knowledge and overall performance metrics. From the dimensionality reduction perspective: It is different from Principle Component Analysis which guarantees finding the best linear transformation that reduces the number of dimensions with a minimum loss of information. Using clusters as a technique of reducing the data dimension will lose a lot of information since clustering techniques are based a metric of 'distance'. At high dimensions euclidean distance loses pretty much all meaning. Therefore using clustering as a "Reducing" dimensionality by mapping data points to cluster numbers is not always good since you may lose almost all the information. From the creating new features perspective: Clustering analysis creates labels based on the patterns of the data, it brings uncertainties into the data. By using clustering prior to classification, the decision on the number of clusters will highly affect the performance of the clustering, then affect the performance of classification. If the part of features we use clustering techniques on is very suited for it, it might increase the overall performance on classification. For example, if the features we use k-means on are numerical and the dimension is small, the overall classification performance may be better. We did not lock in the clustering outputs using a random_state in the effort to see if they were stable. Our assumption was that if the results vary highly from run to run which they definitely did, maybe the data just does not cluster well with the methods selected at all. Basically, the ramification we saw was that our results are not much better than random when applying clustering to the data preprocessing. Finally, it is important to ensure a feedback loop is in place to continuously collect the same data in the same format from which the models were created. This feedback loop can be used to measure the model real world effectiveness and also to continue to revise the models from time to time as things change.

  8. f

    Data from: Results obtained in a data mining process applied to a database...

    • scielo.figshare.com
    jpeg
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    E.M. Ruiz Lobaina; C. P. Romero Suárez (2023). Results obtained in a data mining process applied to a database containing bibliographic information concerning four segments of science. [Dataset]. http://doi.org/10.6084/m9.figshare.20011798.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    SciELO journals
    Authors
    E.M. Ruiz Lobaina; C. P. Romero Suárez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract The objective of this work is to improve the quality of the information that belongs to the database CubaCiencia, of the Institute of Scientific and Technological Information. This database has bibliographic information referring to four segments of science and is the main database of the Library Management System. The applied methodology was based on the Decision Trees, the Correlation Matrix, the 3D Scatter Plot, etc., which are techniques used by data mining, for the study of large volumes of information. The results achieved not only made it possible to improve the information in the database, but also provided truly useful patterns in the solution of the proposed objectives.

  9. w

    Dataset of books called Data mining techniques in CRM : inside customer...

    • workwithdata.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books called Data mining techniques in CRM : inside customer segmentation [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=book&fop0=%3D&fval0=Data+mining+techniques+in+CRM+%3A+inside+customer+segmentation
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about books. It has 1 row and is filtered where the book is Data mining techniques in CRM : inside customer segmentation. It features 7 columns including author, publication date, language, and book publisher.

  10. d

    Data Mining in Systems Health Management

    • catalog.data.gov
    • data.wu.ac.at
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Data Mining in Systems Health Management [Dataset]. https://catalog.data.gov/dataset/data-mining-in-systems-health-management
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    This chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.

  11. Data from: COVID-19 and media dataset: Mining textual data according periods...

    • dataverse.cirad.fr
    application/x-gzip +1
    Updated Dec 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mathieu Roche; Mathieu Roche (2020). COVID-19 and media dataset: Mining textual data according periods and countries (UK, Spain, France) [Dataset]. http://doi.org/10.18167/DVN1/ZUA8MF
    Explore at:
    application/x-gzip(511157), application/x-gzip(97349), text/x-perl-script(4982), application/x-gzip(93110), application/x-gzip(23765310), application/x-gzip(107669)Available download formats
    Dataset updated
    Dec 21, 2020
    Authors
    Mathieu Roche; Mathieu Roche
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    France, Spain, United Kingdom
    Dataset funded by
    ANR (#DigitAg)
    Horizon 2020 - European Commission - (MOOD project)
    Description

    These datasets contain a set of news articles in English, French and Spanish extracted from Medisys (i‧e. advanced search) according the following criteria: (1) Keywords (at least): COVID-19, ncov2019, cov2019, coronavirus; (2) Keywords (all words): masque (French), mask (English), máscara (Spanish) (3) Periods: March 2020, May 2020, July 2020; (4) Countries: UK (English), Spain (Spanish), France (French). A corpus by country has been manually collected (copy/paste) from Medisys. For each country, 100 snippets by period (the 1st, 10th, 15th, 20th for each month) are built. The datasets are composed of: (1) A corpus preprocessed for the BioTex tool - https://gitlab.irstea.fr/jacques.fize/biotex_python (.txt) [~ 900 texts]; (2) The same corpus preprocessed for the Weka tool - https://www.cs.waikato.ac.nz/ml/weka/ (.arff); (3) Terms extracted with BioTex according spatio-temporal criteria (*.csv) [~ 9000 terms]. Other corpora can be collected with this same method. The code in Perl in order to preprocess textual data for terminology extraction (with BioTex) and classification (with Weka) tasks is available. A new version of this dataset (December 2020) includes additional data: - Python preprocessing and BioTex code [Execution_BioTex‧tgz]. - Terms extracted with different ranking measures (i‧e. C-Value, F-TFIDF-C_M) and methods (i‧e. extraction of words and multi-word terms) with the online version of BioTex [Terminology_with_BioTex_online_dec2020.tgz],

  12. c

    Discovering Anomalous Aviation Safety Events Using Scalable Data Mining...

    • s.cnmilf.com
    • cloud.csiss.gmu.edu
    • +6more
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Discovering Anomalous Aviation Safety Events Using Scalable Data Mining Algorithms [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/discovering-anomalous-aviation-safety-events-using-scalable-data-mining-algorithms
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    The worldwide civilian aviation system is one of the most complex dynamical systems created. Most modern commercial aircraft have onboard flight data recorders that record several hundred discrete and continuous parameters at approximately 1Hz for the entire duration of the flight. These data contain information about the flight control systems, actuators, engines, landing gear, avionics, and pilot commands. In this paper, recent advances in the development of a novel knowledge discovery process consisting of a suite of data mining techniques for identifying precursors to aviation safety incidents are discussed. The data mining techniques include scalable multiple-kernel learning for large-scale distributed anomaly detection. A novel multivariate time-series search algorithm is used to search for signatures of discovered anomalies on massive datasets. The process can identify operationally significant events due to environmental, mechanical, and human factors issues in the high-dimensional flight operations quality assurance data. All discovered anomalies are validated by a team of independent _domain experts. This novel automated knowledge discovery process is aimed at complementing the state-of-the-art human-generated exceedance-based analysis that fails to discover previously unknown aviation safety incidents. In this paper, the discovery pipeline, the methods used, and some of the significant anomalies detected on real-world commercial aviation data are discussed.

  13. D

    Data Mining Tools Market Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Feb 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Data Mining Tools Market Report [Dataset]. https://www.marketresearchforecast.com/reports/data-mining-tools-market-1722
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Feb 3, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Mining Tools Market size was valued at USD 1.01 USD billion in 2023 and is projected to reach USD 1.99 USD billion by 2032, exhibiting a CAGR of 10.2 % during the forecast period. The growing adoption of data-driven decision-making and the increasing need for business intelligence are major factors driving market growth. Data mining refers to filtering, sorting, and classifying data from larger datasets to reveal subtle patterns and relationships, which helps enterprises identify and solve complex business problems through data analysis. Data mining software tools and techniques allow organizations to foresee future market trends and make business-critical decisions at crucial times. Data mining is an essential component of data science that employs advanced data analytics to derive insightful information from large volumes of data. Businesses rely heavily on data mining to undertake analytics initiatives in the organizational setup. The analyzed data sourced from data mining is used for varied analytics and business intelligence (BI) applications, which consider real-time data analysis along with some historical pieces of information. Recent developments include: May 2023 – WiMi Hologram Cloud Inc. introduced a new data interaction system developed by combining neural network technology and data mining. Using real-time interaction, the system can offer reliable and safe information transmission., May 2023 – U.S. Data Mining Group, Inc., operating in bitcoin mining site, announced a hosting contract to deploy 150,000 bitcoins in partnership with major companies such as TeslaWatt, Sphere 3D, Marathon Digital, and more. The company is offering industry turn-key solutions for curtailment, accounting, and customer relations., April 2023 – Artificial intelligence and single-cell biotech analytics firm, One Biosciences, launched a single cell data mining algorithm called ‘MAYA’. The algorithm is for cancer patients to detect therapeutic vulnerabilities., May 2022 – Europe-based Solarisbank, a banking-as-a-service provider, announced its partnership with Snowflake to boost its cloud data strategy. Using the advanced cloud infrastructure, the company can enhance data mining efficiency and strengthen its banking position.. Key drivers for this market are: Increasing Focus on Customer Satisfaction to Drive Market Growth. Potential restraints include: Requirement of Skilled Technical Resources Likely to Hamper Market Growth. Notable trends are: Incorporation of Data Mining and Machine Learning Solutions to Propel Market Growth.

  14. f

    The list of frequently occurred genes in the detected logic relationships in...

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tsukasa Fukunaga; Wataru Iwasaki (2023). The list of frequently occurred genes in the detected logic relationships in the KEGG OC ortholog dataset. [Dataset]. http://doi.org/10.1371/journal.pone.0232106.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Tsukasa Fukunaga; Wataru Iwasaki
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The list of frequently occurred genes in the detected logic relationships in the KEGG OC ortholog dataset.

  15. s

    Online Feature Selection and Its Applications

    • researchdata.smu.edu.sg
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HOI Steven; Jialei WANG; Peilin ZHAO; Rong JIN (2023). Online Feature Selection and Its Applications [Dataset]. http://doi.org/10.25440/smu.12062733.v1
    Explore at:
    Dataset updated
    May 31, 2023
    Dataset provided by
    SMU Research Data Repository (RDR)
    Authors
    HOI Steven; Jialei WANG; Peilin ZHAO; Rong JIN
    License

    https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html

    Description

    Feature selection is an important technique for data mining before a machine learning algorithm is applied. Despite its importance, most studies of feature selection are restricted to batch learning. Unlike traditional batch learning methods, online learning represents a promising family of efficient and scalable machine learning algorithms for large-scale applications. Most existing studies of online learning require accessing all the attributes/features of training instances. Such a classical setting is not always appropriate for real-world applications when data instances are of high dimensionality or it is expensive to acquire the full set of attributes/features. To address this limitation, we investigate the problem of Online Feature Selection (OFS) in which an online learner is only allowed to maintain a classifier involved only a small and fixed number of features. The key challenge of Online Feature Selection is how to make accurate prediction using a small and fixed number of active features. This is in contrast to the classical setup of online learning where all the features can be used for prediction. We attempt to tackle this challenge by studying sparsity regularization and truncation techniques. Specifically, this article addresses two different tasks of online feature selection: (1) learning with full input where an learner is allowed to access all the features to decide the subset of active features, and (2) learning with partial input where only a limited number of features is allowed to be accessed for each instance by the learner. We present novel algorithms to solve each of the two problems and give their performance analysis. We evaluate the performance of the proposed algorithms for online feature selection on several public datasets, and demonstrate their applications to real-world problems including image classification in computer vision and microarray gene expression analysis in bioinformatics. The encouraging results of our experiments validate the efficacy and efficiency of the proposed techniques.Related Publication: Hoi, S. C., Wang, J., Zhao, P., & Jin, R. (2012). Online feature selection for mining big data. In Proceedings of the 1st International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications (pp. 93-100). ACM. http://dx.doi.org/10.1145/2351316.2351329 Full text available in InK: http://ink.library.smu.edu.sg/sis_research/2402/ Wang, J., Zhao, P., Hoi, S. C., & Jin, R. (2014). Online feature selection and its applications. IEEE Transactions on Knowledge and Data Engineering, 26(3), 698-710. http://dx.doi.org/10.1109/TKDE.2013.32 Full text available in InK: http://ink.library.smu.edu.sg/sis_research/2277/

  16. r

    A predictive model for opal exploration in Australia from a data mining...

    • researchdata.edu.au
    Updated May 1, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thomas Landgrebe; Thomas Landgrebe; Adriana Dutkiewicz; Dietmar Muller (2015). A predictive model for opal exploration in Australia from a data mining approach [Dataset]. http://doi.org/10.4227/11/5587A86C0FDF1
    Explore at:
    Dataset updated
    May 1, 2015
    Dataset provided by
    The University of Sydney
    Authors
    Thomas Landgrebe; Thomas Landgrebe; Adriana Dutkiewicz; Dietmar Muller
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Dataset funded by
    Australian Research Council
    Description

    This data collection is associated with the publications: Merdith, A. S., Landgrebe, T. C. W., Dutkiewicz, A., & Müller, R. D. (2013). Towards a predictive model for opal exploration using a spatio-temporal data mining approach. Australian Journal of Earth Sciences, 60(2), 217-229. doi: 10.1080/08120099.2012.754793

    and

    Landgrebe, T. C. W., Merdith, A., Dutkiewicz, A., & Müller, R. D. (2013). Relationships between palaeogeography and opal occurrence in Australia: A data-mining approach. Computers & Geosciences, 56(0), 76-82. doi: 10.1016/j.cageo.2013.02.002

    Publication Abstract - Merdith et al. (2013)

    Opal is Australia's national gemstone, however most significant opal discoveries were made in the early 1900's - more than 100 years ago - until recently. Currently there is no formal exploration model for opal, meaning there are no widely accepted concepts or methodologies available to suggest where new opal fields may be found. As a consequence opal mining in Australia is a cottage industry with the majority of opal exploration focused around old opal fields. The EarthByte Group has developed a new opal exploration methodology for the Great Artesian Basin. The work is based on the concept of applying “big data mining” approaches to data sets relevant for identifying regions that are prospective for opal. The group combined a multitude of geological and geophysical data sets that were jointly analysed to establish associations between particular features in the data with known opal mining sites. A “training set” of known opal localities (1036 opal mines) was assembled, using those localities, which were featured in published reports and on maps. The data used include rock types, soil type, regolith type, topography, radiometric data and a stack of digital palaeogeographic maps. The different data layers were analysed via spatio-temporal data mining combining the GPlates PaleoGIS software (www.gplates.org) with the Orange data mining software (orange.biolab.si) to produce the first opal prospectivity map for the Great Artesian Basin. One of the main results of the study is that the geological conditions favourable for opal were found to be related to a particular sequence of surface environments over geological time. These conditions involved alternating shallow seas and river systems followed by uplift and erosion. The approach reduces the entire area of the Great Artesian Basin to a mere 6% that is deemed to be prospective for opal exploration. The work is described in two companion papers in the Australian Journal of Earth Sciences and Computers and Geosciences.

    Publication Abstract - Landgrebe et al. (2013)

    Age-coded multi-layered geological datasets are becoming increasingly prevalent with the surge in open-access geodata, yet there are few methodologies for extracting geological information and knowledge from these data. We present a novel methodology, based on the open-source GPlates software in which age-coded digital palaeogeographic maps are used to “data-mine” spatio-temporal patterns related to the occurrence of Australian opal. Our aim is to test the concept that only a particular sequence of depositional/erosional environments may lead to conditions suitable for the formation of gem quality sedimentary opal. Time-varying geographic environment properties are extracted from a digital palaeogeographic dataset of the eastern Australian Great Artesian Basin (GAB) at 1036 opal localities. We obtain a total of 52 independent ordinal sequences sampling 19 time slices from the Early Cretaceous to the present-day. We find that 95% of the known opal deposits are tied to only 27 sequences all comprising fluvial and shallow marine depositional sequences followed by a prolonged phase of erosion. We then map the total area of the GAB that matches these 27 opal-specific sequences, resulting in an opal-prospective region of only about 10% of the total area of the basin. The key patterns underlying this association involve only a small number of key environmental transitions. We demonstrate that these key associations are generally absent at arbitrary locations in the basin. This new methodology allows for the simplification of a complex time-varying geological dataset into a single map view, enabling straightforward application for opal exploration and for future co-assessment with other datasets/geological criteria. This approach may help unravel the poorly understood opal formation process using an empirical spatio-temporal data-mining methodology and readily available datasets to aid hypothesis testing.

    Authors and Institutions

    Andrew Merdith - EarthByte Research Group, School of Geosciences, The University of Sydney, Australia. ORCID: 0000-0002-7564-8149

    Thomas Landgrebe - EarthByte Research Group, School of Geosciences, The University of Sydney, Australia

    Adriana Dutkiewicz - EarthByte Research Group, School of Geosciences, The University of Sydney, Australia

    R. Dietmar Müller - EarthByte Research Group, School of Geosciences, The University of Sydney, Australia. ORCID: 0000-0002-3334-5764

    Overview of Resources Contained

    This collection contains geological data from Australia used for data mining in the publications Merdith et al. (2013) and Landgrebe et al. (2013). The resulting maps of opal prospectivity are also included.

    List of Resources

    Note: For details on the files included in this data collection, see “Description_of_Resources.txt”.

    Note: For information on file formats and what programs to use to interact with various file formats, see “File_Formats_and_Recommended_Programs.txt”.

    • Map of Barfield region, Australia (.jpg, 270 KB)
    • Map overviewing the Great Artesian basins and main opal mining camps (.png, 82 KB)
    • Maps showing opal prospectivity data mining results for different geological datasets (.tif, 23.1 MB)
    • Map of opal prospectivity from palaeogeography data mining (.pdf, 2.6 MB)
    • Raster of palaeogeography target regions for viewing in Google Earth (.jpg, 418 KB)
    • Opal mine locations (.gpml, .txt, .kmz, .shp, total 15.6 MB)
    • Map of opal prospectivity from all data mining results as a Google Earth overlay (.kmz, 12 KB)
    • Map of probability of opal occurrence in prospective regions from all data mining results (.tif, 5.9 MB)
    • Paleogeography of Australia (.gpml, .txt, .shp, total 114.2 MB)
    • Radiometric data showing potassium concentration contrasts (.tif, .kmz, total 311.3 MB)
    • Regolith data (.gpml, .txt, .kml, .shp, total 7.1 MB)
    • Soil type data (.gpml, .txt, .kml, .shp, total 7.1 MB)

    For more information on this data collection, and links to other datasets from the EarthByte Research Group please visit EarthByte

    For more information about using GPlates, including tutorials and a user manual please visit GPlates or EarthByte

  17. Lifesciences Data Mining and Visualization Market Report | Global Forecast...

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Lifesciences Data Mining and Visualization Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-lifesciences-data-mining-and-visualization-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Sep 5, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Lifesciences Data Mining and Visualization Market Outlook



    The global market size for Lifesciences Data Mining and Visualization was valued at approximately USD 1.5 billion in 2023 and is projected to reach around USD 4.3 billion by 2032, growing at a compound annual growth rate (CAGR) of 12.5% during the forecast period. The growth of this market is driven by the increasing demand for sophisticated data analysis tools in the life sciences sector, advancements in analytical technologies, and the rising volume of complex biological data generated from research and clinical trials.



    One of the primary growth factors for the Lifesciences Data Mining and Visualization market is the burgeoning amount of data generated from various life sciences applications, such as genomics, proteomics, and clinical trials. With the advent of high-throughput technologies, researchers and healthcare professionals are now capable of generating vast amounts of data, which necessitates the use of advanced data mining and visualization tools to derive actionable insights. These tools not only help in managing and interpreting large datasets but also in uncovering hidden patterns and relationships, thereby accelerating research and development processes.



    Another significant driver is the increasing adoption of artificial intelligence (AI) and machine learning (ML) algorithms in the life sciences domain. These technologies have proven to be invaluable in enhancing data analysis capabilities, enabling more precise and predictive modeling of biological systems. By integrating AI and ML with data mining and visualization platforms, researchers can achieve higher accuracy in identifying potential drug targets, understanding disease mechanisms, and personalizing treatment plans. This trend is expected to continue, further propelling the market's growth.



    Moreover, the rising emphasis on personalized medicine and the need for precision in healthcare is fueling the demand for data mining and visualization tools. Personalized medicine relies heavily on the analysis of individual genetic, proteomic, and metabolomic profiles to tailor treatments specifically to patients' unique characteristics. The ability to visualize these complex datasets in an understandable and actionable manner is critical for the successful implementation of personalized medicine strategies, thereby boosting the demand for advanced data analysis tools.



    From a regional perspective, North America is anticipated to dominate the Lifesciences Data Mining and Visualization market, owing to the presence of a robust healthcare infrastructure, significant investments in research and development, and a high adoption rate of advanced technologies. The European market is also expected to witness substantial growth, driven by increasing government initiatives to support life sciences research and the presence of leading biopharmaceutical companies. The Asia Pacific region is projected to experience the fastest growth, attributed to the expanding healthcare sector, rising investments in biotechnology research, and the increasing adoption of data analytics solutions.



    Component Analysis



    The Lifesciences Data Mining and Visualization market is segmented by component into software and services. The software segment is expected to hold a significant share of the market, driven by the continuous advancements in data mining algorithms and visualization techniques. Software solutions are critical in processing large volumes of complex biological data, facilitating real-time analysis, and providing intuitive visual representations that aid in decision-making. The increasing integration of AI and ML into these software solutions is further enhancing their capabilities, making them indispensable tools in life sciences research.



    The services segment, on the other hand, is projected to grow at a considerable rate, as organizations seek specialized expertise to manage and interpret their data. Services include consulting, implementation, and maintenance, as well as training and support. The demand for these services is driven by the need to ensure optimal utilization of data mining software and to keep up with the rapid pace of technological advancements. Moreover, many life sciences organizations lack the in-house expertise required to handle large-scale data analytics projects, thereby turning to external service providers for assistance.



    Within the software segment, there is a growing trend towards the development of integrated platforms that combine multiple functionalities, such as data collection, pre

  18. f

    Orange dataset table

    • figshare.com
    xlsx
    Updated Mar 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rui Simões (2022). Orange dataset table [Dataset]. http://doi.org/10.6084/m9.figshare.19146410.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 4, 2022
    Dataset provided by
    figshare
    Authors
    Rui Simões
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The complete dataset used in the analysis comprises 36 samples, each described by 11 numeric features and 1 target. The attributes considered were caspase 3/7 activity, Mitotracker red CMXRos area and intensity (3 h and 24 h incubations with both compounds), Mitosox oxidation (3 h incubation with the referred compounds) and oxidation rate, DCFDA fluorescence (3 h and 24 h incubations with either compound) and oxidation rate, and DQ BSA hydrolysis. The target of each instance corresponds to one of the 9 possible classes (4 samples per class): Control, 6.25, 12.5, 25 and 50 µM for 6-OHDA and 0.03, 0.06, 0.125 and 0.25 µM for rotenone. The dataset is balanced, it does not contain any missing values and data was standardized across features. The small number of samples prevented a full and strong statistical analysis of the results. Nevertheless, it allowed the identification of relevant hidden patterns and trends.

    Exploratory data analysis, information gain, hierarchical clustering, and supervised predictive modeling were performed using Orange Data Mining version 3.25.1 [41]. Hierarchical clustering was performed using the Euclidean distance metric and weighted linkage. Cluster maps were plotted to relate the features with higher mutual information (in rows) with instances (in columns), with the color of each cell representing the normalized level of a particular feature in a specific instance. The information is grouped both in rows and in columns by a two-way hierarchical clustering method using the Euclidean distances and average linkage. Stratified cross-validation was used to train the supervised decision tree. A set of preliminary empirical experiments were performed to choose the best parameters for each algorithm, and we verified that, within moderate variations, there were no significant changes in the outcome. The following settings were adopted for the decision tree algorithm: minimum number of samples in leaves: 2; minimum number of samples required to split an internal node: 5; stop splitting when majority reaches: 95%; criterion: gain ratio. The performance of the supervised model was assessed using accuracy, precision, recall, F-measure and area under the ROC curve (AUC) metrics.

  19. f

    Numbers of detected logic relationships by Logicome Profiler.

    • figshare.com
    • plos.figshare.com
    xls
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tsukasa Fukunaga; Wataru Iwasaki (2023). Numbers of detected logic relationships by Logicome Profiler. [Dataset]. http://doi.org/10.1371/journal.pone.0232106.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Tsukasa Fukunaga; Wataru Iwasaki
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Numbers of detected logic relationships by Logicome Profiler.

  20. m

    SPHERE: Students' performance dataset of conceptual understanding,...

    • data.mendeley.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPHERE: Students' performance dataset of conceptual understanding, scientific ability, and learning attitude in physics education research (PER) [Dataset]. https://data.mendeley.com/datasets/88d7m2fv7p
    Explore at:
    Dataset updated
    Jan 15, 2025
    Authors
    Purwoko Haryadi Santoso
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The SPHERE is students' performance in physics education research dataset. It is presented as a multi-domain learning dataset of students’ performance on physics that has been collected through several research-based assessments (RBAs) established by the physics education research (PER) community. A total of 497 eleventh-grade students were involved from three large and a small public high school located in a suburban district of a high-populated province in Indonesia. Some variables related to demographics, accessibility to literature resources, and students’ physics identity are also investigated. Some RBAs utilized in this data were selected based on concepts learned by the students in the Indonesian physics curriculum. We commenced the survey of students’ understanding on Newtonian mechanics at the end of the first semester using Force Concept Inventory (FCI) and Force and Motion Conceptual Evaluation (FMCE). In the second semester, we assessed the students’ scientific abilities and learning attitude through Scientific Abilities Assessment Rubrics (SAAR) and the Colorado Learning Attitudes about Science Survey (CLASS) respectively. The conceptual assessments were continued at the second semester measured through Rotational and Rolling Motion Conceptual Survey (RRMCS), Fluid Mechanics Concept Inventory (FMCI), Mechanical Waves Conceptual Survey (MWCS), Thermal Concept Evaluation (TCE), and Survey of Thermodynamic Processes and First and Second Laws (STPFaSL). We expect SPHERE could be a valuable dataset for supporting the advancement of the PER field particularly in quantitative studies. For example, there is a need to help advance research on using machine learning and data mining techniques in PER that might face challenges due to the unavailable dataset for the specific purpose of PER studies. SPHERE can be reused as a students’ performance dataset on physics specifically dedicated for PER scholars which might be willing to implement machine learning techniques in physics education.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dashlink (2025). Ensemble Data Mining Methods [Dataset]. https://catalog.data.gov/dataset/ensemble-data-mining-methods

Ensemble Data Mining Methods

Explore at:
Dataset updated
Apr 11, 2025
Dataset provided by
Dashlink
Description

Ensemble Data Mining Methods, also known as Committee Methods or Model Combiners, are machine learning methods that leverage the power of multiple models to achieve better prediction accuracy than any of the individual models could on their own. The basic goal when designing an ensemble is the same as when establishing a committee of people: each member of the committee should be as competent as possible, but the members should be complementary to one another. If the members are not complementary, i.e., if they always agree, then the committee is unnecessary---any one member is sufficient. If the members are complementary, then when one or a few members make an error, the probability is high that the remaining members can correct this error. Research in ensemble methods has largely revolved around designing ensembles consisting of competent yet complementary models.

Search
Clear search
Close search
Google apps
Main menu