100+ datasets found
  1. Data Mining Project - Boston

    • kaggle.com
    Updated Nov 25, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SophieLiu (2019). Data Mining Project - Boston [Dataset]. https://www.kaggle.com/sliu65/data-mining-project-boston/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 25, 2019
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    SophieLiu
    Area covered
    Boston
    Description

    Context

    To make this a seamless process, I cleaned the data and delete many variables that I thought were not important to our dataset. I then uploaded all of those files to Kaggle for each of you to download. The rideshare_data has both lyft and uber but it is still a cleaned version from the dataset we downloaded from Kaggle.

    Use of Data Files

    You can easily subset the data into the car types that you will be modeling by first loading the csv into R, here is the code for how you do this:

    This loads the file into R

    df<-read.csv('uber.csv')

    The next codes is to subset the data into specific car types. The example below only has Uber 'Black' car types.

    df_black<-subset(uber_df, uber_df$name == 'Black')

    This next portion of code will be to load it into R. First, we must write this dataframe into a csv file on our computer in order to load it into R.

    write.csv(df_black, "nameofthefileyouwanttosaveas.csv")

    The file will appear in you working directory. If you are not familiar with your working directory. Run this code:

    getwd()

    The output will be the file path to your working directory. You will find the file you just created in that folder.

    Inspiration

    Your data will be in front of the world's largest data science community. What questions do you want to see answered?

  2. u

    Data from: The use of project portfolios in effective strategy execution to...

    • researchdata.up.ac.za
    zip
    Updated May 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palesa Agnes Ramashala (2023). The use of project portfolios in effective strategy execution to improve business value [Dataset]. http://doi.org/10.25403/UPresearchdata.13280141.v3
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    University of Pretoria
    Authors
    Palesa Agnes Ramashala
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Qualitative data gathered from interviews that were conducted with case organisations. The data is analysed using a qualitative data analysis tool (AtlasTi) to code and generate network diagrams. Software such as Atlas.ti 8 Windows will be a great advantage to use in order to view these results. Interviews were conducted with four case organisations. The details of the responses from the respondents from case organisations are captured. The data gathered during the interview sessions is captured in a tabular form and graphs were also created to identify trends. Also in this study is desktop review of the case organisations that formed part of the study. The desktop study was done using published annual reports over a period of more than seven years. The analysis was done given the scope of the project and its constructs.

  3. Applied Data Mining Final Project - T- Shirt Data

    • kaggle.com
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Danizo (2025). Applied Data Mining Final Project - T- Shirt Data [Dataset]. https://www.kaggle.com/datasets/danizo/applied-data-mining-final-project-t-shirt-data/suggestions
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 7, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Danizo
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Danizo

    Released under Apache 2.0

    Contents

  4. Data from: A large-scale comparative analysis of Coding Standard conformance...

    • figshare.com
    application/x-gzip
    Updated Oct 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anj Simmons; Scott Barnett; Jessica Rivera-Villicana; Akshat Bajaj; Rajesh Vasa (2021). A large-scale comparative analysis of Coding Standard conformance in Open-Source Data Science projects [Dataset]. http://doi.org/10.6084/m9.figshare.12377237.v3
    Explore at:
    application/x-gzipAvailable download formats
    Dataset updated
    Oct 4, 2021
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Anj Simmons; Scott Barnett; Jessica Rivera-Villicana; Akshat Bajaj; Rajesh Vasa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This study investigates the extent to which data science projects follow code standards. In particular, which standards are followed, which are ignored, and how does this differ to traditional software projects? We compare a corpus of 1048 Open-Source Data Science projects to a reference group of 1099 non-Data Science projects with a similar level of quality and maturity.results.tar.gz: Extracted data for each project, including raw logs of all detected code violations.notebooks_out.tar.gz: Tables and figures generated by notebooks.source_code_anonymized.tar.gz: Anonymized source code (at time of publication) to identify, clone, and analyse the projects. Also includes Jupyter notebooks used to produce figures in the paper.The latest source code can be found at: https://github.com/a2i2/mining-data-science-repositoriesPublished in ESEM 2020: https://doi.org/10.1145/3382494.3410680Preprint: https://arxiv.org/abs/2007.08978

  5. Retrospective data mining project of Student Subject Experience Surveys from...

    • researchdata.edu.au
    Updated 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Monica Short; Environmental and Social Justice Research Group (2023). Retrospective data mining project of Student Subject Experience Surveys from WEL418 [Dataset]. https://researchdata.edu.au/retrospective-mining-project-surveys-wel418/2923246
    Explore at:
    Dataset updated
    2023
    Dataset provided by
    Charles Sturt Universityhttp://csu.edu.au/
    Authors
    Monica Short; Environmental and Social Justice Research Group
    Time period covered
    2014 - Jun 17, 2022
    Description

    This data is the set of responses to Student Subject Experience Surveys from WEL418 case management for two academics, Katrina Gersbach and Dr Monica Short for the sessions that they taught in the period 2014-17th June 2022.

  6. d

    Data from: DATA MINING THE GALAXY ZOO MERGERS

    • catalog.data.gov
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • +5more
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). DATA MINING THE GALAXY ZOO MERGERS [Dataset]. https://catalog.data.gov/dataset/data-mining-the-galaxy-zoo-mergers
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    DATA MINING THE GALAXY ZOO MERGERS STEVEN BAEHR, ARUN VEDACHALAM, KIRK BORNE, AND DANIEL SPONSELLER Abstract. Collisions between pairs of galaxies usually end in the coalescence (merger) of the two galaxies. Collisions and mergers are rare phenomena, yet they may signal the ultimate fate of most galaxies, including our own Milky Way. With the onset of massive collection of astronomical data, a computerized and automated method will be necessary for identifying those colliding galaxies worthy of more detailed study. This project researches methods to accomplish that goal. Astronomical data from the Sloan Digital Sky Survey (SDSS) and human-provided classifications on merger status from the Galaxy Zoo project are combined and processed with machine learning algorithms. The goal is to determine indicators of merger status based solely on discovering those automated pipeline-generated attributes in the astronomical database that correlate most strongly with the patterns identified through visual inspection by the Galaxy Zoo volunteers. In the end, we aim to provide a new and improved automated procedure for classification of collisions and mergers in future petascale astronomical sky surveys. Both information gain analysis (via the C4.5 decision tree algorithm) and cluster analysis (via the Davies-Bouldin Index) are explored as techniques for finding the strongest correlations between human-identified patterns and existing database attributes. Galaxy attributes measured in the SDSS green waveband images are found to represent the most influential of the attributes for correct classification of collisions and mergers. Only a nominal information gain is noted in this research, however, there is a clear indication of which attributes contribute so that a direction for further study is apparent.

  7. s

    Data and source code for "Automating Intention Mining"

    • researchdata.smu.edu.sg
    zip
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Qiao HUANG; Xin XIA; David LO; Gail C. MURPHY (2023). Data and source code for "Automating Intention Mining" [Dataset]. http://doi.org/10.25440/smu.21261408.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    SMU Research Data Repository (RDR)
    Authors
    Qiao HUANG; Xin XIA; David LO; Gail C. MURPHY
    License

    http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/

    Description

    The dataset and source code for paper "Automating Intention Mining".

    The code is based on dennybritz's implementation of Yoon Kim's paper Convolutional Neural Networks for Sentence Classification.

    By default, the code uses Tensorflow 0.12. Some errors might be reported when using other versions of Tensorflow due to the incompatibility of some APIs.

    Running 'online_prediction.py', you can input any sentence and check the classification result produced by a pre-trained CNN model. The model uses all sentences of the four Github projects as training data.

    Running 'play.py', you can get the evaluation result of cross-project prediction. Please check the code for more details of the configuration. By default, it will use the four Github projects as training data to predict the sentences in DECA dataset, and in this setting, the category 'aspect evaluation' and 'others' are dropped since DECA dataset does not contain these two categories.

  8. Data from: COVID-19 and media dataset: Mining textual data according periods...

    • dataverse.cirad.fr
    application/x-gzip +1
    Updated Dec 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mathieu Roche; Mathieu Roche (2020). COVID-19 and media dataset: Mining textual data according periods and countries (UK, Spain, France) [Dataset]. http://doi.org/10.18167/DVN1/ZUA8MF
    Explore at:
    application/x-gzip(511157), application/x-gzip(97349), text/x-perl-script(4982), application/x-gzip(93110), application/x-gzip(23765310), application/x-gzip(107669)Available download formats
    Dataset updated
    Dec 21, 2020
    Authors
    Mathieu Roche; Mathieu Roche
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    France, Spain, United Kingdom
    Dataset funded by
    ANR (#DigitAg)
    Horizon 2020 - European Commission - (MOOD project)
    Description

    These datasets contain a set of news articles in English, French and Spanish extracted from Medisys (i‧e. advanced search) according the following criteria: (1) Keywords (at least): COVID-19, ncov2019, cov2019, coronavirus; (2) Keywords (all words): masque (French), mask (English), máscara (Spanish) (3) Periods: March 2020, May 2020, July 2020; (4) Countries: UK (English), Spain (Spanish), France (French). A corpus by country has been manually collected (copy/paste) from Medisys. For each country, 100 snippets by period (the 1st, 10th, 15th, 20th for each month) are built. The datasets are composed of: (1) A corpus preprocessed for the BioTex tool - https://gitlab.irstea.fr/jacques.fize/biotex_python (.txt) [~ 900 texts]; (2) The same corpus preprocessed for the Weka tool - https://www.cs.waikato.ac.nz/ml/weka/ (.arff); (3) Terms extracted with BioTex according spatio-temporal criteria (*.csv) [~ 9000 terms]. Other corpora can be collected with this same method. The code in Perl in order to preprocess textual data for terminology extraction (with BioTex) and classification (with Weka) tasks is available. A new version of this dataset (December 2020) includes additional data: - Python preprocessing and BioTex code [Execution_BioTex‧tgz]. - Terms extracted with different ranking measures (i‧e. C-Value, F-TFIDF-C_M) and methods (i‧e. extraction of words and multi-word terms) with the online version of BioTex [Terminology_with_BioTex_online_dec2020.tgz],

  9. D

    Data Mining Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Mining Software Report [Dataset]. https://www.datainsightsmarket.com/reports/data-mining-software-1423491
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Jun 8, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Mining Software market is experiencing robust growth, driven by the increasing need for businesses to extract actionable insights from massive datasets. The market's expansion is fueled by several key factors: the proliferation of big data, advancements in machine learning algorithms, and the growing adoption of cloud-based data analytics solutions. Businesses across various sectors, including finance, healthcare, and retail, are leveraging data mining software to improve operational efficiency, enhance customer experience, and gain a competitive edge. The market is segmented by software type (e.g., predictive analytics, text mining, etc.), deployment model (cloud, on-premise), and industry vertical. While the competitive landscape is crowded with both established players like SAS and IBM, and emerging niche providers, the market is expected to consolidate somewhat as larger companies acquire smaller, specialized firms. This consolidation will likely lead to more integrated and comprehensive data mining solutions. The projected Compound Annual Growth Rate (CAGR) suggests a significant increase in market size over the forecast period (2025-2033). While precise figures are unavailable, assuming a conservative CAGR of 15% and a 2025 market size of $5 billion (a reasonable estimate given the size and growth of related markets), we can project substantial growth. Challenges remain, however, including the need for skilled data scientists to manage and interpret the results, as well as concerns about data security and privacy. Addressing these challenges will be crucial for continued market expansion. The increasing availability of open-source tools also presents a challenge to established vendors, demanding innovation and competitive pricing strategies.

  10. Knowledge Graph: tyrolean mining documents 15th and 16th century

    • zenodo.org
    • explore.openaire.eu
    • +1more
    bin
    Updated Sep 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gerald Hiebel; Gerald Hiebel; Elisabeth Gruber-Tokić; Elisabeth Gruber-Tokić; Milena Peralta Friedburg; Milena Peralta Friedburg; Brigit Danthine; Brigit Danthine (2024). Knowledge Graph: tyrolean mining documents 15th and 16th century [Dataset]. http://doi.org/10.5281/zenodo.6276586
    Explore at:
    binAvailable download formats
    Dataset updated
    Sep 26, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Gerald Hiebel; Gerald Hiebel; Elisabeth Gruber-Tokić; Elisabeth Gruber-Tokić; Milena Peralta Friedburg; Milena Peralta Friedburg; Brigit Danthine; Brigit Danthine
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset contains a Knowledge Graph (.nq file) of two historical mining documents: “Verleihbuch der Rattenberger Bergrichter” ( Hs. 37, 1460-1463) and “Schwazer Berglehenbuch” (Hs. 1587, approx. 1515) stored by the Tyrolean Regional Archive, Innsbruck (Austria). The user of the KG may explore the montanistic network and relations between people, claims and mines in the late medieval Tyrol. The core regions concern the districts Schwaz and Kufstein (Tyrol, Austria).

    The ontology used to represent the claims is CIDOC CRM, an ISO certified ontology for Cultural Heritage documentation. Supported by the Karma tool the KG is generated as RDF (Resource Description Framework). The generated RDF data is imported into a Triplestore, in this case GraphDB, and then displayed visually. This puts the data from the early mining texts into a semantically structured context and makes the mutual relationships between people, places and mines visible.

    Both documents and the Knowledge Graph were processed and generated by the research team of the project “Text Mining Medieval Mining Texts”. The research project (2019-2022) was carried out at the university of Innsbruck and funded by go!digital next generation programme of the Austrian Academy of Sciences.

    Citeable Transcripts of the historical documents are online available:
    Hs. 37 DOI: 10.5281/zenodo.6274562
    Hs. 1587 DOI: 10.5281/zenodo.6274928

  11. m

    Data extracted from GitHub repositories (training and test data-sets)

    • data.mendeley.com
    Updated Aug 1, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Youcef Bouziane (2019). Data extracted from GitHub repositories (training and test data-sets) [Dataset]. http://doi.org/10.17632/gt3f4jnbvn.3
    Explore at:
    Dataset updated
    Aug 1, 2019
    Authors
    Youcef Bouziane
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains the SQL tables of the training and test datasets used in our experimentation. These tables contain the preprocessed textual data (in a form of tokens) extracted from each training and test project. Besides the preprocessed textual data, this dataset also contains meta-data about the projects, GitHub topics, and GitHub collections. The GitHub projects are identified by the tuple “Owner” and “Name”. The descriptions of the table fields are attached to their respective data descriptions.

  12. d

    Data from: Community-Scale Attic Retrofit and Home Energy Upgrade Data...

    • catalog.data.gov
    • data.openei.org
    • +3more
    Updated Nov 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Davis Energy (2023). Community-Scale Attic Retrofit and Home Energy Upgrade Data Mining - Hot Dry Climate [Dataset]. https://catalog.data.gov/dataset/community-scale-attic-retrofit-and-home-energy-upgrade-data-mining-hot-dry-climate
    Explore at:
    Dataset updated
    Nov 2, 2023
    Dataset provided by
    Davis Energy
    Description

    Retrofitting is an essential element of any comprehensive strategy for improving residential energy efficiency. The residential retrofit market is still developing, and program managers must develop innovative strategies to increase uptake and promote economies of scale. Residential retrofitting remains a challenging proposition to sell to homeowners, because awareness levels are low and financial incentives are lacking. The U.S. Department of Energy's Building America research team, Alliance for Residential Building Innovation (ARBI), implemented a project to increase residential retrofits in Davis, California. The project used a neighborhood-focused strategy for implementation and a low-cost retrofit program that focused on upgraded attic insulation and duct sealing. ARBI worked with a community partner, the not-for-profit Cool Davis Initiative, as well as selected area contractors to implement a strategy that sought to capitalize on the strong local expertise of partners and the unique aspects of the Davis, California, community. Working with community partners also allowed ARBI to collect and analyze data about effective messaging tactics for community-based retrofit programs. ARBI expected this project, called Retrofit Your Attic, to achieve higher uptake than other retrofit projects, because it emphasized a low-cost, one-measure retrofit program. However, this was not the case. The program used a strategy that focused on attics-including air sealing, duct sealing, and attic insulation-as a low-cost entry for homeowners to complete home retrofits. The price was kept below $4,000 after incentives; both contractors in the program offered the same price. The program completed only five retrofits. Interestingly, none of those homeowners used the one-measure strategy. All five homeowners were concerned about cost, comfort, and energy savings and included additional measures in their retrofits. The low-cost, one-measure strategy did not increase the uptake among homeowners, even in a well-educated, affluent community such as Davis. This project has two primary components. One is to complete attic retrofits on a community scale in the hot-dry climate on Davis, CA. Sufficient data will be collected on these projects to include them in the BAFDR. Additionally, ARBI is working with contractors to obtain building and utility data from a large set of retrofit projects in CA (hot-dry). These projects are to be uploaded into the BAFDR.

  13. Empirical data for project: Mining user reviews of COVID contact-tracing...

    • figshare.com
    png
    Updated Sep 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vahid Garousi (2020). Empirical data for project: Mining user reviews of COVID contact-tracing apps [Dataset]. http://doi.org/10.6084/m9.figshare.13010402.v1
    Explore at:
    pngAvailable download formats
    Dataset updated
    Sep 25, 2020
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Vahid Garousi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Empirical data for project: Mining user reviews of COVID contact-tracing apps

  14. f

    Supplementary material (data & R script) for the CIEES 2022 manuscript...

    • figshare.com
    zip
    Updated Dec 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Boyan Stoyanovski; Teodor Iliev; Radovan Cesarec; Renato Filjar (2022). Supplementary material (data & R script) for the CIEES 2022 manuscript authored by B Stoyanovski, T Iliev, R Cesarec, R Filjar [Dataset]. http://doi.org/10.6084/m9.figshare.21205304.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 1, 2022
    Dataset provided by
    figshare
    Authors
    Boyan Stoyanovski; Teodor Iliev; Radovan Cesarec; Renato Filjar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A single ZIP file contains 119 Android smartphone sensors trajectory observations on the path in the city centre of Krapina, Croatia, as well as the R script for data aggregation, trajectory formation, analysis, and machine learning-based prediction model development, for the CIEES 2022 Conference manuscript. Trajectory observations were taken using AndroSensors smartphone application (https://play.google.com/store/apps/details?id=com.fivasim.androsensor&hl=en_US&gl=US), which collects obseravtion on the move and stores them into a CSV file. Content depends on the available smartphone sensors. Data sets supplied consist of observations of the following variables: ACCELEROMETER X (m/s²) ACCELEROMETER Y (m/s²) ACCELEROMETER Z (m/s²) GRAVITY X (m/s²) GRAVITY Y (m/s²) GRAVITY Z (m/s²) LINEAR ACCELERATION X (m/s²) LINEAR ACCELERATION Y (m/s²) LINEAR ACCELERATION Z (m/s²) GYROSCOPE X (rad/s) GYROSCOPE Y (rad/s) GYROSCOPE Z (rad/s) LIGHT (lux) MAGNETIC FIELD X (μT) MAGNETIC FIELD Y (μT) MAGNETIC FIELD Z (μT) ORIENTATION Z (azimuth °) ORIENTATION X (pitch °) ORIENTATION Y (roll °) PROXIMITY (i) ATMOSPHERIC PRESSURE (hPa) SOUND LEVEL (dB) LOCATION Latitude : LOCATION Longitude : LOCATION Altitude ( m) LOCATION Altitude-google ( m) LOCATION Altitude-atmospheric pressure ( m) LOCATION Speed ( Kmh) LOCATION Accuracy ( m) LOCATION ORIENTATION (°) Satellites in range Time since start in ms YYYY-MO-DD HH-MI-SS_SSS

    The analysis and prediction model R script is developed by authors in the R environment for statistical computing (https://www.r-project.org/), using additional R libraries: trajr (https://cran.r-project.org/web/packages/trajr/index.html) and caret (https://topepo.github.io/caret/), among the others.

  15. m

    Educational Attainment in North Carolina Public Schools: Use of statistical...

    • data.mendeley.com
    Updated Nov 14, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scott Herford (2018). Educational Attainment in North Carolina Public Schools: Use of statistical modeling, data mining techniques, and machine learning algorithms to explore 2014-2017 North Carolina Public School datasets. [Dataset]. http://doi.org/10.17632/6cm9wyd5g5.1
    Explore at:
    Dataset updated
    Nov 14, 2018
    Authors
    Scott Herford
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The purpose of data mining analysis is always to find patterns of the data using certain kind of techiques such as classification or regression. It is not always feasible to apply classification algorithms directly to dataset. Before doing any work on the data, the data has to be pre-processed and this process normally involves feature selection and dimensionality reduction. We tried to use clustering as a way to reduce the dimension of the data and create new features. Based on our project, after using clustering prior to classification, the performance has not improved much. The reason why it has not improved could be the features we selected to perform clustering are not well suited for it. Because of the nature of the data, classification tasks are going to provide more information to work with in terms of improving knowledge and overall performance metrics. From the dimensionality reduction perspective: It is different from Principle Component Analysis which guarantees finding the best linear transformation that reduces the number of dimensions with a minimum loss of information. Using clusters as a technique of reducing the data dimension will lose a lot of information since clustering techniques are based a metric of 'distance'. At high dimensions euclidean distance loses pretty much all meaning. Therefore using clustering as a "Reducing" dimensionality by mapping data points to cluster numbers is not always good since you may lose almost all the information. From the creating new features perspective: Clustering analysis creates labels based on the patterns of the data, it brings uncertainties into the data. By using clustering prior to classification, the decision on the number of clusters will highly affect the performance of the clustering, then affect the performance of classification. If the part of features we use clustering techniques on is very suited for it, it might increase the overall performance on classification. For example, if the features we use k-means on are numerical and the dimension is small, the overall classification performance may be better. We did not lock in the clustering outputs using a random_state in the effort to see if they were stable. Our assumption was that if the results vary highly from run to run which they definitely did, maybe the data just does not cluster well with the methods selected at all. Basically, the ramification we saw was that our results are not much better than random when applying clustering to the data preprocessing. Finally, it is important to ensure a feedback loop is in place to continuously collect the same data in the same format from which the models were created. This feedback loop can be used to measure the model real world effectiveness and also to continue to revise the models from time to time as things change.

  16. Text and Data Mining taxonomy

    • figshare.com
    png
    Updated Jan 23, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Petr Knoth; Nancy Pontika (2018). Text and Data Mining taxonomy [Dataset]. http://doi.org/10.6084/m9.figshare.5813460.v1
    Explore at:
    pngAvailable download formats
    Dataset updated
    Jan 23, 2018
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Petr Knoth; Nancy Pontika
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This taxonomy was created as part of the OpenMinTeD project http://openminted.eu/

  17. D

    Drake Mining Project : request for variations to original E.I.A. submission....

    • data.nsw.gov.au
    • researchdata.edu.au
    Updated Feb 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NSW Department of Planning, Housing and Infrastructure (2024). Drake Mining Project : request for variations to original E.I.A. submission. [Dataset]. https://www.data.nsw.gov.au/data/dataset/drake-mining-project-request-for-variations-to-original-e-i-a-submission0b29d
    Explore at:
    Dataset updated
    Feb 26, 2024
    Dataset provided by
    Department of Planning, Housing and Infrastructurehttps://www.nsw.gov.au/departments-and-agencies/department-of-planning-housing-and-infrastructure
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Environmental Impact Statement: Drake Mining Project : request for variations to original E.I.A. submission.

  18. Data from: CONCEPT- DM2 DATA MODEL TO ANALYSE HEALTHCARE PATHWAYS OF TYPE 2...

    • zenodo.org
    bin, png, zip
    Updated Jul 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Berta Ibáñez-Beroiz; Berta Ibáñez-Beroiz; Asier Ballesteros-Domínguez; Asier Ballesteros-Domínguez; Ignacio Oscoz-Villanueva; Ignacio Oscoz-Villanueva; Ibai Tamayo; Ibai Tamayo; Julián Librero; Julián Librero; Mónica Enguita-Germán; Mónica Enguita-Germán; Francisco Estupiñán-Romero; Francisco Estupiñán-Romero; Enrique Bernal-Delgado; Enrique Bernal-Delgado (2024). CONCEPT- DM2 DATA MODEL TO ANALYSE HEALTHCARE PATHWAYS OF TYPE 2 DIABETES [Dataset]. http://doi.org/10.5281/zenodo.7778291
    Explore at:
    bin, png, zipAvailable download formats
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Berta Ibáñez-Beroiz; Berta Ibáñez-Beroiz; Asier Ballesteros-Domínguez; Asier Ballesteros-Domínguez; Ignacio Oscoz-Villanueva; Ignacio Oscoz-Villanueva; Ibai Tamayo; Ibai Tamayo; Julián Librero; Julián Librero; Mónica Enguita-Germán; Mónica Enguita-Germán; Francisco Estupiñán-Romero; Francisco Estupiñán-Romero; Enrique Bernal-Delgado; Enrique Bernal-Delgado
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Technical notes and documentation on the common data model of the project CONCEPT-DM2.

    This publication corresponds to the Common Data Model (CDM) specification of the CONCEPT-DM2 project for the implementation of a federated network analysis of the healthcare pathway of type 2 diabetes.

    Aims of the CONCEPT-DM2 project:

    General aim: To analyse chronic care effectiveness and efficiency of care pathways in diabetes, assuming the relevance of care pathways as independent factors of health outcomes using data from real life world (RWD) from five Spanish Regional Health Systems.

    Main specific aims:

    • To characterize the care pathways in patients with diabetes through the whole care system in terms of process indicators and pharmacologic recommendations
    • To compare these observed care pathways with the theoretical clinical pathways derived from the clinical practice guidelines
    • To assess if the adherence to clinical guidelines influence on important health outcomes, such as cardiovascular hospitalizations.
    • To compare the traditional analytical methods with process mining methods in terms of modeling quality, prediction performance and information provided.

    Study Design: It is a population-based retrospective observational study centered on all T2D patients diagnosed in five Regional Health Services within the Spanish National Health Service. We will include all the contacts of these patients with the health services using the electronic medical record systems including Primary Care data, Specialized Care data, Hospitalizations, Urgent Care data, Pharmacy Claims, and also other registers such as the mortality and the population register.

    Cohort definition: All patients with code of Type 2 Diabetes in the clinical health records

    • Inclusion criteria: patients that, at 01/01/2017 or during the follow-up from 01/01/2017 to 31/12/2022 had active health card (active TIS - tarjeta sanitaria activa) and code of type 2 diabetes (T2D, DM2 in spanish) in the clinical records of primary care (CIAP2 T90 in case of using CIAP code system)
    • Exclusion criteria:
      • patients with no contact with the health system from 01/01/2017 to 31/12/2022
      • patients that had a T1D (DM1) code opened after the T2D code during the follow-up.
    • Study period. From 01/01/2017 to 31/12/2022

    Files included in this publication:

    • Datamodel_CONCEPT_DM2_diagram.png
    • Common data model specification (Datamodel_CONCEPT_DM2_v.0.1.0.xlsx)
    • Synthetic datasets (Datamodel_CONCEPT_DM2_sample_data)
      • sample_data1_dm_patient.csv
      • sample_data2_dm_param.csv
      • sample_data3_dm_patient.csv
      • sample_data4_dm_param.csv
      • sample_data5_dm_patient.csv
      • sample_data6_dm_param.csv
      • sample_data7_dm_param.csv
      • sample_data8_dm_param.csv
    • Datamodel_CONCEPT_DM2_explanation.pptx
  19. Mine Project Approval Boundary

    • researchdata.edu.au
    • data.nsw.gov.au
    • +1more
    Updated Jul 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.nsw.gov.au (2024). Mine Project Approval Boundary [Dataset]. https://researchdata.edu.au/mine-project-approval-boundary/3362577
    Explore at:
    Dataset updated
    Jul 24, 2024
    Dataset provided by
    Government of New South Waleshttp://nsw.gov.au/
    Area covered
    Description

    The Project Approval Boundary spatial data set provides information on the location of the project approvals granted for each mine in NSW by an approval authority (either NSW Department of Planning or local Council). This information may not align to the mine authorisation (i.e. mine title etc) granted under the Mining Act 1992. This information is created and submitted by each large mine operator to fulfill the Final Landuse and Rehabilitation Plan data submission requirements required under Schedule 8A of the Mining Regulation 2016. \r \r The collection of this spatial data is administered by the Resources Regulator in NSW who conducts reviews of the data submitted for assessment purposes. In some cases, information provided may contain inaccuracies that require adjustment following the assessment process by the Regulator. The Regulator will request data resubmission if issues are identified. \r \r Further information on the reporting requirements associated with mine rehabilitation can be found at https://www.resourcesregulator.nsw.gov.au/rehabilitation/mine-rehabilitation. \r \r Find more information about the data at https://www.seed.nsw.gov.au/project-approvals-boundary-layer\r \r Any data related questions should be directed to nswresourcesregulator@service-now.com

  20. d

    Tokenized Forms of Jane Austen Novels with Positional Information

    • search.dataone.org
    Updated Sep 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Duckworth, Tyler J (2024). Tokenized Forms of Jane Austen Novels with Positional Information [Dataset]. http://doi.org/10.7910/DVN/24ZURB
    Explore at:
    Dataset updated
    Sep 24, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Duckworth, Tyler J
    Description

    This dataset contains tokenized forms of four Jane Austen novels sourced from Project Gutenberg--Emma, Persuasion, Pride and Prejudice, and Sense and Sensibility--that are broken down by chapter (and volume where appropriate). Each file also includes positional data for each row which will be used for further analysis. This was created to hold the data for the final project for COSC426: Introduction to Data Mining, a class at the University of Tennessee.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
SophieLiu (2019). Data Mining Project - Boston [Dataset]. https://www.kaggle.com/sliu65/data-mining-project-boston/discussion
Organization logo

Data Mining Project - Boston

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Nov 25, 2019
Dataset provided by
Kagglehttp://kaggle.com/
Authors
SophieLiu
Area covered
Boston
Description

Context

To make this a seamless process, I cleaned the data and delete many variables that I thought were not important to our dataset. I then uploaded all of those files to Kaggle for each of you to download. The rideshare_data has both lyft and uber but it is still a cleaned version from the dataset we downloaded from Kaggle.

Use of Data Files

You can easily subset the data into the car types that you will be modeling by first loading the csv into R, here is the code for how you do this:

This loads the file into R

df<-read.csv('uber.csv')

The next codes is to subset the data into specific car types. The example below only has Uber 'Black' car types.

df_black<-subset(uber_df, uber_df$name == 'Black')

This next portion of code will be to load it into R. First, we must write this dataframe into a csv file on our computer in order to load it into R.

write.csv(df_black, "nameofthefileyouwanttosaveas.csv")

The file will appear in you working directory. If you are not familiar with your working directory. Run this code:

getwd()

The output will be the file path to your working directory. You will find the file you just created in that folder.

Inspiration

Your data will be in front of the world's largest data science community. What questions do you want to see answered?

Search
Clear search
Close search
Google apps
Main menu