100+ datasets found
  1. D

    Data Mining Tools Market Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Feb 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Data Mining Tools Market Report [Dataset]. https://www.marketresearchforecast.com/reports/data-mining-tools-market-1722
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Feb 3, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Mining Tools Market size was valued at USD 1.01 USD billion in 2023 and is projected to reach USD 1.99 USD billion by 2032, exhibiting a CAGR of 10.2 % during the forecast period. The growing adoption of data-driven decision-making and the increasing need for business intelligence are major factors driving market growth. Data mining refers to filtering, sorting, and classifying data from larger datasets to reveal subtle patterns and relationships, which helps enterprises identify and solve complex business problems through data analysis. Data mining software tools and techniques allow organizations to foresee future market trends and make business-critical decisions at crucial times. Data mining is an essential component of data science that employs advanced data analytics to derive insightful information from large volumes of data. Businesses rely heavily on data mining to undertake analytics initiatives in the organizational setup. The analyzed data sourced from data mining is used for varied analytics and business intelligence (BI) applications, which consider real-time data analysis along with some historical pieces of information. Recent developments include: May 2023 – WiMi Hologram Cloud Inc. introduced a new data interaction system developed by combining neural network technology and data mining. Using real-time interaction, the system can offer reliable and safe information transmission., May 2023 – U.S. Data Mining Group, Inc., operating in bitcoin mining site, announced a hosting contract to deploy 150,000 bitcoins in partnership with major companies such as TeslaWatt, Sphere 3D, Marathon Digital, and more. The company is offering industry turn-key solutions for curtailment, accounting, and customer relations., April 2023 – Artificial intelligence and single-cell biotech analytics firm, One Biosciences, launched a single cell data mining algorithm called ‘MAYA’. The algorithm is for cancer patients to detect therapeutic vulnerabilities., May 2022 – Europe-based Solarisbank, a banking-as-a-service provider, announced its partnership with Snowflake to boost its cloud data strategy. Using the advanced cloud infrastructure, the company can enhance data mining efficiency and strengthen its banking position.. Key drivers for this market are: Increasing Focus on Customer Satisfaction to Drive Market Growth. Potential restraints include: Requirement of Skilled Technical Resources Likely to Hamper Market Growth. Notable trends are: Incorporation of Data Mining and Machine Learning Solutions to Propel Market Growth.

  2. Data supporting the Master thesis "Monitoring von Open Data Praktiken -...

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Nov 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Katharina Zinke; Katharina Zinke (2024). Data supporting the Master thesis "Monitoring von Open Data Praktiken - Herausforderungen beim Auffinden von Datenpublikationen am Beispiel der Publikationen von Forschenden der TU Dresden" [Dataset]. http://doi.org/10.5281/zenodo.14196539
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 21, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Katharina Zinke; Katharina Zinke
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data supporting the Master thesis "Monitoring von Open Data Praktiken - Herausforderungen beim Auffinden von Datenpublikationen am Beispiel der Publikationen von Forschenden der TU Dresden" (Monitoring open data practices - challenges in finding data publications using the example of publications by researchers at TU Dresden) - Katharina Zinke, Institut für Bibliotheks- und Informationswissenschaften, Humboldt-Universität Berlin, 2023

    This ZIP-File contains the data the thesis is based on, interim exports of the results and the R script with all pre-processing, data merging and analyses carried out. The documentation of the additional, explorative analysis is also available. The actual PDFs and text files of the scientific papers used are not included as they are published open access.

    The folder structure is shown below with the file names and a brief description of the contents of each file. For details concerning the analyses approach, please refer to the master's thesis (publication following soon).

    ## Data sources

    Folder 01_SourceData/

    - PLOS-Dataset_v2_Mar23.csv (PLOS-OSI dataset)

    - ScopusSearch_ExportResults.csv (export of Scopus search results from Scopus)

    - ScopusSearch_ExportResults.ris (export of Scopus search results from Scopus)

    - Zotero_Export_ScopusSearch.csv (export of the file names and DOIs of the Scopus search results from Zotero)

    ## Automatic classification

    Folder 02_AutomaticClassification/

    - (NOT INCLUDED) PDFs folder (Folder for PDFs of all publications identified by the Scopus search, named AuthorLastName_Year_PublicationTitle_Title)

    - (NOT INCLUDED) PDFs_to_text folder (Folder for all texts extracted from the PDFs by ODDPub, named AuthorLastName_Year_PublicationTitle_Title)

    - PLOS_ScopusSearch_matched.csv (merge of the Scopus search results with the PLOS_OSI dataset for the files contained in both)

    - oddpub_results_wDOIs.csv (results file of the ODDPub classification)

    - PLOS_ODDPub.csv (merge of the results file of the ODDPub classification with the PLOS-OSI dataset for the publications contained in both)

    ## Manual coding

    Folder 03_ManualCheck/

    - CodeSheet_ManualCheck.txt (Code sheet with descriptions of the variables for manual coding)

    - ManualCheck_2023-06-08.csv (Manual coding results file)

    - PLOS_ODDPub_Manual.csv (Merge of the results file of the ODDPub and PLOS-OSI classification with the results file of the manual coding)

    ## Explorative analysis for the discoverability of open data

    Folder04_FurtherAnalyses

    Proof_of_of_Concept_Open_Data_Monitoring.pdf (Description of the explorative analysis of the discoverability of open data publications using the example of a researcher) - in German

    ## R-Script

    Analyses_MA_OpenDataMonitoring.R (R-Script for preparing, merging and analyzing the data and for performing the ODDPub algorithm)

  3. f

    Table_1_Data Mining Techniques in Analyzing Process Data: A Didactic.pdf

    • frontiersin.figshare.com
    pdf
    Updated Jun 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xin Qiao; Hong Jiao (2023). Table_1_Data Mining Techniques in Analyzing Process Data: A Didactic.pdf [Dataset]. http://doi.org/10.3389/fpsyg.2018.02231.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 7, 2023
    Dataset provided by
    Frontiers
    Authors
    Xin Qiao; Hong Jiao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Due to increasing use of technology-enhanced educational assessment, data mining methods have been explored to analyse process data in log files from such assessment. However, most studies were limited to one data mining technique under one specific scenario. The current study demonstrates the usage of four frequently used supervised techniques, including Classification and Regression Trees (CART), gradient boosting, random forest, support vector machine (SVM), and two unsupervised methods, Self-organizing Map (SOM) and k-means, fitted to one assessment data. The USA sample (N = 426) from the 2012 Program for International Student Assessment (PISA) responding to problem-solving items is extracted to demonstrate the methods. After concrete feature generation and feature selection, classifier development procedures are implemented using the illustrated techniques. Results show satisfactory classification accuracy for all the techniques. Suggestions for the selection of classifiers are presented based on the research questions, the interpretability and the simplicity of the classifiers. Interpretations for the results from both supervised and unsupervised learning methods are provided.

  4. s

    Data and source code for "Automating Intention Mining"

    • researchdata.smu.edu.sg
    zip
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Qiao HUANG; Xin XIA; David LO; Gail C. MURPHY (2023). Data and source code for "Automating Intention Mining" [Dataset]. http://doi.org/10.25440/smu.21261408.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    SMU Research Data Repository (RDR)
    Authors
    Qiao HUANG; Xin XIA; David LO; Gail C. MURPHY
    License

    http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/

    Description

    The dataset and source code for paper "Automating Intention Mining".

    The code is based on dennybritz's implementation of Yoon Kim's paper Convolutional Neural Networks for Sentence Classification.

    By default, the code uses Tensorflow 0.12. Some errors might be reported when using other versions of Tensorflow due to the incompatibility of some APIs.

    Running 'online_prediction.py', you can input any sentence and check the classification result produced by a pre-trained CNN model. The model uses all sentences of the four Github projects as training data.

    Running 'play.py', you can get the evaluation result of cross-project prediction. Please check the code for more details of the configuration. By default, it will use the four Github projects as training data to predict the sentences in DECA dataset, and in this setting, the category 'aspect evaluation' and 'others' are dropped since DECA dataset does not contain these two categories.

  5. s

    Data from: Social Media Data Mining Becomes Ordinary

    • orda.shef.ac.uk
    docx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Helen Kennedy (2023). Social Media Data Mining Becomes Ordinary [Dataset]. http://doi.org/10.15131/shef.data.5195032.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    The University of Sheffield
    Authors
    Helen Kennedy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This research explored what happens when social media data mining becomes ordinary and is carried out by organisations that might be seen as the pillars of everyday life. The interviews on which the transcripts are based are discussed in Chapter 6 of the book. The referenced book contains a description of the methods. No other publications resulted from working with these transcripts.

  6. r

    Journal of Big Data Impact Factor 2024-2025 - ResearchHelpDesk

    • researchhelpdesk.org
    Updated Feb 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2022). Journal of Big Data Impact Factor 2024-2025 - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/impact-factor-if/289/journal-of-big-data
    Explore at:
    Dataset updated
    Feb 23, 2022
    Dataset authored and provided by
    Research Help Desk
    Description

    Journal of Big Data Impact Factor 2024-2025 - ResearchHelpDesk - The Journal of Big Data publishes high-quality, scholarly research papers, methodologies and case studies covering a broad range of topics, from big data analytics to data-intensive computing and all applications of big data research. The journal examines the challenges facing big data today and going forward including, but not limited to: data capture and storage; search, sharing, and analytics; big data technologies; data visualization; architectures for massively parallel processing; data mining tools and techniques; machine learning algorithms for big data; cloud computing platforms; distributed file systems and databases; and scalable storage systems. Academic researchers and practitioners will find the Journal of Big Data to be a seminal source of innovative material. All articles published by the Journal of Big Data are made freely and permanently accessible online immediately upon publication, without subscription charges or registration barriers. As authors of articles published in the Journal of Big Data you are the copyright holders of your article and have granted to any third party, in advance and in perpetuity, the right to use, reproduce or disseminate your article, according to the SpringerOpen copyright and license agreement. For those of you who are US government employees or are prevented from being copyright holders for similar reasons, SpringerOpen can accommodate non-standard copyright lines.

  7. f

    Additional file 1 of Novel methods of qualitative analysis for health policy...

    • springernature.figshare.com
    txt
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mireya Martínez-García; Maite Vallejo; Enrique Hernández-Lemus; Jorge Alberto Álvarez-Díaz (2023). Additional file 1 of Novel methods of qualitative analysis for health policy research [Dataset]. http://doi.org/10.6084/m9.figshare.7587416.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    figshare
    Authors
    Mireya Martínez-García; Maite Vallejo; Enrique Hernández-Lemus; Jorge Alberto Álvarez-Díaz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Interactive network files. Interactive network files with all statistical and topological analyses. This is a Cytoscape.cys session. In order to open/view/modify this file please use the freely available Cytoscape software platform, available at http://www.cytoscape.org/download.php . (SIF 3413 kb)

  8. r

    International Journal of Engineering and Advanced Technology FAQ -...

    • researchhelpdesk.org
    Updated May 28, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2022). International Journal of Engineering and Advanced Technology FAQ - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/faq/552/international-journal-of-engineering-and-advanced-technology
    Explore at:
    Dataset updated
    May 28, 2022
    Dataset authored and provided by
    Research Help Desk
    Description

    International Journal of Engineering and Advanced Technology FAQ - ResearchHelpDesk - International Journal of Engineering and Advanced Technology (IJEAT) is having Online-ISSN 2249-8958, bi-monthly international journal, being published in the months of February, April, June, August, October, and December by Blue Eyes Intelligence Engineering & Sciences Publication (BEIESP) Bhopal (M.P.), India since the year 2011. It is academic, online, open access, double-blind, peer-reviewed international journal. It aims to publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. All submitted papers will be reviewed by the board of committee of IJEAT. Aim of IJEAT Journal disseminate original, scientific, theoretical or applied research in the field of Engineering and allied fields. dispense a platform for publishing results and research with a strong empirical component. aqueduct the significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. seek original and unpublished research papers based on theoretical or experimental works for the publication globally. publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. impart a platform for publishing results and research with a strong empirical component. create a bridge for a significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. solicit original and unpublished research papers, based on theoretical or experimental works. Scope of IJEAT International Journal of Engineering and Advanced Technology (IJEAT) covers all topics of all engineering branches. Some of them are Computer Science & Engineering, Information Technology, Electronics & Communication, Electrical and Electronics, Electronics and Telecommunication, Civil Engineering, Mechanical Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. The main topic includes but not limited to: 1. Smart Computing and Information Processing Signal and Speech Processing Image Processing and Pattern Recognition WSN Artificial Intelligence and machine learning Data mining and warehousing Data Analytics Deep learning Bioinformatics High Performance computing Advanced Computer networking Cloud Computing IoT Parallel Computing on GPU Human Computer Interactions 2. Recent Trends in Microelectronics and VLSI Design Process & Device Technologies Low-power design Nanometer-scale integrated circuits Application specific ICs (ASICs) FPGAs Nanotechnology Nano electronics and Quantum Computing 3. Challenges of Industry and their Solutions, Communications Advanced Manufacturing Technologies Artificial Intelligence Autonomous Robots Augmented Reality Big Data Analytics and Business Intelligence Cyber Physical Systems (CPS) Digital Clone or Simulation Industrial Internet of Things (IIoT) Manufacturing IOT Plant Cyber security Smart Solutions – Wearable Sensors and Smart Glasses System Integration Small Batch Manufacturing Visual Analytics Virtual Reality 3D Printing 4. Internet of Things (IoT) Internet of Things (IoT) & IoE & Edge Computing Distributed Mobile Applications Utilizing IoT Security, Privacy and Trust in IoT & IoE Standards for IoT Applications Ubiquitous Computing Block Chain-enabled IoT Device and Data Security and Privacy Application of WSN in IoT Cloud Resources Utilization in IoT Wireless Access Technologies for IoT Mobile Applications and Services for IoT Machine/ Deep Learning with IoT & IoE Smart Sensors and Internet of Things for Smart City Logic, Functional programming and Microcontrollers for IoT Sensor Networks, Actuators for Internet of Things Data Visualization using IoT IoT Application and Communication Protocol Big Data Analytics for Social Networking using IoT IoT Applications for Smart Cities Emulation and Simulation Methodologies for IoT IoT Applied for Digital Contents 5. Microwaves and Photonics Microwave filter Micro Strip antenna Microwave Link design Microwave oscillator Frequency selective surface Microwave Antenna Microwave Photonics Radio over fiber Optical communication Optical oscillator Optical Link design Optical phase lock loop Optical devices 6. Computation Intelligence and Analytics Soft Computing Advance Ubiquitous Computing Parallel Computing Distributed Computing Machine Learning Information Retrieval Expert Systems Data Mining Text Mining Data Warehousing Predictive Analysis Data Management Big Data Analytics Big Data Security 7. Energy Harvesting and Wireless Power Transmission Energy harvesting and transfer for wireless sensor networks Economics of energy harvesting communications Waveform optimization for wireless power transfer RF Energy Harvesting Wireless Power Transmission Microstrip Antenna design and application Wearable Textile Antenna Luminescence Rectenna 8. Advance Concept of Networking and Database Computer Network Mobile Adhoc Network Image Security Application Artificial Intelligence and machine learning in the Field of Network and Database Data Analytic High performance computing Pattern Recognition 9. Machine Learning (ML) and Knowledge Mining (KM) Regression and prediction Problem solving and planning Clustering Classification Neural information processing Vision and speech perception Heterogeneous and streaming data Natural language processing Probabilistic Models and Methods Reasoning and inference Marketing and social sciences Data mining Knowledge Discovery Web mining Information retrieval Design and diagnosis Game playing Streaming data Music Modelling and Analysis Robotics and control Multi-agent systems Bioinformatics Social sciences Industrial, financial and scientific applications of all kind 10. Advanced Computer networking Computational Intelligence Data Management, Exploration, and Mining Robotics Artificial Intelligence and Machine Learning Computer Architecture and VLSI Computer Graphics, Simulation, and Modelling Digital System and Logic Design Natural Language Processing and Machine Translation Parallel and Distributed Algorithms Pattern Recognition and Analysis Systems and Software Engineering Nature Inspired Computing Signal and Image Processing Reconfigurable Computing Cloud, Cluster, Grid and P2P Computing Biomedical Computing Advanced Bioinformatics Green Computing Mobile Computing Nano Ubiquitous Computing Context Awareness and Personalization, Autonomic and Trusted Computing Cryptography and Applied Mathematics Security, Trust and Privacy Digital Rights Management Networked-Driven Multicourse Chips Internet Computing Agricultural Informatics and Communication Community Information Systems Computational Economics, Digital Photogrammetric Remote Sensing, GIS and GPS Disaster Management e-governance, e-Commerce, e-business, e-Learning Forest Genomics and Informatics Healthcare Informatics Information Ecology and Knowledge Management Irrigation Informatics Neuro-Informatics Open Source: Challenges and opportunities Web-Based Learning: Innovation and Challenges Soft computing Signal and Speech Processing Natural Language Processing 11. Communications Microstrip Antenna Microwave Radar and Satellite Smart Antenna MIMO Antenna Wireless Communication RFID Network and Applications 5G Communication 6G Communication 12. Algorithms and Complexity Sequential, Parallel And Distributed Algorithms And Data Structures Approximation And Randomized Algorithms Graph Algorithms And Graph Drawing On-Line And Streaming Algorithms Analysis Of Algorithms And Computational Complexity Algorithm Engineering Web Algorithms Exact And Parameterized Computation Algorithmic Game Theory Computational Biology Foundations Of Communication Networks Computational Geometry Discrete Optimization 13. Software Engineering and Knowledge Engineering Software Engineering Methodologies Agent-based software engineering Artificial intelligence approaches to software engineering Component-based software engineering Embedded and ubiquitous software engineering Aspect-based software engineering Empirical software engineering Search-Based Software engineering Automated software design and synthesis Computer-supported cooperative work Automated software specification Reverse engineering Software Engineering Techniques and Production Perspectives Requirements engineering Software analysis, design and modelling Software maintenance and evolution Software engineering tools and environments Software engineering decision support Software design patterns Software product lines Process and workflow management Reflection and metadata approaches Program understanding and system maintenance Software domain modelling and analysis Software economics Multimedia and hypermedia software engineering Software engineering case study and experience reports Enterprise software, middleware, and tools Artificial intelligent methods, models, techniques Artificial life and societies Swarm intelligence Smart Spaces Autonomic computing and agent-based systems Autonomic computing Adaptive Systems Agent architectures, ontologies, languages and protocols Multi-agent systems Agent-based learning and knowledge discovery Interface agents Agent-based auctions and marketplaces Secure mobile and multi-agent systems Mobile agents SOA and Service-Oriented Systems Service-centric software engineering Service oriented requirements engineering Service oriented architectures Middleware for service based systems Service discovery and composition Service level agreements (drafting,

  9. Data Mining Market Size & Share Analysis - Industry Research Report - Growth...

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). Data Mining Market Size & Share Analysis - Industry Research Report - Growth Trends [Dataset]. https://www.mordorintelligence.com/industry-reports/data-mining-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    The Data Mining Market is Segmented by Component (Tools [ETL and Data Preparation, Data-Mining Workbench, and More], Services [Professional Services, and More]), End-User Enterprise Size (Small and Medium Enterprises, Large Enterprises), Deployment (Cloud, On-Premise), End-User Industry (BFSI, IT and Telecom, Government and Defence, and More), and Geography. The Market Forecasts are Provided in Terms of Value (USD).

  10. l

    LSC (Leicester Scientific Corpus)

    • figshare.le.ac.uk
    Updated Apr 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neslihan Suzen (2020). LSC (Leicester Scientific Corpus) [Dataset]. http://doi.org/10.25392/leicester.data.9449639.v2
    Explore at:
    Dataset updated
    Apr 15, 2020
    Dataset provided by
    University of Leicester
    Authors
    Neslihan Suzen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Leicester
    Description

    The LSC (Leicester Scientific Corpus)

    April 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk) Supervised by Prof Alexander Gorban and Dr Evgeny MirkesThe data are extracted from the Web of Science [1]. You may not copy or distribute these data in whole or in part without the written consent of Clarivate Analytics.[Version 2] A further cleaning is applied in Data Processing for LSC Abstracts in Version 1*. Details of cleaning procedure are explained in Step 6.* Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v1.Getting StartedThis text provides the information on the LSC (Leicester Scientific Corpus) and pre-processing steps on abstracts, and describes the structure of files to organise the corpus. This corpus is created to be used in future work on the quantification of the meaning of research texts and make it available for use in Natural Language Processing projects.LSC is a collection of abstracts of articles and proceeding papers published in 2014, and indexed by the Web of Science (WoS) database [1]. The corpus contains only documents in English. Each document in the corpus contains the following parts:1. Authors: The list of authors of the paper2. Title: The title of the paper 3. Abstract: The abstract of the paper 4. Categories: One or more category from the list of categories [2]. Full list of categories is presented in file ‘List_of _Categories.txt’. 5. Research Areas: One or more research area from the list of research areas [3]. Full list of research areas is presented in file ‘List_of_Research_Areas.txt’. 6. Total Times cited: The number of times the paper was cited by other items from all databases within Web of Science platform [4] 7. Times cited in Core Collection: The total number of times the paper was cited by other papers within the WoS Core Collection [4]The corpus was collected in July 2018 online and contains the number of citations from publication date to July 2018. We describe a document as the collection of information (about a paper) listed above. The total number of documents in LSC is 1,673,350.Data ProcessingStep 1: Downloading of the Data Online

    The dataset is collected manually by exporting documents as Tab-delimitated files online. All documents are available online.Step 2: Importing the Dataset to R

    The LSC was collected as TXT files. All documents are extracted to R.Step 3: Cleaning the Data from Documents with Empty Abstract or without CategoryAs our research is based on the analysis of abstracts and categories, all documents with empty abstracts and documents without categories are removed.Step 4: Identification and Correction of Concatenate Words in AbstractsEspecially medicine-related publications use ‘structured abstracts’. Such type of abstracts are divided into sections with distinct headings such as introduction, aim, objective, method, result, conclusion etc. Used tool for extracting abstracts leads concatenate words of section headings with the first word of the section. For instance, we observe words such as ConclusionHigher and ConclusionsRT etc. The detection and identification of such words is done by sampling of medicine-related publications with human intervention. Detected concatenate words are split into two words. For instance, the word ‘ConclusionHigher’ is split into ‘Conclusion’ and ‘Higher’.The section headings in such abstracts are listed below:

    Background Method(s) Design Theoretical Measurement(s) Location Aim(s) Methodology Process Abstract Population Approach Objective(s) Purpose(s) Subject(s) Introduction Implication(s) Patient(s) Procedure(s) Hypothesis Measure(s) Setting(s) Limitation(s) Discussion Conclusion(s) Result(s) Finding(s) Material (s) Rationale(s) Implications for health and nursing policyStep 5: Extracting (Sub-setting) the Data Based on Lengths of AbstractsAfter correction, the lengths of abstracts are calculated. ‘Length’ indicates the total number of words in the text, calculated by the same rule as for Microsoft Word ‘word count’ [5].According to APA style manual [6], an abstract should contain between 150 to 250 words. In LSC, we decided to limit length of abstracts from 30 to 500 words in order to study documents with abstracts of typical length ranges and to avoid the effect of the length to the analysis.

    Step 6: [Version 2] Cleaning Copyright Notices, Permission polices, Journal Names and Conference Names from LSC Abstracts in Version 1Publications can include a footer of copyright notice, permission policy, journal name, licence, author’s right or conference name below the text of abstract by conferences and journals. Used tool for extracting and processing abstracts in WoS database leads to attached such footers to the text. For example, our casual observation yields that copyright notices such as ‘Published by Elsevier ltd.’ is placed in many texts. To avoid abnormal appearances of words in further analysis of words such as bias in frequency calculation, we performed a cleaning procedure on such sentences and phrases in abstracts of LSC version 1. We removed copyright notices, names of conferences, names of journals, authors’ rights, licenses and permission policies identified by sampling of abstracts.Step 7: [Version 2] Re-extracting (Sub-setting) the Data Based on Lengths of AbstractsThe cleaning procedure described in previous step leaded to some abstracts having less than our minimum length criteria (30 words). 474 texts were removed.Step 8: Saving the Dataset into CSV FormatDocuments are saved into 34 CSV files. In CSV files, the information is organised with one record on each line and parts of abstract, title, list of authors, list of categories, list of research areas, and times cited is recorded in fields.To access the LSC for research purposes, please email to ns433@le.ac.uk.References[1]Web of Science. (15 July). Available: https://apps.webofknowledge.com/ [2]WoS Subject Categories. Available: https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html [3]Research Areas in WoS. Available: https://images.webofknowledge.com/images/help/WOS/hp_research_areas_easca.html [4]Times Cited in WoS Core Collection. (15 July). Available: https://support.clarivate.com/ScientificandAcademicResearch/s/article/Web-of-Science-Times-Cited-accessibility-and-variation?language=en_US [5]Word Count. Available: https://support.office.com/en-us/article/show-word-count-3c9e6a11-a04d-43b4-977c-563a0e0d5da3 [6]A. P. Association, Publication manual. American Psychological Association Washington, DC, 1983.

  11. r

    International Journal of Engineering and Advanced Technology Publication fee...

    • researchhelpdesk.org
    Updated Jun 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2022). International Journal of Engineering and Advanced Technology Publication fee - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/publication-fee/552/international-journal-of-engineering-and-advanced-technology
    Explore at:
    Dataset updated
    Jun 25, 2022
    Dataset authored and provided by
    Research Help Desk
    Description

    International Journal of Engineering and Advanced Technology Publication fee - ResearchHelpDesk - International Journal of Engineering and Advanced Technology (IJEAT) is having Online-ISSN 2249-8958, bi-monthly international journal, being published in the months of February, April, June, August, October, and December by Blue Eyes Intelligence Engineering & Sciences Publication (BEIESP) Bhopal (M.P.), India since the year 2011. It is academic, online, open access, double-blind, peer-reviewed international journal. It aims to publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. All submitted papers will be reviewed by the board of committee of IJEAT. Aim of IJEAT Journal disseminate original, scientific, theoretical or applied research in the field of Engineering and allied fields. dispense a platform for publishing results and research with a strong empirical component. aqueduct the significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. seek original and unpublished research papers based on theoretical or experimental works for the publication globally. publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. impart a platform for publishing results and research with a strong empirical component. create a bridge for a significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. solicit original and unpublished research papers, based on theoretical or experimental works. Scope of IJEAT International Journal of Engineering and Advanced Technology (IJEAT) covers all topics of all engineering branches. Some of them are Computer Science & Engineering, Information Technology, Electronics & Communication, Electrical and Electronics, Electronics and Telecommunication, Civil Engineering, Mechanical Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. The main topic includes but not limited to: 1. Smart Computing and Information Processing Signal and Speech Processing Image Processing and Pattern Recognition WSN Artificial Intelligence and machine learning Data mining and warehousing Data Analytics Deep learning Bioinformatics High Performance computing Advanced Computer networking Cloud Computing IoT Parallel Computing on GPU Human Computer Interactions 2. Recent Trends in Microelectronics and VLSI Design Process & Device Technologies Low-power design Nanometer-scale integrated circuits Application specific ICs (ASICs) FPGAs Nanotechnology Nano electronics and Quantum Computing 3. Challenges of Industry and their Solutions, Communications Advanced Manufacturing Technologies Artificial Intelligence Autonomous Robots Augmented Reality Big Data Analytics and Business Intelligence Cyber Physical Systems (CPS) Digital Clone or Simulation Industrial Internet of Things (IIoT) Manufacturing IOT Plant Cyber security Smart Solutions – Wearable Sensors and Smart Glasses System Integration Small Batch Manufacturing Visual Analytics Virtual Reality 3D Printing 4. Internet of Things (IoT) Internet of Things (IoT) & IoE & Edge Computing Distributed Mobile Applications Utilizing IoT Security, Privacy and Trust in IoT & IoE Standards for IoT Applications Ubiquitous Computing Block Chain-enabled IoT Device and Data Security and Privacy Application of WSN in IoT Cloud Resources Utilization in IoT Wireless Access Technologies for IoT Mobile Applications and Services for IoT Machine/ Deep Learning with IoT & IoE Smart Sensors and Internet of Things for Smart City Logic, Functional programming and Microcontrollers for IoT Sensor Networks, Actuators for Internet of Things Data Visualization using IoT IoT Application and Communication Protocol Big Data Analytics for Social Networking using IoT IoT Applications for Smart Cities Emulation and Simulation Methodologies for IoT IoT Applied for Digital Contents 5. Microwaves and Photonics Microwave filter Micro Strip antenna Microwave Link design Microwave oscillator Frequency selective surface Microwave Antenna Microwave Photonics Radio over fiber Optical communication Optical oscillator Optical Link design Optical phase lock loop Optical devices 6. Computation Intelligence and Analytics Soft Computing Advance Ubiquitous Computing Parallel Computing Distributed Computing Machine Learning Information Retrieval Expert Systems Data Mining Text Mining Data Warehousing Predictive Analysis Data Management Big Data Analytics Big Data Security 7. Energy Harvesting and Wireless Power Transmission Energy harvesting and transfer for wireless sensor networks Economics of energy harvesting communications Waveform optimization for wireless power transfer RF Energy Harvesting Wireless Power Transmission Microstrip Antenna design and application Wearable Textile Antenna Luminescence Rectenna 8. Advance Concept of Networking and Database Computer Network Mobile Adhoc Network Image Security Application Artificial Intelligence and machine learning in the Field of Network and Database Data Analytic High performance computing Pattern Recognition 9. Machine Learning (ML) and Knowledge Mining (KM) Regression and prediction Problem solving and planning Clustering Classification Neural information processing Vision and speech perception Heterogeneous and streaming data Natural language processing Probabilistic Models and Methods Reasoning and inference Marketing and social sciences Data mining Knowledge Discovery Web mining Information retrieval Design and diagnosis Game playing Streaming data Music Modelling and Analysis Robotics and control Multi-agent systems Bioinformatics Social sciences Industrial, financial and scientific applications of all kind 10. Advanced Computer networking Computational Intelligence Data Management, Exploration, and Mining Robotics Artificial Intelligence and Machine Learning Computer Architecture and VLSI Computer Graphics, Simulation, and Modelling Digital System and Logic Design Natural Language Processing and Machine Translation Parallel and Distributed Algorithms Pattern Recognition and Analysis Systems and Software Engineering Nature Inspired Computing Signal and Image Processing Reconfigurable Computing Cloud, Cluster, Grid and P2P Computing Biomedical Computing Advanced Bioinformatics Green Computing Mobile Computing Nano Ubiquitous Computing Context Awareness and Personalization, Autonomic and Trusted Computing Cryptography and Applied Mathematics Security, Trust and Privacy Digital Rights Management Networked-Driven Multicourse Chips Internet Computing Agricultural Informatics and Communication Community Information Systems Computational Economics, Digital Photogrammetric Remote Sensing, GIS and GPS Disaster Management e-governance, e-Commerce, e-business, e-Learning Forest Genomics and Informatics Healthcare Informatics Information Ecology and Knowledge Management Irrigation Informatics Neuro-Informatics Open Source: Challenges and opportunities Web-Based Learning: Innovation and Challenges Soft computing Signal and Speech Processing Natural Language Processing 11. Communications Microstrip Antenna Microwave Radar and Satellite Smart Antenna MIMO Antenna Wireless Communication RFID Network and Applications 5G Communication 6G Communication 12. Algorithms and Complexity Sequential, Parallel And Distributed Algorithms And Data Structures Approximation And Randomized Algorithms Graph Algorithms And Graph Drawing On-Line And Streaming Algorithms Analysis Of Algorithms And Computational Complexity Algorithm Engineering Web Algorithms Exact And Parameterized Computation Algorithmic Game Theory Computational Biology Foundations Of Communication Networks Computational Geometry Discrete Optimization 13. Software Engineering and Knowledge Engineering Software Engineering Methodologies Agent-based software engineering Artificial intelligence approaches to software engineering Component-based software engineering Embedded and ubiquitous software engineering Aspect-based software engineering Empirical software engineering Search-Based Software engineering Automated software design and synthesis Computer-supported cooperative work Automated software specification Reverse engineering Software Engineering Techniques and Production Perspectives Requirements engineering Software analysis, design and modelling Software maintenance and evolution Software engineering tools and environments Software engineering decision support Software design patterns Software product lines Process and workflow management Reflection and metadata approaches Program understanding and system maintenance Software domain modelling and analysis Software economics Multimedia and hypermedia software engineering Software engineering case study and experience reports Enterprise software, middleware, and tools Artificial intelligent methods, models, techniques Artificial life and societies Swarm intelligence Smart Spaces Autonomic computing and agent-based systems Autonomic computing Adaptive Systems Agent architectures, ontologies, languages and protocols Multi-agent systems Agent-based learning and knowledge discovery Interface agents Agent-based auctions and marketplaces Secure mobile and multi-agent systems Mobile agents SOA and Service-Oriented Systems Service-centric software engineering Service oriented requirements engineering Service oriented architectures Middleware for service based systems Service discovery and composition Service level

  12. Z

    Softcite Dataset: A dataset of software mentions in research publications

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Jan 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caifan Du (2021). Softcite Dataset: A dataset of software mentions in research publications [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4444074
    Explore at:
    Dataset updated
    Jan 17, 2021
    Dataset provided by
    Caifan Du
    Patrice Lopez
    James Howison
    Hannah Cohoon
    Description

    The Softcite dataset is a gold-standard dataset of software mentions in research publications, a free resource primarily for software entity recognition in scholarly text. This is the first release of this dataset.

    What's in the dataset

    With the aim of facilitating software entity recognition efforts at scale and eventually increased visibility of research software for the due credit of software contributions to scholarly research, a team of trained annotators from Howison Lab at the University of Texas at Austin annotated 4,093 software mentions in 4,971 open access research publications in biomedicine (from PubMed Central Open Access collection) and economics (from Unpaywall open access services). The annotated software mentions, along with their publisher, version, and access URL, if mentioned in the text, as well as those publications annotated as containing no software mentions, are all included in the released dataset as a TEI/XML corpus file.

    For understanding the schema of the Softcite corpus, its design considerations, and provenance, please refer to our paper included in this release (preprint version).

    Use scenarios

    The release of the Softcite dataset is intended to encourage researchers and stakeholders to make research software more visible in science, especially to academic databases and systems of information retrieval; and facilitate interoperability and collaboration among similar and relevant efforts in software entity recognition and building utilities for software information retrieval. This dataset can also be useful for researchers investigating software use in academic research.

    Current release content

    softcite-dataset v1.0 release includes:

    The Softcite dataset corpus file: softcite_corpus-full.tei.xml

    Softcite Dataset: A Dataset of Software Mentions in Biomedical and Economic Research Publications, our paper that describes the design consideration and creation process of the dataset: Softcite_Dataset_Description_RC.pdf. (This is a preprint version of our forthcoming publication in the Journal of the Association for Information Science and Technology.)

    The Softcite dataset is licensed under a Creative Commons Attribution 4.0 International License.

    If you have questions, please start a discussion or issue in the howisonlab/softcite-dataset Github repository.

  13. f

    Tourism research from its inception to present day: Subject area, geography,...

    • plos.figshare.com
    xlsx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrei P. Kirilenko; Svetlana Stepchenkova (2023). Tourism research from its inception to present day: Subject area, geography, and gender distributions [Dataset]. http://doi.org/10.1371/journal.pone.0206820
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Andrei P. Kirilenko; Svetlana Stepchenkova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This paper uses text data mining to identify long-term developments in tourism academic research from the perspectives of thematic focus, geography, and gender of tourism authorship. Abstracts of papers published in the period of 1970–2017 in high-ranking tourist journals were extracted from the Scopus database and served as data source for the analysis. Fourteen subject areas were identified using the Latent Dirichlet Allocation (LDA) text mining approach. LDA integrated with GIS information allowed to obtain geography distribution and trends of scholarly output, while probabilistic methods of gender identification based on social network data mining were used to track gender dynamics with sufficient confidence. The findings indicate that, while all 14 topics have been prominent from the inception of tourism studies to the present day, the geography of scholarship has notably expanded and the share of female authorship has increased through time and currently almost equals that of male authorship.

  14. r

    A predictive model for opal exploration in Australia from a data mining...

    • researchdata.edu.au
    Updated May 1, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thomas Landgrebe; Thomas Landgrebe; Adriana Dutkiewicz; Dietmar Muller (2015). A predictive model for opal exploration in Australia from a data mining approach [Dataset]. http://doi.org/10.4227/11/5587A86C0FDF1
    Explore at:
    Dataset updated
    May 1, 2015
    Dataset provided by
    The University of Sydney
    Authors
    Thomas Landgrebe; Thomas Landgrebe; Adriana Dutkiewicz; Dietmar Muller
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Dataset funded by
    Australian Research Council
    Description

    This data collection is associated with the publications: Merdith, A. S., Landgrebe, T. C. W., Dutkiewicz, A., & Müller, R. D. (2013). Towards a predictive model for opal exploration using a spatio-temporal data mining approach. Australian Journal of Earth Sciences, 60(2), 217-229. doi: 10.1080/08120099.2012.754793

    and

    Landgrebe, T. C. W., Merdith, A., Dutkiewicz, A., & Müller, R. D. (2013). Relationships between palaeogeography and opal occurrence in Australia: A data-mining approach. Computers & Geosciences, 56(0), 76-82. doi: 10.1016/j.cageo.2013.02.002

    Publication Abstract - Merdith et al. (2013)

    Opal is Australia's national gemstone, however most significant opal discoveries were made in the early 1900's - more than 100 years ago - until recently. Currently there is no formal exploration model for opal, meaning there are no widely accepted concepts or methodologies available to suggest where new opal fields may be found. As a consequence opal mining in Australia is a cottage industry with the majority of opal exploration focused around old opal fields. The EarthByte Group has developed a new opal exploration methodology for the Great Artesian Basin. The work is based on the concept of applying “big data mining” approaches to data sets relevant for identifying regions that are prospective for opal. The group combined a multitude of geological and geophysical data sets that were jointly analysed to establish associations between particular features in the data with known opal mining sites. A “training set” of known opal localities (1036 opal mines) was assembled, using those localities, which were featured in published reports and on maps. The data used include rock types, soil type, regolith type, topography, radiometric data and a stack of digital palaeogeographic maps. The different data layers were analysed via spatio-temporal data mining combining the GPlates PaleoGIS software (www.gplates.org) with the Orange data mining software (orange.biolab.si) to produce the first opal prospectivity map for the Great Artesian Basin. One of the main results of the study is that the geological conditions favourable for opal were found to be related to a particular sequence of surface environments over geological time. These conditions involved alternating shallow seas and river systems followed by uplift and erosion. The approach reduces the entire area of the Great Artesian Basin to a mere 6% that is deemed to be prospective for opal exploration. The work is described in two companion papers in the Australian Journal of Earth Sciences and Computers and Geosciences.

    Publication Abstract - Landgrebe et al. (2013)

    Age-coded multi-layered geological datasets are becoming increasingly prevalent with the surge in open-access geodata, yet there are few methodologies for extracting geological information and knowledge from these data. We present a novel methodology, based on the open-source GPlates software in which age-coded digital palaeogeographic maps are used to “data-mine” spatio-temporal patterns related to the occurrence of Australian opal. Our aim is to test the concept that only a particular sequence of depositional/erosional environments may lead to conditions suitable for the formation of gem quality sedimentary opal. Time-varying geographic environment properties are extracted from a digital palaeogeographic dataset of the eastern Australian Great Artesian Basin (GAB) at 1036 opal localities. We obtain a total of 52 independent ordinal sequences sampling 19 time slices from the Early Cretaceous to the present-day. We find that 95% of the known opal deposits are tied to only 27 sequences all comprising fluvial and shallow marine depositional sequences followed by a prolonged phase of erosion. We then map the total area of the GAB that matches these 27 opal-specific sequences, resulting in an opal-prospective region of only about 10% of the total area of the basin. The key patterns underlying this association involve only a small number of key environmental transitions. We demonstrate that these key associations are generally absent at arbitrary locations in the basin. This new methodology allows for the simplification of a complex time-varying geological dataset into a single map view, enabling straightforward application for opal exploration and for future co-assessment with other datasets/geological criteria. This approach may help unravel the poorly understood opal formation process using an empirical spatio-temporal data-mining methodology and readily available datasets to aid hypothesis testing.

    Authors and Institutions

    Andrew Merdith - EarthByte Research Group, School of Geosciences, The University of Sydney, Australia. ORCID: 0000-0002-7564-8149

    Thomas Landgrebe - EarthByte Research Group, School of Geosciences, The University of Sydney, Australia

    Adriana Dutkiewicz - EarthByte Research Group, School of Geosciences, The University of Sydney, Australia

    R. Dietmar Müller - EarthByte Research Group, School of Geosciences, The University of Sydney, Australia. ORCID: 0000-0002-3334-5764

    Overview of Resources Contained

    This collection contains geological data from Australia used for data mining in the publications Merdith et al. (2013) and Landgrebe et al. (2013). The resulting maps of opal prospectivity are also included.

    List of Resources

    Note: For details on the files included in this data collection, see “Description_of_Resources.txt”.

    Note: For information on file formats and what programs to use to interact with various file formats, see “File_Formats_and_Recommended_Programs.txt”.

    • Map of Barfield region, Australia (.jpg, 270 KB)
    • Map overviewing the Great Artesian basins and main opal mining camps (.png, 82 KB)
    • Maps showing opal prospectivity data mining results for different geological datasets (.tif, 23.1 MB)
    • Map of opal prospectivity from palaeogeography data mining (.pdf, 2.6 MB)
    • Raster of palaeogeography target regions for viewing in Google Earth (.jpg, 418 KB)
    • Opal mine locations (.gpml, .txt, .kmz, .shp, total 15.6 MB)
    • Map of opal prospectivity from all data mining results as a Google Earth overlay (.kmz, 12 KB)
    • Map of probability of opal occurrence in prospective regions from all data mining results (.tif, 5.9 MB)
    • Paleogeography of Australia (.gpml, .txt, .shp, total 114.2 MB)
    • Radiometric data showing potassium concentration contrasts (.tif, .kmz, total 311.3 MB)
    • Regolith data (.gpml, .txt, .kml, .shp, total 7.1 MB)
    • Soil type data (.gpml, .txt, .kml, .shp, total 7.1 MB)

    For more information on this data collection, and links to other datasets from the EarthByte Research Group please visit EarthByte

    For more information about using GPlates, including tutorials and a user manual please visit GPlates or EarthByte

  15. m

    pinterest_dataset

    • data.mendeley.com
    Updated Oct 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juan Carlos Gomez (2017). pinterest_dataset [Dataset]. http://doi.org/10.17632/fs4k2zc5j5.2
    Explore at:
    Dataset updated
    Oct 27, 2017
    Authors
    Juan Carlos Gomez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset with 72000 pins from 117 users in Pinterest. Each pin contains a short raw text and an image. The images are processed using a pretrained Convolutional Neural Network and transformed into a vector of 4096 features.

    This dataset was used in the paper "User Identification in Pinterest Through the Refinement of a Cascade Fusion of Text and Images" to idenfity specific users given their comments. The paper is publishe in the Research in Computing Science Journal, as part of the LKE 2017 conference. The dataset includes the splits used in the paper.

    There are nine files. text_test, text_train and text_val, contain the raw text of each pin in the corresponding split of the data. imag_test, imag_train and imag_val contain the image features of each pin in the corresponding split of the data. train_user and val_test_users contain the index of the user of each pin (between 0 and 116). There is a correspondance one-to-one among the test, train and validation files for images, text and users. There are 400 pins per user in the train set, and 100 pins per user in the validation and test sets each one.

    If you have questions regarding the data, write to: jc dot gomez at ugto dot mx

  16. l

    LScD (Leicester Scientific Dictionary)

    • figshare.le.ac.uk
    docx
    Updated Apr 15, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neslihan Suzen (2020). LScD (Leicester Scientific Dictionary) [Dataset]. http://doi.org/10.25392/leicester.data.9746900.v3
    Explore at:
    docxAvailable download formats
    Dataset updated
    Apr 15, 2020
    Dataset provided by
    University of Leicester
    Authors
    Neslihan Suzen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Leicester
    Description

    LScD (Leicester Scientific Dictionary)April 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk/suzenneslihan@hotmail.com)Supervised by Prof Alexander Gorban and Dr Evgeny Mirkes[Version 3] The third version of LScD (Leicester Scientific Dictionary) is created from the updated LSC (Leicester Scientific Corpus) - Version 2*. All pre-processing steps applied to build the new version of the dictionary are the same as in Version 2** and can be found in description of Version 2 below. We did not repeat the explanation. After pre-processing steps, the total number of unique words in the new version of the dictionary is 972,060. The files provided with this description are also same as described as for LScD Version 2 below.* Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v2** Suzen, Neslihan (2019): LScD (Leicester Scientific Dictionary). figshare. Dataset. https://doi.org/10.25392/leicester.data.9746900.v2[Version 2] Getting StartedThis document provides the pre-processing steps for creating an ordered list of words from the LSC (Leicester Scientific Corpus) [1] and the description of LScD (Leicester Scientific Dictionary). This dictionary is created to be used in future work on the quantification of the meaning of research texts. R code for producing the dictionary from LSC and instructions for usage of the code are available in [2]. The code can be also used for list of texts from other sources, amendments to the code may be required.LSC is a collection of abstracts of articles and proceeding papers published in 2014 and indexed by the Web of Science (WoS) database [3]. Each document contains title, list of authors, list of categories, list of research areas, and times cited. The corpus contains only documents in English. The corpus was collected in July 2018 and contains the number of citations from publication date to July 2018. The total number of documents in LSC is 1,673,824.LScD is an ordered list of words from texts of abstracts in LSC.The dictionary stores 974,238 unique words, is sorted by the number of documents containing the word in descending order. All words in the LScD are in stemmed form of words. The LScD contains the following information:1.Unique words in abstracts2.Number of documents containing each word3.Number of appearance of a word in the entire corpusProcessing the LSCStep 1.Downloading the LSC Online: Use of the LSC is subject to acceptance of request of the link by email. To access the LSC for research purposes, please email to ns433@le.ac.uk. The data are extracted from Web of Science [3]. You may not copy or distribute these data in whole or in part without the written consent of Clarivate Analytics.Step 2.Importing the Corpus to R: The full R code for processing the corpus can be found in the GitHub [2].All following steps can be applied for arbitrary list of texts from any source with changes of parameter. The structure of the corpus such as file format and names (also the position) of fields should be taken into account to apply our code. The organisation of CSV files of LSC is described in README file for LSC [1].Step 3.Extracting Abstracts and Saving Metadata: Metadata that include all fields in a document excluding abstracts and the field of abstracts are separated. Metadata are then saved as MetaData.R. Fields of metadata are: List_of_Authors, Title, Categories, Research_Areas, Total_Times_Cited and Times_cited_in_Core_Collection.Step 4.Text Pre-processing Steps on the Collection of Abstracts: In this section, we presented our approaches to pre-process abstracts of the LSC.1.Removing punctuations and special characters: This is the process of substitution of all non-alphanumeric characters by space. We did not substitute the character “-” in this step, because we need to keep words like “z-score”, “non-payment” and “pre-processing” in order not to lose the actual meaning of such words. A processing of uniting prefixes with words are performed in later steps of pre-processing.2.Lowercasing the text data: Lowercasing is performed to avoid considering same words like “Corpus”, “corpus” and “CORPUS” differently. Entire collection of texts are converted to lowercase.3.Uniting prefixes of words: Words containing prefixes joined with character “-” are united as a word. The list of prefixes united for this research are listed in the file “list_of_prefixes.csv”. The most of prefixes are extracted from [4]. We also added commonly used prefixes: ‘e’, ‘extra’, ‘per’, ‘self’ and ‘ultra’.4.Substitution of words: Some of words joined with “-” in the abstracts of the LSC require an additional process of substitution to avoid losing the meaning of the word before removing the character “-”. Some examples of such words are “z-test”, “well-known” and “chi-square”. These words have been substituted to “ztest”, “wellknown” and “chisquare”. Identification of such words is done by sampling of abstracts form LSC. The full list of such words and decision taken for substitution are presented in the file “list_of_substitution.csv”.5.Removing the character “-”: All remaining character “-” are replaced by space.6.Removing numbers: All digits which are not included in a word are replaced by space. All words that contain digits and letters are kept because alphanumeric characters such as chemical formula might be important for our analysis. Some examples are “co2”, “h2o” and “21st”.7.Stemming: Stemming is the process of converting inflected words into their word stem. This step results in uniting several forms of words with similar meaning into one form and also saving memory space and time [5]. All words in the LScD are stemmed to their word stem.8.Stop words removal: Stop words are words that are extreme common but provide little value in a language. Some common stop words in English are ‘I’, ‘the’, ‘a’ etc. We used ‘tm’ package in R to remove stop words [6]. There are 174 English stop words listed in the package.Step 5.Writing the LScD into CSV Format: There are 1,673,824 plain processed texts for further analysis. All unique words in the corpus are extracted and written in the file “LScD.csv”.The Organisation of the LScDThe total number of words in the file “LScD.csv” is 974,238. Each field is described below:Word: It contains unique words from the corpus. All words are in lowercase and their stem forms. The field is sorted by the number of documents that contain words in descending order.Number of Documents Containing the Word: In this content, binary calculation is used: if a word exists in an abstract then there is a count of 1. If the word exits more than once in a document, the count is still 1. Total number of document containing the word is counted as the sum of 1s in the entire corpus.Number of Appearance in Corpus: It contains how many times a word occurs in the corpus when the corpus is considered as one large document.Instructions for R CodeLScD_Creation.R is an R script for processing the LSC to create an ordered list of words from the corpus [2]. Outputs of the code are saved as RData file and in CSV format. Outputs of the code are:Metadata File: It includes all fields in a document excluding abstracts. Fields are List_of_Authors, Title, Categories, Research_Areas, Total_Times_Cited and Times_cited_in_Core_Collection.File of Abstracts: It contains all abstracts after pre-processing steps defined in the step 4.DTM: It is the Document Term Matrix constructed from the LSC[6]. Each entry of the matrix is the number of times the word occurs in the corresponding document.LScD: An ordered list of words from LSC as defined in the previous section.The code can be used by:1.Download the folder ‘LSC’, ‘list_of_prefixes.csv’ and ‘list_of_substitution.csv’2.Open LScD_Creation.R script3.Change parameters in the script: replace with the full path of the directory with source files and the full path of the directory to write output files4.Run the full code.References[1]N. Suzen. (2019). LSC (Leicester Scientific Corpus) [Dataset]. Available: https://doi.org/10.25392/leicester.data.9449639.v1[2]N. Suzen. (2019). LScD-LEICESTER SCIENTIFIC DICTIONARY CREATION. Available: https://github.com/neslihansuzen/LScD-LEICESTER-SCIENTIFIC-DICTIONARY-CREATION[3]Web of Science. (15 July). Available: https://apps.webofknowledge.com/[4]A. Thomas, "Common Prefixes, Suffixes and Roots," Center for Development and Learning, 2013.[5]C. Ramasubramanian and R. Ramya, "Effective pre-processing activities in text mining using improved porter’s stemming algorithm," International Journal of Advanced Research in Computer and Communication Engineering, vol. 2, no. 12, pp. 4536-4538, 2013.[6]I. Feinerer, "Introduction to the tm Package Text Mining in R," Accessible en ligne: https://cran.r-project.org/web/packages/tm/vignettes/tm.pdf, 2013.

  17. P

    arXiv-10 Dataset

    • paperswithcode.com
    Updated Nov 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ashkan Farhangi; Ning Sui; Nan Hua; Haiyan Bai; Arthur Huang; Zhishan Guo (2024). arXiv-10 Dataset [Dataset]. https://paperswithcode.com/dataset/arxiv-10
    Explore at:
    Dataset updated
    Nov 11, 2024
    Authors
    Ashkan Farhangi; Ning Sui; Nan Hua; Haiyan Bai; Arthur Huang; Zhishan Guo
    Description

    Benchmark dataset for abstracts and titles of 100,000 ArXiv scientific papers. This dataset contains 10 classes and is balanced (exactly 10,000 per class). The classes include subcategories of computer science, physics, and math.

    • Direct link: Download

    • Citation: @inproceedings{farhangi2022protoformer, title={Protoformer: Embedding Prototypes for Transformers}, author={Farhangi, Ashkan and Sui, Ning and Hua, Nan and Bai, Haiyan and Huang, Arthur and Guo, Zhishan}, booktitle={Advances in Knowledge Discovery and Data Mining: 26th Pacific-Asia Conference, PAKDD 2022, Chengdu, China, May 16--19, 2022, Proceedings, Part I}, pages={447--458}, year={2022} }

  18. Data from: PTMTorrent: A Dataset for Mining Open-source Pre-trained Model...

    • figshare.com
    pdf
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wenxin Jiang; Nicholas Synovic; Purvish Jajal; Taylor R. Schorlemmer; Arav Tewari; Bhavesh Pareek; George K. Thiruvathukal; James C. Davis (2023). PTMTorrent: A Dataset for Mining Open-source Pre-trained Model Packages [Dataset]. http://doi.org/10.6084/m9.figshare.22009880.v4
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Wenxin Jiang; Nicholas Synovic; Purvish Jajal; Taylor R. Schorlemmer; Arav Tewari; Bhavesh Pareek; George K. Thiruvathukal; James C. Davis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Due to the cost of developing and training deep learning models from scratch, machine learning engineers have begun to reuse pre-trained models (PTMs) and fine-tune them for downstream tasks. PTM registries known as “model hubs” support engineers in distributing and reusing deep learning models. PTM packages include pre-trained weights, documentation, model architectures, datasets, and metadata. Mining the information in PTM packages will enable the discovery of engineering phenomena and tools to support software engineers. However, accessing this information is difficult — there are many PTM registries, and both the registries and the individual packages may have rate limiting for accessing the data.

    We present an open-source dataset, PTMTorrent, to facilitate the evaluation and understanding of PTM packages. This paper describes the creation, structure, usage, and limitations of the dataset. The dataset includes a snapshot of 5 model hubs and a total of 15,913 PTM packages. These packages are represented in a uniform data schema for cross-hub mining. We describe prior uses of this data and suggest research opportunities for mining using our dataset.

    We provide links to the PTM Dataset and PTM Torrent Source Code.

  19. r

    Journal of Computational Design and Engineering Impact Factor 2024-2025 -...

    • researchhelpdesk.org
    Updated Feb 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2022). Journal of Computational Design and Engineering Impact Factor 2024-2025 - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/impact-factor-if/293/journal-of-computational-design-and-engineering
    Explore at:
    Dataset updated
    Feb 23, 2022
    Dataset authored and provided by
    Research Help Desk
    Description

    Journal of Computational Design and Engineering Impact Factor 2024-2025 - ResearchHelpDesk - Journal of Computational Design and Engineering is an international journal that aims to provide academia and industry with a venue for rapid publication of research papers reporting innovative computational methods and applications to achieve a major breakthrough, practical improvements, and bold new research directions within a wide range of design and engineering: Theory and its progress in computational advancement for design and engineering Development of computational framework to support large scale design and engineering Interaction issues among human, designed artifacts, and systems Knowledge-intensive technologies for intelligent and sustainable systems Emerging technology and convergence of technology fields presented with convincing design examples Educational issues for academia, practitioners, and future generation Proposal on new research directions as well as survey and retrospectives on mature field. Examples of relevant topics include traditional and emerging issues in design and engineering but are not limited to: Field specific issues in mechanical, aerospace, shipbuilding, industrial, architectural, plant, and civil engineering as well as industrial design Geometric modeling and processing, solid and heterogeneous modeling, computational geometry, features, and virtual prototyping Computer graphics, virtual and augmented reality, and scientific visualization Human modeling and engineering, user interaction and experience, HCI, HMI, human-vehicle interaction(HVI), cognitive engineering, and human factors and ergonomics with computers Knowledge-based engineering, intelligent CAD, AI and machine learning in design, and ontology Product data exchange and management, PDM/PLM/CPC, PDX/PDQ, interoperability, data mining, and database issues Design theory and methodology, sustainable design and engineering, concurrent engineering, and collaborative engineering Digital/virtual manufacturing, rapid prototyping and tooling, and CNC machining Computer aided inspection, geometric and engineering tolerancing, and reverse engineering Finite element analysis, optimization, meshes and discretization, and virtual engineering Bio-CAD, Nano-CAD, and medical applications Industrial design, aesthetic design, new media, and design education Survey and benchmark reports

  20. D

    Data Mining Software Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Data Mining Software Report [Dataset]. https://www.marketresearchforecast.com/reports/data-mining-software-41235
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Mar 19, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Data Mining Software market is experiencing robust growth, driven by the increasing need for businesses to extract valuable insights from massive datasets. The market, estimated at $15 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033, reaching an estimated $45 billion by 2033. This expansion is fueled by several key factors. The burgeoning adoption of cloud-based solutions offers scalability and cost-effectiveness, attracting both large enterprises and SMEs. Furthermore, advancements in machine learning and artificial intelligence algorithms are enhancing the accuracy and efficiency of data mining processes, leading to better decision-making across various sectors like finance, healthcare, and marketing. The rise of big data analytics and the increasing availability of affordable, high-powered computing resources are also significant contributors to market growth. However, the market faces certain challenges. Data security and privacy concerns remain paramount, especially with the increasing volume of sensitive information being processed. The complexity of data mining software and the need for skilled professionals to operate and interpret the results present a barrier to entry for some businesses. The high initial investment cost associated with implementing sophisticated data mining solutions can also deter smaller organizations. Nevertheless, the ongoing technological advancements and the growing recognition of the strategic value of data-driven decision-making are expected to overcome these restraints and propel the market toward continued expansion. The market segmentation reveals a strong preference for cloud-based solutions, reflecting the industry's trend toward flexible and scalable IT infrastructure. Large enterprises currently dominate the market share, but SMEs are rapidly adopting data mining software, indicating promising future growth in this segment. Geographic analysis shows that North America and Europe are currently leading the market, but the Asia-Pacific region is poised for significant growth due to increasing digitalization and economic expansion in countries like China and India.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Market Research Forecast (2025). Data Mining Tools Market Report [Dataset]. https://www.marketresearchforecast.com/reports/data-mining-tools-market-1722

Data Mining Tools Market Report

Explore at:
pdf, ppt, docAvailable download formats
Dataset updated
Feb 3, 2025
Dataset authored and provided by
Market Research Forecast
License

https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

Time period covered
2025 - 2033
Area covered
Global
Variables measured
Market Size
Description

The Data Mining Tools Market size was valued at USD 1.01 USD billion in 2023 and is projected to reach USD 1.99 USD billion by 2032, exhibiting a CAGR of 10.2 % during the forecast period. The growing adoption of data-driven decision-making and the increasing need for business intelligence are major factors driving market growth. Data mining refers to filtering, sorting, and classifying data from larger datasets to reveal subtle patterns and relationships, which helps enterprises identify and solve complex business problems through data analysis. Data mining software tools and techniques allow organizations to foresee future market trends and make business-critical decisions at crucial times. Data mining is an essential component of data science that employs advanced data analytics to derive insightful information from large volumes of data. Businesses rely heavily on data mining to undertake analytics initiatives in the organizational setup. The analyzed data sourced from data mining is used for varied analytics and business intelligence (BI) applications, which consider real-time data analysis along with some historical pieces of information. Recent developments include: May 2023 – WiMi Hologram Cloud Inc. introduced a new data interaction system developed by combining neural network technology and data mining. Using real-time interaction, the system can offer reliable and safe information transmission., May 2023 – U.S. Data Mining Group, Inc., operating in bitcoin mining site, announced a hosting contract to deploy 150,000 bitcoins in partnership with major companies such as TeslaWatt, Sphere 3D, Marathon Digital, and more. The company is offering industry turn-key solutions for curtailment, accounting, and customer relations., April 2023 – Artificial intelligence and single-cell biotech analytics firm, One Biosciences, launched a single cell data mining algorithm called ‘MAYA’. The algorithm is for cancer patients to detect therapeutic vulnerabilities., May 2022 – Europe-based Solarisbank, a banking-as-a-service provider, announced its partnership with Snowflake to boost its cloud data strategy. Using the advanced cloud infrastructure, the company can enhance data mining efficiency and strengthen its banking position.. Key drivers for this market are: Increasing Focus on Customer Satisfaction to Drive Market Growth. Potential restraints include: Requirement of Skilled Technical Resources Likely to Hamper Market Growth. Notable trends are: Incorporation of Data Mining and Machine Learning Solutions to Propel Market Growth.

Search
Clear search
Close search
Google apps
Main menu