Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The LScDC (Leicester Scientific Dictionary-Core Dictionary)April 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk/suzenneslihan@hotmail.com)Supervised by Prof Alexander Gorban and Dr Evgeny Mirkes[Version 3] The third version of LScDC (Leicester Scientific Dictionary-Core) is formed using the updated LScD (Leicester Scientific Dictionary) - Version 3*. All steps applied to build the new version of core dictionary are the same as in Version 2** and can be found in description of Version 2 below. We did not repeat the explanation. The files provided with this description are also same as described as for LScDC Version 2. The numbers of words in the 3rd versions of LScD and LScDC are summarized below. # of wordsLScD (v3) 972,060LScDC (v3) 103,998 * Suzen, Neslihan (2019): LScD (Leicester Scientific Dictionary). figshare. Dataset. https://doi.org/10.25392/leicester.data.9746900.v3 ** Suzen, Neslihan (2019): LScDC (Leicester Scientific Dictionary-Core). figshare. Dataset. https://doi.org/10.25392/leicester.data.9896579.v2[Version 2] Getting StartedThis file describes a sorted and cleaned list of words from LScD (Leicester Scientific Dictionary), explains steps for sub-setting the LScD and basic statistics of words in the LSC (Leicester Scientific Corpus), to be found in [1, 2]. The LScDC (Leicester Scientific Dictionary-Core) is a list of words ordered by the number of documents containing the words, and is available in the CSV file published. There are 104,223 unique words (lemmas) in the LScDC. This dictionary is created to be used in future work on the quantification of the sense of research texts. The objective of sub-setting the LScD is to discard words which appear too rarely in the corpus. In text mining algorithms, usage of enormous number of text data brings the challenge to the performance and the accuracy of data mining applications. The performance and the accuracy of models are heavily depend on the type of words (such as stop words and content words) and the number of words in the corpus. Rare occurrence of words in a collection is not useful in discriminating texts in large corpora as rare words are likely to be non-informative signals (or noise) and redundant in the collection of texts. The selection of relevant words also holds out the possibility of more effective and faster operation of text mining algorithms.To build the LScDC, we decided the following process on LScD: removing words that appear in no more than 10 documents (
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Benchmarking is a crucial step in evaluating virtual screening methods for drug discovery. One major issue that arises among benchmarking data sets is a lack of a standardized format for representing the protein and ligand structures used to benchmark the virtual screening method. To address this, we introduce the Directory of Useful Benchmarking Sets (DUBS) framework, as a simple and flexible tool to rapidly create benchmarking sets using the protein databank. DUBS uses a simple input text based format along with the Lemon data mining framework to efficiently access and organize data to the protein databank and output commonly used inputs for virtual screening software. The simple input format used by DUBS allows users to define their own benchmarking data sets and access the corresponding information directly from the software package. Currently, it only takes DUBS less than 2 min to create a benchmark using this format. Since DUBS uses a simple python script, users can easily modify this to create more complex benchmarks. We hope that DUBS will be a useful community resource to provide a standardized representation for benchmarking data sets in virtual screening. The DUBS package is available on GitHub at https://github.com/chopralab/lemon/tree/master/dubs.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The "Wikipedia SQLite Portable DB" is a compact and efficient database derived from the Kensho Derived Wikimedia Dataset (KDWD). This dataset provides a condensed subset of raw Wikimedia data in a format optimized for natural language processing (NLP) research and applications.
I am not affiliated or partnered with the Kensho in any way, just really like the dataset for giving my agents to query easily.
Key Features:
Contains over 5 million rows of data from English Wikipedia and Wikidata Stored in a portable SQLite database format for easy integration and querying Includes a link-annotated corpus of English Wikipedia pages and a compact sample of the Wikidata knowledge base Ideal for NLP tasks, machine learning, data analysis, and research projects
The database consists of four main tables:
This dataset is derived from the Kensho Derived Wikimedia Dataset (KDWD), which is built from the English Wikipedia snapshot from December 1, 2019, and the Wikidata snapshot from December 2, 2019. The KDWD is a condensed subset of the raw Wikimedia data in a form that is helpful for NLP work, and it is released under the CC BY-SA 3.0 license. Credits: The "Wikipedia SQLite Portable DB" is derived from the Kensho Derived Wikimedia Dataset (KDWD), created by the Kensho R&D group. The KDWD is based on data from Wikipedia and Wikidata, which are crowd-sourced projects supported by the Wikimedia Foundation. We would like to acknowledge and thank the Kensho R&D group for their efforts in creating the KDWD and making it available for research and development purposes. By providing this portable SQLite database, we aim to make Wikipedia data more accessible and easier to use for researchers, data scientists, and developers working on NLP tasks, machine learning projects, and other data-driven applications. We hope that this dataset will contribute to the advancement of NLP research and the development of innovative applications utilizing Wikipedia data.
https://www.kaggle.com/datasets/kenshoresearch/kensho-derived-wikimedia-data/data
Tags: encyclopedia, wikipedia, sqlite, database, reference, knowledge-base, articles, information-retrieval, natural-language-processing, nlp, text-data, large-dataset, multi-table, data-science, machine-learning, research, data-analysis, data-mining, content-analysis, information-extraction, text-mining, text-classification, topic-modeling, language-modeling, question-answering, fact-checking, entity-recognition, named-entity-recognition, link-prediction, graph-analysis, network-analysis, knowledge-graph, ontology, semantic-web, structured-data, unstructured-data, data-integration, data-processing, data-cleaning, data-wrangling, data-visualization, exploratory-data-analysis, eda, corpus, document-collection, open-source, crowdsourced, collaborative, online-encyclopedia, web-data, hyperlinks, categories, page-views, page-links, embeddings
Usage with LIKE queries: ``` import aiosqlite import asyncio
class KenshoDatasetQuery: def init(self, db_file): self.db_file = db_file
async def _aenter_(self):
self.conn = await aiosqlite.connect(self.db_file)
return self
async def _aexit_(self, exc_type, exc_val, exc_tb):
await self.conn.close()
async def search_pages_by_title(self, title):
query = """
SELECT pages.page_id, pages.item_id, pages.title, pages.views,
items.labels AS item_labels, items.description AS item_description,
link_annotated_text.sections
FROM pages
JOIN items ON pages.item_id = items.id
JOIN link_annotated_text ON pages.page_id = link_annotated_text.page_id
WHERE pages.title LIKE ?
"""
async with self.conn.execute(query, (f"%{title}%",)) as cursor:
return await cursor.fetchall()
async def search_items_by_label_or_description(self, keyword):
query = """
SELECT id, labels, description
FROM items
WHERE labels LIKE ? OR description LIKE ?
"""
async with self.conn.execute(query, (f"%{keyword}%", f"%{keyword}%")) as cursor:
return await cursor.fetchall()
async def search_items_by_label(self, label):
query = """
SELECT id, labels, description
FROM items
WHERE labels LIKE ?
"""
async with self.conn.execute(query, (f"%{label}%",)) as cursor:
return await cursor.fetchall()
async def search_properties_by_label_or_desc...
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
The dataset has been collected in the frame of the Prac1 of the subject Tipology and Data Life Cycle of the Master's Degree in Data Science of the Universitat Oberta de Catalunya (UOC).
The dataset contains 25 variables and 52478 records corresponding to books on the GoodReads Best Books Ever list (the larges list on the site).
Original code used to retrieve the dataset can be found on github repository: github.com/scostap/goodreads_bbe_dataset
The data was retrieved in two sets, the first 30000 books and then the remainig 22478. Dates were not parsed and reformated on the second chunk so publishDate and firstPublishDate are representet in a mm/dd/yyyy format for the first 30000 records and Month Day Year for the rest.
Book cover images can be optionally downloaded from the url in the 'coverImg' field. Python code for doing so and an example can be found on the github repo.
The 25 fields of the dataset are:
| Attributes | Definition | Completeness |
| ------------- | ------------- | ------------- |
| bookId | Book Identifier as in goodreads.com | 100 |
| title | Book title | 100 |
| series | Series Name | 45 |
| author | Book's Author | 100 |
| rating | Global goodreads rating | 100 |
| description | Book's description | 97 |
| language | Book's language | 93 |
| isbn | Book's ISBN | 92 |
| genres | Book's genres | 91 |
| characters | Main characters | 26 |
| bookFormat | Type of binding | 97 |
| edition | Type of edition (ex. Anniversary Edition) | 9 |
| pages | Number of pages | 96 |
| publisher | Editorial | 93 |
| publishDate | publication date | 98 |
| firstPublishDate | Publication date of first edition | 59 |
| awards | List of awards | 20 |
| numRatings | Number of total ratings | 100 |
| ratingsByStars | Number of ratings by stars | 97 |
| likedPercent | Derived field, percent of ratings over 2 starts (as in GoodReads) | 99 |
| setting | Story setting | 22 |
| coverImg | URL to cover image | 99 |
| bbeScore | Score in Best Books Ever list | 100 |
| bbeVotes | Number of votes in Best Books Ever list | 100 |
| price | Book's price (extracted from Iberlibro) | 73 |
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
We release two datasets that are part of the the Semantic Web Challenge on Mining the Web of HTML-embedded Product Data is co-located with the 19th International Semantic Web Conference (https://iswc2020.semanticweb.org/, 2-6 Nov 2020 at Athens, Greece). The datasets belong to two shared tasks related to product data mining on the Web: (1) product matching (linking) and (2) product classification. This event is organised by The University of Sheffield, The University of Mannheim and Amazon, and is open to anyone. Systems successfully beating the baseline of the respective task, will be invited to write a paper describing their method and system and present the method as a poster (and potentially also a short talk) at the ISWC2020 conference. Winners of each task will be awarded 500 euro as prize (partly sponsored by Peak Indicators, https://www.peakindicators.com/).
The challenge organises two tasks, product matching and product categorisation.
i) Product Matching deals with identifying product offers on different websites that refer to the same real-world product (e.g., the same iPhone X model offered using different names/offer titles as well as different descriptions on various websites). A multi-million product offer corpus (16M) containing product offer clusters is released for the generation of training data. A validation set containing 1.1K offer pairs and a test set of 600 offer pairs will also be released. The goal of this task is to classify if the offer pairs in these datasets are match (i.e., referring to the same product) or non-match.
ii) Product classification deals with assigning predefined product category labels (which can be multiple levels) to product instances (e.g., iPhone X is a ‘SmartPhone’, and also ‘Electronics’). A training dataset containing 10K product offers, a validation set of 3K product offers and a test set of 3K product offers will be released. Each dataset contains product offers with their metadata (e.g., name, description, URL) and three classification labels each corresponding to a level in the GS1 Global Product Classification taxonomy. The goal is to classify these product offers into the pre-defined category labels.
All datasets are built based on structured data that was extracted from the Common Crawl (https://commoncrawl.org/) by the Web Data Commons project (http://webdatacommons.org/). Datasets can be found at: https://ir-ischool-uos.github.io/mwpd/
The challenge will also release utility code (in Python) for processing the above datasets and scoring the system outputs. In addition, the following language resources for product-related data mining tasks: A text corpus of 150 million product offer descriptions Word embeddings trained on the above corpus
For details of the challenge please visit https://ir-ischool-uos.github.io/mwpd/
Dr Ziqi Zhang (Information School, The University of Sheffield) Prof. Christian Bizer (Institute of Computer Science and Business Informatics, The Mannheim University) Dr Haiping Lu (Department of Computer Science, The University of Sheffield) Dr Jun Ma (Amazon Inc. Seattle, US) Prof. Paul Clough (Information School, The University of Sheffield & Peak Indicators) Ms Anna Primpeli (Institute of Computer Science and Business Informatics, The Mannheim University) Mr Ralph Peeters (Institute of Computer Science and Business Informatics, The Mannheim University) Mr. Abdulkareem Alqusair (Information School, The University of Sheffield)
To contact the organising committee please use the Google discussion group https://groups.google.com/forum/#!forum/mwpd2020
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
📊 Calling all data aficionados! 🚀 Just stumbled upon some juicy data that might tickle your fancy! If you find it helpful, a little upvote would be most appreciated! 🙌 #DataIsKing #KaggleCommunity 📈
Data Collection:
Activity Categories:
Data Description:
Data Transformation:
Availability:
Dataset Name: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset
Subjects and Tasks:
Data Collection Setup:
Sensor Characteristics:
Device Specifications:
| Information | Details |
|---|---|
| Number of subjects | 51 |
| Number of activities | 18 |
| Minutes collected per activity | 3 |
| Sensor polling rate | 20 Hz |
| Smartphone used | Google Nexus 5/5X or Samsung Galaxy S5 |
| Smartwatch used | LG G Watch |
| Number of raw measurements | 15,630,426 |
| Activity | Activity Code |
|---|---|
| Walking | A |
| Jogging | B |
| Stairs | C |
| Sitting | D |
| Standing | E |
| Typing | F |
| Brushing Teeth | G |
| Eating Soup | H |
| Eating Chips | I |
| Eating Pasta | J |
| Drinking from Cup | K |
| Eating Sandwich | L |
| Kicking (Soccer Ball) | M |
| Playing Catch w/Tennis Ball | O |
| Dribbling (Basketball) | P |
| Writing | Q |
| Clapping | R |
| Folding Clothes | S |
Non-hand-oriented activities:
Hand-oriented activities (General):
Hand-oriented activities (eating):
| Field Name | Description |
|---|---|
| Subject-id | Type: Symbolic numeric identifier. Uniquely identifies the subject. Range: 1600-1650. |
| Activity code | Type: Symbolic single letter. Range: A-S (no "N" value) |
| Time... |
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We identified clusters of multiple dimensions of poverty according to the capability approach theory by applying data mining approaches to the Cuatro Santos Health and Demographic Surveillance database, Nicaragua. Four municipalities in northern Nicaragua constitute the Cuatro Santos area, with 25,893 inhabitants in 5,966 households (2014). A local process analyzing poverty-related problems, prioritizing suggested actions, was initiated in 1997 and generated a community action plan 2002–2015. Interventions were school breakfasts, environmental protection, water and sanitation, preventive healthcare, home gardening, microcredit, technical training, university education stipends, and use of the Internet. In 2004, a survey of basic health and demographic information was performed in the whole population, followed by surveillance updates in 2007, 2009, and 2014 linking households and individuals. Information included the house material (floor, walls) and services (water, sanitation, electricity) as well as demographic data (birth, deaths, migration). Data on participation in interventions, food security, household assets, and women's self-rated health were collected in 2014. A K-means algorithm was used to cluster the household data (56 variables) in six clusters. The poverty ranking of household clusters using the unsatisfied basic needs index variables changed when including variables describing basic capabilities. The households in the fairly rich cluster with assets such as motorbikes and computers were described as modern. Those in the fairly poor cluster, having different degrees of food insecurity, were labeled vulnerable. Poor and poorest clusters of households were traditional, e.g., in using horses for transport. Results displayed a society transforming from traditional to modern, where the forerunners were not the richest but educated, had more working members in household, had fewer children, and were food secure. Those lagging were the poor, traditional, and food insecure. The approach may be useful for an improved understanding of poverty and to direct local policy and interventions.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For each connectome, we list its number of non-isolated nodes, N, its number of directed edges, E, its density ρ = E/[N(N − 1)], the features of the most compressing model for the connectome, its compressibility ΔL*, the difference in codelengths between the best models with and without motifs, ΔLmotifs, and the reference to the original publication of the dataset. The absolute compressibility ΔL* measures the number of bits that the shortest-codelength model compresses compared to a simple Erdős-Rényi model (Eq (15)). The difference in compression with and without motifs, ΔLmotifs, quantifies the significance of the inferred motif sets as the number of bits gained by the motif-based encoding compared to the optimal motif-free, dyadic model. For datasets where no motifs are found, this column is marked as “N/A”. All datasets are available at https://gitlab.pasteur.fr/sincobe/brain-motifs/-/tree/master/data.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The LScDC (Leicester Scientific Dictionary-Core Dictionary)April 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk/suzenneslihan@hotmail.com)Supervised by Prof Alexander Gorban and Dr Evgeny Mirkes[Version 3] The third version of LScDC (Leicester Scientific Dictionary-Core) is formed using the updated LScD (Leicester Scientific Dictionary) - Version 3*. All steps applied to build the new version of core dictionary are the same as in Version 2** and can be found in description of Version 2 below. We did not repeat the explanation. The files provided with this description are also same as described as for LScDC Version 2. The numbers of words in the 3rd versions of LScD and LScDC are summarized below. # of wordsLScD (v3) 972,060LScDC (v3) 103,998 * Suzen, Neslihan (2019): LScD (Leicester Scientific Dictionary). figshare. Dataset. https://doi.org/10.25392/leicester.data.9746900.v3 ** Suzen, Neslihan (2019): LScDC (Leicester Scientific Dictionary-Core). figshare. Dataset. https://doi.org/10.25392/leicester.data.9896579.v2[Version 2] Getting StartedThis file describes a sorted and cleaned list of words from LScD (Leicester Scientific Dictionary), explains steps for sub-setting the LScD and basic statistics of words in the LSC (Leicester Scientific Corpus), to be found in [1, 2]. The LScDC (Leicester Scientific Dictionary-Core) is a list of words ordered by the number of documents containing the words, and is available in the CSV file published. There are 104,223 unique words (lemmas) in the LScDC. This dictionary is created to be used in future work on the quantification of the sense of research texts. The objective of sub-setting the LScD is to discard words which appear too rarely in the corpus. In text mining algorithms, usage of enormous number of text data brings the challenge to the performance and the accuracy of data mining applications. The performance and the accuracy of models are heavily depend on the type of words (such as stop words and content words) and the number of words in the corpus. Rare occurrence of words in a collection is not useful in discriminating texts in large corpora as rare words are likely to be non-informative signals (or noise) and redundant in the collection of texts. The selection of relevant words also holds out the possibility of more effective and faster operation of text mining algorithms.To build the LScDC, we decided the following process on LScD: removing words that appear in no more than 10 documents (