100+ datasets found
  1. d

    Data Mining in Systems Health Management

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Data Mining in Systems Health Management [Dataset]. https://catalog.data.gov/dataset/data-mining-in-systems-health-management
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    This chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.

  2. G

    Data Mining Tools Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Data Mining Tools Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/data-mining-tools-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Aug 4, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Mining Tools Market Outlook




    According to our latest research, the global Data Mining Tools market size reached USD 1.93 billion in 2024, reflecting robust industry momentum. The market is expected to grow at a CAGR of 12.7% from 2025 to 2033, reaching a projected value of USD 5.69 billion by 2033. This growth is primarily driven by the increasing adoption of advanced analytics across diverse industries, rapid digital transformation, and the necessity for actionable insights from massive data volumes.




    One of the pivotal growth factors propelling the Data Mining Tools market is the exponential rise in data generation, particularly through digital channels, IoT devices, and enterprise applications. Organizations across sectors are leveraging data mining tools to extract meaningful patterns, trends, and correlations from structured and unstructured data. The need for improved decision-making, operational efficiency, and competitive advantage has made data mining an essential component of modern business strategies. Furthermore, advancements in artificial intelligence and machine learning are enhancing the capabilities of these tools, enabling predictive analytics, anomaly detection, and automation of complex analytical tasks, which further fuels market expansion.




    Another significant driver is the growing demand for customer-centric solutions in industries such as retail, BFSI, and healthcare. Data mining tools are increasingly being used for customer relationship management, targeted marketing, fraud detection, and risk management. By analyzing customer behavior and preferences, organizations can personalize their offerings, optimize marketing campaigns, and mitigate risks. The integration of data mining tools with cloud platforms and big data technologies has also simplified deployment and scalability, making these solutions accessible to small and medium-sized enterprises (SMEs) as well as large organizations. This democratization of advanced analytics is creating new growth avenues for vendors and service providers.




    The regulatory landscape and the increasing emphasis on data privacy and security are also shaping the development and adoption of Data Mining Tools. Compliance with frameworks such as GDPR, HIPAA, and CCPA necessitates robust data governance and transparent analytics processes. Vendors are responding by incorporating features like data masking, encryption, and audit trails into their solutions, thereby enhancing trust and adoption among regulated industries. Additionally, the emergence of industry-specific data mining applications, such as fraud detection in BFSI and predictive diagnostics in healthcare, is expanding the addressable market and fostering innovation.




    From a regional perspective, North America currently dominates the Data Mining Tools market owing to the early adoption of advanced analytics, strong presence of leading technology vendors, and high investments in digital transformation. However, the Asia Pacific region is emerging as a lucrative market, driven by rapid industrialization, expansion of IT infrastructure, and growing awareness of data-driven decision-making in countries like China, India, and Japan. Europe, with its focus on data privacy and digital innovation, also represents a significant market share, while Latin America and the Middle East & Africa are witnessing steady growth as organizations in these regions modernize their operations and adopt cloud-based analytics solutions.





    Component Analysis




    The Component segment of the Data Mining Tools market is bifurcated into Software and Services. Software remains the dominant segment, accounting for the majority of the market share in 2024. This dominance is attributed to the continuous evolution of data mining algorithms, the proliferation of user-friendly graphical interfaces, and the integration of advanced analytics capabilities such as machine learning, artificial intelligence, and natural language pro

  3. Data Mining HW 3 Task 1 dataset

    • kaggle.com
    zip
    Updated Nov 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nikunj Phutela (2023). Data Mining HW 3 Task 1 dataset [Dataset]. https://www.kaggle.com/datasets/nikunjphutela/data-mining-hw-3-task-1-dataset
    Explore at:
    zip(2276319 bytes)Available download formats
    Dataset updated
    Nov 17, 2023
    Authors
    Nikunj Phutela
    Description

    Dataset

    This dataset was created by Nikunj Phutela

    Contents

  4. Multi-objective optimization based privacy preserving distributed data...

    • data.nasa.gov
    Updated Mar 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Multi-objective optimization based privacy preserving distributed data mining in Peer-to-Peer networks - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/multi-objective-optimization-based-privacy-preserving-distributed-data-mining-in-peer-to-p
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    This paper proposes a scalable, local privacy preserving algorithm for distributed Peer-to-Peer (P2P) data aggregation useful for many advanced data mining/analysis tasks such as average/sum computation, decision tree induction, feature selection, and more. Unlike most multi-party privacy-preserving data mining algorithms, this approach works in an asynchronous manner through local interactions and it is highly scalable. It particularly deals with the distributed computation of the sum of a set of numbers stored at different peers in a P2P network in the context of a P2P web mining application. The proposed optimization based privacy-preserving technique for computing the sum allows different peers to specify different privacy requirements without having to adhere to a global set of parameters for the chosen privacy model. Since distributed sum computation is a frequently used primitive, the proposed approach is likely to have significant impact on many data mining tasks such as multi-party privacy-preserving clustering, frequent itemset mining, and statistical aggregate computation.

  5. Video-to-Model Data Set

    • figshare.com
    • commons.datacite.org
    xml
    Updated Mar 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sönke Knoch; Shreeraman Ponpathirkoottam; Tim Schwartz (2020). Video-to-Model Data Set [Dataset]. http://doi.org/10.6084/m9.figshare.12026850.v1
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Mar 24, 2020
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Sönke Knoch; Shreeraman Ponpathirkoottam; Tim Schwartz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data set belongs to the paper "Video-to-Model: Unsupervised Trace Extraction from Videos for Process Discovery and Conformance Checking in Manual Assembly", submitted on March 24, 2020, to the 18th International Conference on Business Process Management (BPM).Abstract: Manual activities are often hidden deep down in discrete manufacturing processes. For the elicitation and optimization of process behavior, complete information about the execution of Manual activities are required. Thus, an approach is presented on how execution level information can be extracted from videos in manual assembly. The goal is the generation of a log that can be used in state-of-the-art process mining tools. The test bed for the system was lightweight and scalable consisting of an assembly workstation equipped with a single RGB camera recording only the hand movements of the worker from top. A neural network based real-time object classifier was trained to detect the worker’s hands. The hand detector delivers the input for an algorithm, which generates trajectories reflecting the movement paths of the hands. Those trajectories are automatically assigned to work steps using the position of material boxes on the assembly shelf as reference points and hierarchical clustering of similar behaviors with dynamic time warping. The system has been evaluated in a task-based study with ten participants in a laboratory, but under realistic conditions. The generated logs have been loaded into the process mining toolkit ProM to discover the underlying process model and to detect deviations from both, instructions and ground truth, using conformance checking. The results show that process mining delivers insights about the assembly process and the system’s precision.The data set contains the generated and the annotated logs based on the video material gathered during the user study. In addition, the petri nets from the process discovery and conformance checking conducted with ProM (http://www.promtools.org) and the reference nets modeled with Yasper (http://www.yasper.org/) are provided.

  6. d

    Data from: Mining Distance-Based Outliers in Near Linear Time

    • catalog.data.gov
    • datasets.ai
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Mining Distance-Based Outliers in Near Linear Time [Dataset]. https://catalog.data.gov/dataset/mining-distance-based-outliers-in-near-linear-time
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Dashlink
    Description

    Full title: Mining Distance-Based Outliers in Near Linear Time with Randomization and a Simple Pruning Rule Abstract: Defining outliers by their distance to neighboring examples is a popular approach to finding unusual examples in a data set. Recently, much work has been conducted with the goal of finding fast algorithms for this task. We show that a simple nested loop algorithm that in the worst case is quadratic can give near linear time performance when the data is in random order and a simple pruning rule is used. We test our algorithm on real high-dimensional data sets with millions of examples and show that the near linear scaling holds over several orders of magnitude. Our average case analysis suggests that much of the efficiency is because the time to process non-outliers, which are the majority of examples, does not depend on the size of the data set.

  7. Pump it Up: Data Mining the Water Table

    • kaggle.com
    zip
    Updated Feb 8, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dylan (2018). Pump it Up: Data Mining the Water Table [Dataset]. https://www.kaggle.com/dylanli/pump-it-up-data-mining-the-water-table
    Explore at:
    zip(5482324 bytes)Available download formats
    Dataset updated
    Feb 8, 2018
    Authors
    Dylan
    Description
  8. Data Mining in Systems Health Management - Dataset - NASA Open Data Portal

    • data.nasa.gov
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Data Mining in Systems Health Management - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/data-mining-in-systems-health-management
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    This chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.

  9. R

    Data Mining Kel 11 Dataset

    • universe.roboflow.com
    zip
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Mining (2025). Data Mining Kel 11 Dataset [Dataset]. https://universe.roboflow.com/data-mining-mtwls/data-mining-kel-11-zp4xe
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 29, 2025
    Dataset authored and provided by
    Data Mining
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Beras
    Description

    Data Mining Kel 11

    ## Overview
    
    Data Mining Kel 11 is a dataset for classification tasks - it contains Beras annotations for 59,785 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  10. Prediction of Online Orders

    • kaggle.com
    zip
    Updated May 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oscar Aguilar (2023). Prediction of Online Orders [Dataset]. https://www.kaggle.com/datasets/oscarm524/prediction-of-orders/versions/3
    Explore at:
    zip(6680913 bytes)Available download formats
    Dataset updated
    May 23, 2023
    Authors
    Oscar Aguilar
    Description

    The visit of an online shop by a possible customer is also called a session. During a session the visitor clicks on products in order to see the corresponding detail page. Furthermore, he possibly will add or remove products to/from his shopping basket. At the end of a session it is possible that one or several products from the shopping basket will be ordered. The activities of the user are also called transactions. The goal of the analysis is to predict whether the visitor will place an order or not on the basis of the transaction data collected during the session.

    Tasks

    In the first task historical shop data are given consisting of the session activities inclusive of the associated information whether an order was placed or not. These data can be used in order to subsequently make order forecasts for other session activities in the same shop. Of course, the real outcome of the sessions for this set is not known. Thus, the first task can be understood as a classical data mining problem.

    The second task deals with the online scenario. In this context the participants are to implement an agent learning on the basis of transactions. That means that the agent successively receives the individual transactions and has to make a forecast for each of them with respect to the outcome of the shopping cart transaction. This task maps the practice scenario in the best possible way in the case that a transaction-based forecast is required and a corresponding algorithm should learn in an adaptive manner.

    The Data

    For the individual tasks anonymised real shop data are provided in the form of structured text files consisting of individual data sets. The data sets represent in each case transactions in the shop and may contain redundant information. For the data, in particular the following applies:

    1. Each data set is in an individual line that is closed by “LF”(“line feed”, 0xA), “CR”(“carriage return”, 0xD), or “CR”and “LF”(“carriage return”and “line feed”, 0xD and 0xA).
    2. The first line is structured analog to the data sets but contains the names of the respective columns (data arrays).
    3. The header and each data set contain several arrays separated by the symbol “|”.
    4. There is no escape character, and no quota system is used.
    5. ASCII is used as character set.
    6. There may be missing values. These are marked by the symbol “?”.

    In concrete terms, only the array names of the attached document “*features.pdf*” in their respective sequence will be used as column headings. The corresponding value ranges are listed there, too.

    The training file for task 1 is “*transact_train.txt*“) contains all data arrays of the document, whereas the corresponding classification file (“*transact_class.txt*”) of course does not contain the target attribute “*order*”.

    In task 2 data in the form of a string array are transferred to the implementations of the participants by means of a method. The individual fields of the array contain the same data arrays that are listed in “*features.pdf*”–also without the target attribute “*order*”–and exactly in the sequence used there.

    Acknowledgement

    This dataset is publicly available in the data-mining-cup-website.

  11. Z

    Data Analysis for the Systematic Literature Review of DL4SE

    • data.niaid.nih.gov
    • data-staging.niaid.nih.gov
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cody Watson; Nathan Cooper; David Nader; Kevin Moran; Denys Poshyvanyk (2024). Data Analysis for the Systematic Literature Review of DL4SE [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4768586
    Explore at:
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    College of William and Mary
    Washington and Lee University
    Authors
    Cody Watson; Nathan Cooper; David Nader; Kevin Moran; Denys Poshyvanyk
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data Analysis is the process that supports decision-making and informs arguments in empirical studies. Descriptive statistics, Exploratory Data Analysis (EDA), and Confirmatory Data Analysis (CDA) are the approaches that compose Data Analysis (Xia & Gong; 2014). An Exploratory Data Analysis (EDA) comprises a set of statistical and data mining procedures to describe data. We ran EDA to provide statistical facts and inform conclusions. The mined facts allow attaining arguments that would influence the Systematic Literature Review of DL4SE.

    The Systematic Literature Review of DL4SE requires formal statistical modeling to refine the answers for the proposed research questions and formulate new hypotheses to be addressed in the future. Hence, we introduce DL4SE-DA, a set of statistical processes and data mining pipelines that uncover hidden relationships among Deep Learning reported literature in Software Engineering. Such hidden relationships are collected and analyzed to illustrate the state-of-the-art of DL techniques employed in the software engineering context.

    Our DL4SE-DA is a simplified version of the classical Knowledge Discovery in Databases, or KDD (Fayyad, et al; 1996). The KDD process extracts knowledge from a DL4SE structured database. This structured database was the product of multiple iterations of data gathering and collection from the inspected literature. The KDD involves five stages:

    Selection. This stage was led by the taxonomy process explained in section xx of the paper. After collecting all the papers and creating the taxonomies, we organize the data into 35 features or attributes that you find in the repository. In fact, we manually engineered features from the DL4SE papers. Some of the features are venue, year published, type of paper, metrics, data-scale, type of tuning, learning algorithm, SE data, and so on.

    Preprocessing. The preprocessing applied was transforming the features into the correct type (nominal), removing outliers (papers that do not belong to the DL4SE), and re-inspecting the papers to extract missing information produced by the normalization process. For instance, we normalize the feature “metrics” into “MRR”, “ROC or AUC”, “BLEU Score”, “Accuracy”, “Precision”, “Recall”, “F1 Measure”, and “Other Metrics”. “Other Metrics” refers to unconventional metrics found during the extraction. Similarly, the same normalization was applied to other features like “SE Data” and “Reproducibility Types”. This separation into more detailed classes contributes to a better understanding and classification of the paper by the data mining tasks or methods.

    Transformation. In this stage, we omitted to use any data transformation method except for the clustering analysis. We performed a Principal Component Analysis to reduce 35 features into 2 components for visualization purposes. Furthermore, PCA also allowed us to identify the number of clusters that exhibit the maximum reduction in variance. In other words, it helped us to identify the number of clusters to be used when tuning the explainable models.

    Data Mining. In this stage, we used three distinct data mining tasks: Correlation Analysis, Association Rule Learning, and Clustering. We decided that the goal of the KDD process should be oriented to uncover hidden relationships on the extracted features (Correlations and Association Rules) and to categorize the DL4SE papers for a better segmentation of the state-of-the-art (Clustering). A clear explanation is provided in the subsection “Data Mining Tasks for the SLR od DL4SE”. 5.Interpretation/Evaluation. We used the Knowledge Discover to automatically find patterns in our papers that resemble “actionable knowledge”. This actionable knowledge was generated by conducting a reasoning process on the data mining outcomes. This reasoning process produces an argument support analysis (see this link).

    We used RapidMiner as our software tool to conduct the data analysis. The procedures and pipelines were published in our repository.

    Overview of the most meaningful Association Rules. Rectangles are both Premises and Conclusions. An arrow connecting a Premise with a Conclusion implies that given some premise, the conclusion is associated. E.g., Given that an author used Supervised Learning, we can conclude that their approach is irreproducible with a certain Support and Confidence.

    Support = Number of occurrences this statement is true divided by the amount of statements Confidence = The support of the statement divided by the number of occurrences of the premise

  12. Modified Big SalesData

    • kaggle.com
    zip
    Updated Feb 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shubhra Rana (2025). Modified Big SalesData [Dataset]. https://www.kaggle.com/datasets/shubhrarana/modified-big-salesdata
    Explore at:
    zip(2360624 bytes)Available download formats
    Dataset updated
    Feb 26, 2025
    Authors
    Shubhra Rana
    License

    http://www.gnu.org/licenses/fdl-1.3.htmlhttp://www.gnu.org/licenses/fdl-1.3.html

    Description

    Modified and Cleaned data set from https://www.kaggle.com/datasets/pigment/big-sales-data.

    This can be used for EDA, Data Analytics, Data Mining and Visualizations.

    Will be uploading two more versions shortly.

    1. Denormalized Version of the data to optimize the storage
    2. Consolidated Data from all months together to perform data mining tasks like ARM.
  13. m

    Educational Attainment in North Carolina Public Schools: Use of statistical...

    • data.mendeley.com
    Updated Nov 14, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scott Herford (2018). Educational Attainment in North Carolina Public Schools: Use of statistical modeling, data mining techniques, and machine learning algorithms to explore 2014-2017 North Carolina Public School datasets. [Dataset]. http://doi.org/10.17632/6cm9wyd5g5.1
    Explore at:
    Dataset updated
    Nov 14, 2018
    Authors
    Scott Herford
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The purpose of data mining analysis is always to find patterns of the data using certain kind of techiques such as classification or regression. It is not always feasible to apply classification algorithms directly to dataset. Before doing any work on the data, the data has to be pre-processed and this process normally involves feature selection and dimensionality reduction. We tried to use clustering as a way to reduce the dimension of the data and create new features. Based on our project, after using clustering prior to classification, the performance has not improved much. The reason why it has not improved could be the features we selected to perform clustering are not well suited for it. Because of the nature of the data, classification tasks are going to provide more information to work with in terms of improving knowledge and overall performance metrics. From the dimensionality reduction perspective: It is different from Principle Component Analysis which guarantees finding the best linear transformation that reduces the number of dimensions with a minimum loss of information. Using clusters as a technique of reducing the data dimension will lose a lot of information since clustering techniques are based a metric of 'distance'. At high dimensions euclidean distance loses pretty much all meaning. Therefore using clustering as a "Reducing" dimensionality by mapping data points to cluster numbers is not always good since you may lose almost all the information. From the creating new features perspective: Clustering analysis creates labels based on the patterns of the data, it brings uncertainties into the data. By using clustering prior to classification, the decision on the number of clusters will highly affect the performance of the clustering, then affect the performance of classification. If the part of features we use clustering techniques on is very suited for it, it might increase the overall performance on classification. For example, if the features we use k-means on are numerical and the dimension is small, the overall classification performance may be better. We did not lock in the clustering outputs using a random_state in the effort to see if they were stable. Our assumption was that if the results vary highly from run to run which they definitely did, maybe the data just does not cluster well with the methods selected at all. Basically, the ramification we saw was that our results are not much better than random when applying clustering to the data preprocessing. Finally, it is important to ensure a feedback loop is in place to continuously collect the same data in the same format from which the models were created. This feedback loop can be used to measure the model real world effectiveness and also to continue to revise the models from time to time as things change.

  14. Product data mining: entity classification&linking

    • kaggle.com
    zip
    Updated Jul 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    zzhang (2020). Product data mining: entity classification&linking [Dataset]. https://www.kaggle.com/ziqizhang/product-data-miningentity-classificationlinking
    Explore at:
    zip(10933 bytes)Available download formats
    Dataset updated
    Jul 13, 2020
    Authors
    zzhang
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    IMPORTANT: Round 1 results are now released, check our website for the leaderboard. We now open Round 2 submissions!

    1. Overview

    We release two datasets that are part of the the Semantic Web Challenge on Mining the Web of HTML-embedded Product Data is co-located with the 19th International Semantic Web Conference (https://iswc2020.semanticweb.org/, 2-6 Nov 2020 at Athens, Greece). The datasets belong to two shared tasks related to product data mining on the Web: (1) product matching (linking) and (2) product classification. This event is organised by The University of Sheffield, The University of Mannheim and Amazon, and is open to anyone. Systems successfully beating the baseline of the respective task, will be invited to write a paper describing their method and system and present the method as a poster (and potentially also a short talk) at the ISWC2020 conference. Winners of each task will be awarded 500 euro as prize (partly sponsored by Peak Indicators, https://www.peakindicators.com/).

    2. Task and dataset brief

    The challenge organises two tasks, product matching and product categorisation.

    i) Product Matching deals with identifying product offers on different websites that refer to the same real-world product (e.g., the same iPhone X model offered using different names/offer titles as well as different descriptions on various websites). A multi-million product offer corpus (16M) containing product offer clusters is released for the generation of training data. A validation set containing 1.1K offer pairs and a test set of 600 offer pairs will also be released. The goal of this task is to classify if the offer pairs in these datasets are match (i.e., referring to the same product) or non-match.

    ii) Product classification deals with assigning predefined product category labels (which can be multiple levels) to product instances (e.g., iPhone X is a ‘SmartPhone’, and also ‘Electronics’). A training dataset containing 10K product offers, a validation set of 3K product offers and a test set of 3K product offers will be released. Each dataset contains product offers with their metadata (e.g., name, description, URL) and three classification labels each corresponding to a level in the GS1 Global Product Classification taxonomy. The goal is to classify these product offers into the pre-defined category labels.

    All datasets are built based on structured data that was extracted from the Common Crawl (https://commoncrawl.org/) by the Web Data Commons project (http://webdatacommons.org/). Datasets can be found at: https://ir-ischool-uos.github.io/mwpd/

    3. Resources and tools

    The challenge will also release utility code (in Python) for processing the above datasets and scoring the system outputs. In addition, the following language resources for product-related data mining tasks: A text corpus of 150 million product offer descriptions Word embeddings trained on the above corpus

    4. Challenge website

    For details of the challenge please visit https://ir-ischool-uos.github.io/mwpd/

    5. Organizing committee

    Dr Ziqi Zhang (Information School, The University of Sheffield) Prof. Christian Bizer (Institute of Computer Science and Business Informatics, The Mannheim University) Dr Haiping Lu (Department of Computer Science, The University of Sheffield) Dr Jun Ma (Amazon Inc. Seattle, US) Prof. Paul Clough (Information School, The University of Sheffield & Peak Indicators) Ms Anna Primpeli (Institute of Computer Science and Business Informatics, The Mannheim University) Mr Ralph Peeters (Institute of Computer Science and Business Informatics, The Mannheim University) Mr. Abdulkareem Alqusair (Information School, The University of Sheffield)

    6. Contact

    To contact the organising committee please use the Google discussion group https://groups.google.com/forum/#!forum/mwpd2020

  15. T

    Task Mining Tool Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Task Mining Tool Report [Dataset]. https://www.marketreportanalytics.com/reports/task-mining-tool-75890
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Apr 10, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Task Mining Tool market is experiencing robust growth, driven by the increasing need for process optimization and automation across diverse sectors. The market, currently valued at approximately $2 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 25% from 2025 to 2033, reaching an estimated $10 billion by 2033. This significant expansion is fueled by several key factors. Firstly, the rising adoption of digital transformation initiatives across industries like manufacturing, retail, and financial services is creating a surge in demand for tools that can efficiently analyze and improve complex business processes. Secondly, the escalating costs associated with inefficient processes are prompting organizations to seek cost-effective solutions, making task mining a compelling investment. Thirdly, advancements in artificial intelligence (AI) and machine learning (ML) are enhancing the capabilities of task mining tools, improving accuracy and expanding their applications. Finally, the growing availability of cloud-based solutions is further contributing to market expansion by offering flexible deployment options and reducing upfront infrastructure investments. However, certain challenges exist. The complexity of implementing and integrating task mining tools within existing IT infrastructures can present a barrier to adoption, particularly for smaller organizations with limited resources. Furthermore, concerns regarding data privacy and security need to be addressed to ensure widespread acceptance and avoid hindering market growth. Despite these restraints, the long-term outlook for the task mining tool market remains highly positive, with continued technological advancements and a growing awareness of its benefits expected to drive further expansion across all segments, including cloud-based and on-premises solutions, and across all major geographic regions. The strong presence of established players like UiPath and Celonis, coupled with the emergence of innovative startups, indicates a dynamic and competitive market landscape that will further stimulate innovation and adoption.

  16. f

    Sepsis Cases - Event Log

    • figshare.com
    • data.4tu.nl
    txt
    Updated Jun 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Felix Mannhardt (2023). Sepsis Cases - Event Log [Dataset]. http://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 7, 2023
    Dataset provided by
    4TU.ResearchData
    Authors
    Felix Mannhardt
    License

    https://doi.org/10.4121/resource:terms_of_usehttps://doi.org/10.4121/resource:terms_of_use

    Description

    This real-life event log contains events of sepsis cases from a hospital. Sepsis is a life threatening condition typically caused by an infection. One case represents the pathway through the hospital. The events were recorded by the ERP (Enterprise Resource Planning) system of the hospital. There are about 1000 cases with in total 15,000 events that were recorded for 16 different activities. Moreover, 39 data attributes are recorded, e.g., the group responsible for the activity, the results of tests and information from checklists. Events and attribute values have been anonymized. The time stamps of events have been randomized, but the time between events within a trace has not been altered.

  17. d

    Data from: PADMINI: A PEER-TO-PEER DISTRIBUTED ASTRONOMY DATA MINING SYSTEM...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). PADMINI: A PEER-TO-PEER DISTRIBUTED ASTRONOMY DATA MINING SYSTEM AND A CASE STUDY [Dataset]. https://catalog.data.gov/dataset/padmini-a-peer-to-peer-distributed-astronomy-data-mining-system-and-a-case-study
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Dashlink
    Description

    PADMINI: A PEER-TO-PEER DISTRIBUTED ASTRONOMY DATA MINING SYSTEM AND A CASE STUDY TUSHAR MAHULE, KIRK BORNE, SANDIPAN DEY, SUGANDHA ARORA, AND HILLOL KARGUPTA** Abstract. Peer-to-Peer (P2P) networks are appealing for astronomy data mining from virtual observatories because of the large volume of the data, compute-intensive tasks, potentially large number of users, and distributed nature of the data analysis process. This paper offers a brief overview of PADMINI—a Peer-to-Peer Astronomy Data MINIng system. It also presents a case study on PADMINI for distributed outlier detection using astronomy data. PADMINI is a webbased system powered by Google Sky and distributed data mining algorithms that run on a collection of computing nodes. This paper offers a case study of the PADMINI evaluating the architecture and the performance of the overall system. Detailed experimental results are presented in order to document the utility and scalability of the system.

  18. R

    Data Mining Dataset

    • universe.roboflow.com
    zip
    Updated Aug 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ilham project (2023). Data Mining Dataset [Dataset]. https://universe.roboflow.com/ilham-project/data-mining-n52lu/model/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 4, 2023
    Dataset authored and provided by
    ilham project
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Variables measured
    Uangrupiah Bounding Boxes
    Description

    Data Mining

    ## Overview
    
    Data Mining is a dataset for object detection tasks - it contains Uangrupiah annotations for 692 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [Public Domain license](https://creativecommons.org/licenses/Public Domain).
    
  19. f

    Credit Requirement Event Logs

    • figshare.com
    xml
    Updated Jun 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Almir Djedović (2023). Credit Requirement Event Logs [Dataset]. http://doi.org/10.4121/uuid:453e8ad1-4df0-4511-a916-93f46a37a1b5
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Jun 11, 2023
    Dataset provided by
    4TU.ResearchData
    Authors
    Almir Djedović
    License

    https://doi.org/10.4121/resource:terms_of_usehttps://doi.org/10.4121/resource:terms_of_use

    Description

    This dataset contains information about a credit requirement process in a bank. It contains data about events, time execution etc.

  20. R

    Data Mining Test Dataset

    • universe.roboflow.com
    zip
    Updated Oct 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ons (2025). Data Mining Test Dataset [Dataset]. https://universe.roboflow.com/ons-eykpy/data-mining-test-fjlw4/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 20, 2025
    Dataset authored and provided by
    ons
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Cars Damage Cars Bounding Boxes
    Description

    Data Mining Test

    ## Overview
    
    Data Mining Test is a dataset for object detection tasks - it contains Cars Damage Cars annotations for 382 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dashlink (2025). Data Mining in Systems Health Management [Dataset]. https://catalog.data.gov/dataset/data-mining-in-systems-health-management

Data Mining in Systems Health Management

Explore at:
12 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Apr 10, 2025
Dataset provided by
Dashlink
Description

This chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.

Search
Clear search
Close search
Google apps
Main menu