100+ datasets found
  1. Designing a more efficient, effective and safe Medical Emergency Team (MET)...

    • plos.figshare.com
    pdf
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christoph Bergmeir; Irma Bilgrami; Christopher Bain; Geoffrey I. Webb; Judit Orosz; David Pilcher (2023). Designing a more efficient, effective and safe Medical Emergency Team (MET) service using data analysis [Dataset]. http://doi.org/10.1371/journal.pone.0188688
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Christoph Bergmeir; Irma Bilgrami; Christopher Bain; Geoffrey I. Webb; Judit Orosz; David Pilcher
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionHospitals have seen a rise in Medical Emergency Team (MET) reviews. We hypothesised that the commonest MET calls result in similar treatments. Our aim was to design a pre-emptive management algorithm that allowed direct institution of treatment to patients without having to wait for attendance of the MET team and to model its potential impact on MET call incidence and patient outcomes.MethodsData was extracted for all MET calls from the hospital database. Association rule data mining techniques were used to identify the most common combinations of MET call causes, outcomes and therapies.ResultsThere were 13,656 MET calls during the 34-month study period in 7936 patients. The most common MET call was for hypotension [31%, (2459/7936)]. These MET calls were strongly associated with the immediate administration of intra-venous fluid (70% [1714/2459] v 13% [739/5477] p

  2. d

    Data Mining in Systems Health Management

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Data Mining in Systems Health Management [Dataset]. https://catalog.data.gov/dataset/data-mining-in-systems-health-management
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    This chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.

  3. m

    Educational Attainment in North Carolina Public Schools: Use of statistical...

    • data.mendeley.com
    Updated Nov 14, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scott Herford (2018). Educational Attainment in North Carolina Public Schools: Use of statistical modeling, data mining techniques, and machine learning algorithms to explore 2014-2017 North Carolina Public School datasets. [Dataset]. http://doi.org/10.17632/6cm9wyd5g5.1
    Explore at:
    Dataset updated
    Nov 14, 2018
    Authors
    Scott Herford
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The purpose of data mining analysis is always to find patterns of the data using certain kind of techiques such as classification or regression. It is not always feasible to apply classification algorithms directly to dataset. Before doing any work on the data, the data has to be pre-processed and this process normally involves feature selection and dimensionality reduction. We tried to use clustering as a way to reduce the dimension of the data and create new features. Based on our project, after using clustering prior to classification, the performance has not improved much. The reason why it has not improved could be the features we selected to perform clustering are not well suited for it. Because of the nature of the data, classification tasks are going to provide more information to work with in terms of improving knowledge and overall performance metrics. From the dimensionality reduction perspective: It is different from Principle Component Analysis which guarantees finding the best linear transformation that reduces the number of dimensions with a minimum loss of information. Using clusters as a technique of reducing the data dimension will lose a lot of information since clustering techniques are based a metric of 'distance'. At high dimensions euclidean distance loses pretty much all meaning. Therefore using clustering as a "Reducing" dimensionality by mapping data points to cluster numbers is not always good since you may lose almost all the information. From the creating new features perspective: Clustering analysis creates labels based on the patterns of the data, it brings uncertainties into the data. By using clustering prior to classification, the decision on the number of clusters will highly affect the performance of the clustering, then affect the performance of classification. If the part of features we use clustering techniques on is very suited for it, it might increase the overall performance on classification. For example, if the features we use k-means on are numerical and the dimension is small, the overall classification performance may be better. We did not lock in the clustering outputs using a random_state in the effort to see if they were stable. Our assumption was that if the results vary highly from run to run which they definitely did, maybe the data just does not cluster well with the methods selected at all. Basically, the ramification we saw was that our results are not much better than random when applying clustering to the data preprocessing. Finally, it is important to ensure a feedback loop is in place to continuously collect the same data in the same format from which the models were created. This feedback loop can be used to measure the model real world effectiveness and also to continue to revise the models from time to time as things change.

  4. Data from: Peer-to-Peer Data Mining, Privacy Issues, and Games

    • data.nasa.gov
    • s.cnmilf.com
    • +2more
    Updated Mar 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Peer-to-Peer Data Mining, Privacy Issues, and Games [Dataset]. https://data.nasa.gov/dataset/peer-to-peer-data-mining-privacy-issues-and-games
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    Peer-to-Peer (P2P) networks are gaining increasing popularity in many distributed applications such as file-sharing, network storage, web caching, sear- ching and indexing of relevant documents and P2P network-threat analysis. Many of these applications require scalable analysis of data over a P2P network. This paper starts by offering a brief overview of distributed data mining applications and algorithms for P2P environments. Next it discusses some of the privacy concerns with P2P data mining and points out the problems of existing privacy-preserving multi-party data mining techniques. It further points out that most of the nice assumptions of these existing privacy preserving techniques fall apart in real-life applications of privacy-preserving distributed data mining (PPDM). The paper offers a more realistic formulation of the PPDM problem as a multi-party game and points out some recent results.

  5. d

    Discovering Anomalous Aviation Safety Events Using Scalable Data Mining...

    • catalog.data.gov
    • s.cnmilf.com
    • +3more
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Discovering Anomalous Aviation Safety Events Using Scalable Data Mining Algorithms [Dataset]. https://catalog.data.gov/dataset/discovering-anomalous-aviation-safety-events-using-scalable-data-mining-algorithms
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    The worldwide civilian aviation system is one of the most complex dynamical systems created. Most modern commercial aircraft have onboard flight data recorders that record several hundred discrete and continuous parameters at approximately 1Hz for the entire duration of the flight. These data contain information about the flight control systems, actuators, engines, landing gear, avionics, and pilot commands. In this paper, recent advances in the development of a novel knowledge discovery process consisting of a suite of data mining techniques for identifying precursors to aviation safety incidents are discussed. The data mining techniques include scalable multiple-kernel learning for large-scale distributed anomaly detection. A novel multivariate time-series search algorithm is used to search for signatures of discovered anomalies on massive datasets. The process can identify operationally significant events due to environmental, mechanical, and human factors issues in the high-dimensional flight operations quality assurance data. All discovered anomalies are validated by a team of independent domain experts. This novel automated knowledge discovery process is aimed at complementing the state-of-the-art human-generated exceedance-based analysis that fails to discover previously unknown aviation safety incidents. In this paper, the discovery pipeline, the methods used, and some of the significant anomalies detected on real-world commercial aviation data are discussed.

  6. f

    A sample transaction database.

    • plos.figshare.com
    xls
    Updated Feb 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Loan T. T. Nguyen; Hoa Duong; An Mai; Bay Vo (2025). A sample transaction database. [Dataset]. http://doi.org/10.1371/journal.pone.0317427.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Loan T. T. Nguyen; Hoa Duong; An Mai; Bay Vo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Privacy is as a critical issue in the age of data. Organizations and corporations who publicly share their data always have a major concern that their sensitive information may be leaked or extracted by rivals or attackers using data miners. High-utility itemset mining (HUIM) is an extension to frequent itemset mining (FIM) which deals with business data in the form of transaction databases, data that is also in danger of being stolen. To deal with this, a number of privacy-preserving data mining (PPDM) techniques have been introduced. An important topic in PPDM in the recent years is privacy-preserving utility mining (PPUM). The goal of PPUM is to protect the sensitive information, such as sensitive high-utility itemsets, in transaction databases, and make them undiscoverable for data mining techniques. However, available PPUM methods do not consider the generalization of items in databases (categories, classes, groups, etc.). These algorithms only consider the items at a specialized level, leaving the item combinations at a higher level vulnerable to attacks. The insights gained from higher abstraction levels are somewhat more valuable than those from lower levels since they contain the outlines of the data. To address this issue, this work suggests two PPUM algorithms, namely MLHProtector and FMLHProtector, to operate at all abstraction levels in a transaction database to protect them from data mining algorithms. Empirical experiments showed that both algorithms successfully protect the itemsets from being compromised by attackers.

  7. Real Market Data for Association Rules

    • kaggle.com
    zip
    Updated Sep 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ruken Missonnier (2023). Real Market Data for Association Rules [Dataset]. https://www.kaggle.com/datasets/rukenmissonnier/real-market-data
    Explore at:
    zip(3068 bytes)Available download formats
    Dataset updated
    Sep 15, 2023
    Authors
    Ruken Missonnier
    Description

    1. Introduction

    Within the confines of this document, we embark on a comprehensive journey delving into the intricacies of a dataset meticulously curated for the purpose of association rules mining. This sophisticated data mining technique is a linchpin in the realms of market basket analysis. The dataset in question boasts an array of items commonly found in retail transactions, each meticulously encoded as a binary variable, with "1" denoting presence and "0" indicating absence in individual transactions.

    2. Dataset Overview

    Our dataset unfolds as an opulent tapestry of distinct columns, each dedicated to the representation of a specific item:

    • Bread
    • Honey
    • Bacon
    • Toothpaste
    • Banana
    • Apple
    • Hazelnut
    • Cheese
    • Meat
    • Carrot
    • Cucumber
    • Onion
    • Milk
    • Butter
    • ShavingFoam
    • Salt
    • Flour
    • HeavyCream
    • Egg
    • Olive
    • Shampoo
    • Sugar

    3. Purpose of the Dataset

    The raison d'être of this dataset is to serve as a catalyst for the discovery of intricate associations and patterns concealed within the labyrinthine network of customer transactions. Each row in this dataset mirrors a solitary transaction, while the values within each column serve as sentinels, indicating whether a particular item was welcomed into a transaction's embrace or relegated to the periphery.

    4. Data Format

    The data within this repository is rendered in a binary symphony, where the enigmatic "1" enunciates the acquisition of an item, and the stoic "0" signifies its conspicuous absence. This binary manifestation serves to distill the essence of the dataset, centering the focus on item presence, rather than the quantum thereof.

    5. Potential Applications

    This dataset unfurls its wings to encompass an assortment of prospective applications, including but not limited to:

    • Market Basket Analysis: Discerning items that waltz together in shopping carts, thus bestowing enlightenment upon the orchestration of product placement and marketing strategies.
    • Recommender Systems: Crafting bespoke product recommendations, meticulously tailored to each customer's historical transactional symphony.
    • Inventory Management: Masterfully fine-tuning stock levels for items that find kinship in frequent co-acquisition, thereby orchestrating a harmonious reduction in carrying costs and stockouts.
    • Customer Behavior Analysis: Peering into the depths of customer proclivities and purchase patterns, paving the way for the sculpting of exquisite marketing campaigns.

    6. Analysis Techniques

    The treasure trove of this dataset beckons the deployment of quintessential techniques, among them the venerable Apriori and FP-Growth algorithms. These stalwart algorithms are proficient at ferreting out the elusive frequent itemsets and invaluable association rules, shedding light on the arcane symphony of customer behavior and item co-occurrence patterns.

    7. Conclusion

    In closing, the association rules dataset unfurled before you offers an alluring odyssey, replete with the promise of discovering priceless patterns and affiliations concealed within the tapestry of transactional data. Through the artistry of data mining algorithms, businesses and analysts stand poised to unearth hitherto latent insights capable of steering the helm of strategic decisions, elevating the pantheon of customer experiences, and orchestrating the symphony of operational optimization.

  8. Data from: Recent Developments in Damage Identification of Structures Using...

    • scielo.figshare.com
    jpeg
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Meisam Gordan; Hashim Abdul Razak; Zubaidah Ismail; Khaled Ghaedi (2023). Recent Developments in Damage Identification of Structures Using Data Mining [Dataset]. http://doi.org/10.6084/m9.figshare.5931043.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    SciELOhttp://www.scielo.org/
    Authors
    Meisam Gordan; Hashim Abdul Razak; Zubaidah Ismail; Khaled Ghaedi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract Civil structures are usually prone to damage during their service life and it leads them to loss their serviceability and safety. Thus, damage assessment can guarantee the integrity of structures. As a result, a structural damage detection approach including two main components, a set of accelerometers to record the response data and a data mining (DM) procedure, is widely used to extract the information on the structural health condition. In the last decades, DM has provided numerous solutions to structural health monitoring (SHM) problems as an all-inclusive technique due to its powerful computational ability. This paper presents the first attempt to illustrate the data mining techniques (DMTs) applications in SHM through an intensive review of those articles dealing with the use of DMTs aimed for classification-, prediction- and optimization-based data mining methods. According to this categorization, applications of DMTs with respect to SHM research area are classified and it is concluded that, applications of DMTs in the SHM domain have increasingly been implemented, in the last decade and the most popular techniques in the area were artificial neural network (ANN), principal component analysis (PCA) and genetic algorithm (GA), respectively.

  9. G

    Data Mining Tools Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Data Mining Tools Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/data-mining-tools-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Aug 4, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Mining Tools Market Outlook




    According to our latest research, the global Data Mining Tools market size reached USD 1.93 billion in 2024, reflecting robust industry momentum. The market is expected to grow at a CAGR of 12.7% from 2025 to 2033, reaching a projected value of USD 5.69 billion by 2033. This growth is primarily driven by the increasing adoption of advanced analytics across diverse industries, rapid digital transformation, and the necessity for actionable insights from massive data volumes.




    One of the pivotal growth factors propelling the Data Mining Tools market is the exponential rise in data generation, particularly through digital channels, IoT devices, and enterprise applications. Organizations across sectors are leveraging data mining tools to extract meaningful patterns, trends, and correlations from structured and unstructured data. The need for improved decision-making, operational efficiency, and competitive advantage has made data mining an essential component of modern business strategies. Furthermore, advancements in artificial intelligence and machine learning are enhancing the capabilities of these tools, enabling predictive analytics, anomaly detection, and automation of complex analytical tasks, which further fuels market expansion.




    Another significant driver is the growing demand for customer-centric solutions in industries such as retail, BFSI, and healthcare. Data mining tools are increasingly being used for customer relationship management, targeted marketing, fraud detection, and risk management. By analyzing customer behavior and preferences, organizations can personalize their offerings, optimize marketing campaigns, and mitigate risks. The integration of data mining tools with cloud platforms and big data technologies has also simplified deployment and scalability, making these solutions accessible to small and medium-sized enterprises (SMEs) as well as large organizations. This democratization of advanced analytics is creating new growth avenues for vendors and service providers.




    The regulatory landscape and the increasing emphasis on data privacy and security are also shaping the development and adoption of Data Mining Tools. Compliance with frameworks such as GDPR, HIPAA, and CCPA necessitates robust data governance and transparent analytics processes. Vendors are responding by incorporating features like data masking, encryption, and audit trails into their solutions, thereby enhancing trust and adoption among regulated industries. Additionally, the emergence of industry-specific data mining applications, such as fraud detection in BFSI and predictive diagnostics in healthcare, is expanding the addressable market and fostering innovation.




    From a regional perspective, North America currently dominates the Data Mining Tools market owing to the early adoption of advanced analytics, strong presence of leading technology vendors, and high investments in digital transformation. However, the Asia Pacific region is emerging as a lucrative market, driven by rapid industrialization, expansion of IT infrastructure, and growing awareness of data-driven decision-making in countries like China, India, and Japan. Europe, with its focus on data privacy and digital innovation, also represents a significant market share, while Latin America and the Middle East & Africa are witnessing steady growth as organizations in these regions modernize their operations and adopt cloud-based analytics solutions.





    Component Analysis




    The Component segment of the Data Mining Tools market is bifurcated into Software and Services. Software remains the dominant segment, accounting for the majority of the market share in 2024. This dominance is attributed to the continuous evolution of data mining algorithms, the proliferation of user-friendly graphical interfaces, and the integration of advanced analytics capabilities such as machine learning, artificial intelligence, and natural language pro

  10. D

    Data Mining Software Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Data Mining Software Report [Dataset]. https://www.marketresearchforecast.com/reports/data-mining-software-41235
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Mar 19, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Data Mining Software market is experiencing robust growth, driven by the increasing need for businesses to extract valuable insights from massive datasets. The market, estimated at $15 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033, reaching an estimated $45 billion by 2033. This expansion is fueled by several key factors. The burgeoning adoption of cloud-based solutions offers scalability and cost-effectiveness, attracting both large enterprises and SMEs. Furthermore, advancements in machine learning and artificial intelligence algorithms are enhancing the accuracy and efficiency of data mining processes, leading to better decision-making across various sectors like finance, healthcare, and marketing. The rise of big data analytics and the increasing availability of affordable, high-powered computing resources are also significant contributors to market growth. However, the market faces certain challenges. Data security and privacy concerns remain paramount, especially with the increasing volume of sensitive information being processed. The complexity of data mining software and the need for skilled professionals to operate and interpret the results present a barrier to entry for some businesses. The high initial investment cost associated with implementing sophisticated data mining solutions can also deter smaller organizations. Nevertheless, the ongoing technological advancements and the growing recognition of the strategic value of data-driven decision-making are expected to overcome these restraints and propel the market toward continued expansion. The market segmentation reveals a strong preference for cloud-based solutions, reflecting the industry's trend toward flexible and scalable IT infrastructure. Large enterprises currently dominate the market share, but SMEs are rapidly adopting data mining software, indicating promising future growth in this segment. Geographic analysis shows that North America and Europe are currently leading the market, but the Asia-Pacific region is poised for significant growth due to increasing digitalization and economic expansion in countries like China and India.

  11. Review results of the manuscript "A Systematic Review on Privacy-Preserving...

    • figshare.com
    txt
    Updated Aug 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chang Sun (2021). Review results of the manuscript "A Systematic Review on Privacy-Preserving Distributed Data Mining" [Dataset]. http://doi.org/10.6084/m9.figshare.14239937.v4
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 26, 2021
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Chang Sun
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains the review results of the manuscript of "A Systematic Review on Privacy-Preserving Distributed Data Mining" authored by Chang Sun, Lianne Ippel, Andre Dekker, Michel Dumontier, Johan van Soest. In the datasets, there are 231 published articles about privacy-perserving distributed data mining. Variables include article DOI, title, authors, keywords, user scenarios, distributed data scenarios, privacy/security definition/proof/analysis, privacy statement, privacy-preserving methods category, privacy-preserving methods (specific), data mining problem, data mining/machine learning methods, experiment data information, accuracy of the methods, efficiency (computation and communication cost), and scalability. The search method and evaluation criteria are described in the paper "A Systematic Review on Privacy-Preserving Distributed Data Mining". The DOI and link to the paper will be provided when the paper gets published.

  12. A Local Distributed Peer-to-Peer Algorithm Using Multi-Party Optimization...

    • data.nasa.gov
    Updated Mar 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). A Local Distributed Peer-to-Peer Algorithm Using Multi-Party Optimization Based Privacy Preservation for Data Mining Primitive Computation - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/a-local-distributed-peer-to-peer-algorithm-using-multi-party-optimization-based-privacy-pr
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    This paper proposes a scalable, local privacy-preserving algorithm for distributed peer-to-peer (P2P) data aggregation useful for many advanced data mining/analysis tasks such as average/sum computation, decision tree induction, feature selection, and more. Unlike most multi-party privacy-preserving data mining algorithms, this approach works in an asynchronous manner through local interactions and therefore, is highly scalable. It particularly deals with the distributed computation of the sum of a set of numbers stored at different peers in a P2P network in the context of a P2P web mining application. The proposed optimization-based privacy-preserving technique for computing the sum allows different peers to specify different privacy requirements without having to adhere to a global set of parameters for the chosen privacy model. Since distributed sum computation is a frequently used primitive, the proposed approach is likely to have significant impact on many data mining tasks such as multi-party privacypreserving clustering, frequent itemset mining, and statistical aggregate computation.

  13. Grocery Store dataset for data mining

    • kaggle.com
    zip
    Updated Mar 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Honey Patel (2021). Grocery Store dataset for data mining [Dataset]. https://www.kaggle.com/honeypatel2158/grocery-store-dataset-for-data-mining
    Explore at:
    zip(7990 bytes)Available download formats
    Dataset updated
    Mar 9, 2021
    Authors
    Honey Patel
    Description

    Dataset

    This dataset was created by Honey Patel

    Contents

  14. r

    Journal of Big Data Impact Factor 2024-2025 - ResearchHelpDesk

    • researchhelpdesk.org
    Updated Feb 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2022). Journal of Big Data Impact Factor 2024-2025 - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/impact-factor-if/289/journal-of-big-data
    Explore at:
    Dataset updated
    Feb 23, 2022
    Dataset authored and provided by
    Research Help Desk
    Description

    Journal of Big Data Impact Factor 2024-2025 - ResearchHelpDesk - The Journal of Big Data publishes high-quality, scholarly research papers, methodologies and case studies covering a broad range of topics, from big data analytics to data-intensive computing and all applications of big data research. The journal examines the challenges facing big data today and going forward including, but not limited to: data capture and storage; search, sharing, and analytics; big data technologies; data visualization; architectures for massively parallel processing; data mining tools and techniques; machine learning algorithms for big data; cloud computing platforms; distributed file systems and databases; and scalable storage systems. Academic researchers and practitioners will find the Journal of Big Data to be a seminal source of innovative material. All articles published by the Journal of Big Data are made freely and permanently accessible online immediately upon publication, without subscription charges or registration barriers. As authors of articles published in the Journal of Big Data you are the copyright holders of your article and have granted to any third party, in advance and in perpetuity, the right to use, reproduce or disseminate your article, according to the SpringerOpen copyright and license agreement. For those of you who are US government employees or are prevented from being copyright holders for similar reasons, SpringerOpen can accommodate non-standard copyright lines.

  15. r

    Results

    • researchdata.edu.au
    • bridges.monash.edu
    • +1more
    Updated May 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chang Wei Tan (2022). Results [Dataset]. http://doi.org/10.4225/03/59e302de4ad10
    Explore at:
    Dataset updated
    May 5, 2022
    Dataset provided by
    Monash University
    Authors
    Chang Wei Tan
    Description

    This is the result folder for our SDM18 paper on "Efficient search of the best warping window for Dynamic Time Warping"

  16. Comparative Reviews Dataset's

    • kaggle.com
    zip
    Updated Jan 22, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Umair Younis (2019). Comparative Reviews Dataset's [Dataset]. https://www.kaggle.com/umairyounis/comparative-reviews-datasets
    Explore at:
    zip(205233 bytes)Available download formats
    Dataset updated
    Jan 22, 2019
    Authors
    Umair Younis
    Description

    Context

    To get improved results on Machine Learning Algorithms, and other techniques used in Data Mining.

    Content

    Comprises of two columns, the First row consists of comparative reviews, the second row contains polarities.

    Acknowledgements

    I pay thanks to my supervisor, Dr Muhammad Zubair Asghar, Assitant Professor, ICIT, Gomal University (KPK). Di.Khan. Without his guidance, I can't accomplish this task.

    Inspiration

    Comparative opinion mining is becoming the most popular research area in the field of Data Mining. These three comparative reviews datasets will help the researchers who are working in the area of opinion mining and sentiment analysis.

  17. Application Research of Clustering on kmeans

    • kaggle.com
    zip
    Updated Feb 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ddpr raju (2021). Application Research of Clustering on kmeans [Dataset]. https://www.kaggle.com/ddprraju/tirupati-compus-school
    Explore at:
    zip(34507 bytes)Available download formats
    Dataset updated
    Feb 27, 2021
    Authors
    ddpr raju
    Description

    Dataset

    This dataset was created by ddpr raju

    Contents

  18. r

    Data from: Prediction of restrained shrinkage crack width of slag mortar...

    • resodate.org
    • scielo.figshare.com
    Updated Jan 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francisco Ferreira Martins; Aires Camões (2019). Prediction of restrained shrinkage crack width of slag mortar composites using data mining techniques [Dataset]. http://doi.org/10.6084/M9.FIGSHARE.11266361
    Explore at:
    Dataset updated
    Jan 1, 2019
    Dataset provided by
    SciELO journals
    Authors
    Francisco Ferreira Martins; Aires Camões
    Description

    ABSTRACT The purpose of this study is to develop data mining models to predict restrained shrinkage crack widths of slag mortar cementitious composites. A database published by BILIR et al. [1] was used to develop these models. As a modelling tool R environment was used to apply these data mining (DM) techniques. Several algorithms were tested and analyzed using all the combinations of the input parameters. It was concluded that using one or three input parameters the artificial neural networks (ANN) models have the best performance. Nevertheless, the best forecasting capacity was obtained with the support vector machines (SVM) model using only two input parameters. Furthermore, this model has better predictive capacity than adaptative-network-based fuzzy inference system (ANFIS) model developed by BILIR et al. [1] that uses three input parameters.

  19. D

    Vision-Based ADAS Data Mining Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Vision-Based ADAS Data Mining Market Research Report 2033 [Dataset]. https://dataintelo.com/report/vision-based-adas-data-mining-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Sep 30, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Vision-Based ADAS Data Mining Market Outlook



    As per our latest research, the global Vision-Based ADAS Data Mining market size stood at USD 2.84 billion in 2024 and is anticipated to reach USD 12.67 billion by 2033, growing at a robust CAGR of 17.8% during the forecast period. The primary growth factor driving this market is the rapid adoption of advanced driver assistance systems (ADAS) in modern vehicles, propelled by stringent safety regulations and the surging demand for enhanced driving experiences globally.




    One of the most significant growth drivers for the Vision-Based ADAS Data Mining market is the increasing focus on vehicular safety and the reduction of road accidents. Governments worldwide are imposing stricter mandates on automotive OEMs to integrate advanced safety features such as lane departure warning, traffic sign recognition, and collision avoidance in all new vehicles. The integration of vision-based ADAS, powered by sophisticated data mining techniques, is enabling real-time analysis of driving environments, which significantly reduces the likelihood of human error and enhances overall road safety. As a result, automakers are investing heavily in research and development to improve the accuracy and reliability of these systems, further fueling market expansion.




    Another pivotal factor contributing to market growth is the rapid technological advancements in machine learning, deep learning, and computer vision. These technologies are at the core of vision-based ADAS data mining, enabling systems to process vast amounts of visual data from cameras and sensors in real-time. The evolution of high-performance hardware and the proliferation of cloud-based analytics platforms have empowered ADAS solutions to become more intelligent, adaptive, and scalable. This technological leap has made it feasible to deploy sophisticated data mining algorithms even in cost-sensitive vehicle segments, accelerating the democratization of advanced safety features across a broader range of vehicles.




    Additionally, the growing consumer inclination towards connected and autonomous vehicles is acting as a catalyst for the Vision-Based ADAS Data Mining market. As automotive manufacturers race to develop next-generation vehicles with semi-autonomous and autonomous capabilities, the demand for robust data mining solutions that can interpret complex traffic scenarios and driver behaviors is escalating. The ability of vision-based ADAS systems to seamlessly integrate with other in-vehicle technologies, such as infotainment and telematics, is further enhancing their value proposition. This convergence is not only improving the overall driving experience but also opening up new avenues for data-driven services and applications within the automotive ecosystem.




    From a regional perspective, Asia Pacific is emerging as the most dynamic market for Vision-Based ADAS Data Mining, driven by the rapid expansion of the automotive sector in countries like China, Japan, and South Korea. The region's strong manufacturing base, coupled with supportive government initiatives aimed at promoting vehicle safety, is fostering a fertile environment for the adoption of advanced ADAS technologies. North America and Europe, on the other hand, continue to lead in terms of technological innovation and regulatory enforcement, ensuring that these markets remain at the forefront of global market share and revenue generation.



    Component Analysis



    The Vision-Based ADAS Data Mining market is segmented by component into hardware, software, and services, each playing a distinct yet interconnected role in enabling advanced driver assistance functionalities. Hardware components such as cameras, sensors, and onboard processing units form the backbone of vision-based ADAS systems. These hardware elements are responsible for capturing and relaying vast amounts of visual and environmental data, which are subsequently processed and analyzed to generate actionable insights for drivers. The continuous evolution of high-resolution cameras and advanced sensor technologies is enhancing the precision and reliability of data collection, thereby improving the overall effectiveness of ADAS solutions.




    Software is the core enabler of data mining within vision-based ADAS systems. This segment includes sophisticated algorithms for image processing, pattern recognition, and machine learning, which interpret raw sensor data to id

  20. FITTING Data Mining Settings for Ranking Seed Lots

    • scielo.figshare.com
    jpeg
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ruan Bernardy; Gizele I. Gadotti; Rita de C. M. Monteiro; Karine Von Ahn Pinto; Romário de M. Pinheiro (2023). FITTING Data Mining Settings for Ranking Seed Lots [Dataset]. http://doi.org/10.6084/m9.figshare.22785544.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    SciELOhttp://www.scielo.org/
    Authors
    Ruan Bernardy; Gizele I. Gadotti; Rita de C. M. Monteiro; Karine Von Ahn Pinto; Romário de M. Pinheiro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ABSTRACT To enhance speed and agility in interpreting physiological quality tests of seeds, The use of algorithms has emerged. This study aimed to identify suitable machine learning models to assist in the precise management of seed lot quality. Soybean lots from two companies were assessed using the Supplied Test Set, Cross-Validation (with 8, 10, and 12 folds), and Percentage Split (with 66% and 70%) methods. Variables analyzed through Tetrazolium tests included vigor, viability, mechanical damage, moisture damage, bed bug damage, and water content. Method performance was determined by Kappa, Precision, and ROC Area metrics. Classification Via Regression and J48 algorithms were employed. The technique utilizing 66% of data for training achieved 93.55% accuracy, with Precision and ROC Area reaching 94.50% for the J48 algorithm. Applying the cross-validation method with 10 folds resulted in 90.22% of correctly classified instances, with a ROC Area outcome like the previous method. Tetrazolium Vigor was the primary attribute used. However, these results are specific to this study's database, and careful planning is necessary to select the most effective application methods.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Christoph Bergmeir; Irma Bilgrami; Christopher Bain; Geoffrey I. Webb; Judit Orosz; David Pilcher (2023). Designing a more efficient, effective and safe Medical Emergency Team (MET) service using data analysis [Dataset]. http://doi.org/10.1371/journal.pone.0188688
Organization logo

Designing a more efficient, effective and safe Medical Emergency Team (MET) service using data analysis

Explore at:
6 scholarly articles cite this dataset (View in Google Scholar)
pdfAvailable download formats
Dataset updated
Jun 1, 2023
Dataset provided by
PLOShttp://plos.org/
Authors
Christoph Bergmeir; Irma Bilgrami; Christopher Bain; Geoffrey I. Webb; Judit Orosz; David Pilcher
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

IntroductionHospitals have seen a rise in Medical Emergency Team (MET) reviews. We hypothesised that the commonest MET calls result in similar treatments. Our aim was to design a pre-emptive management algorithm that allowed direct institution of treatment to patients without having to wait for attendance of the MET team and to model its potential impact on MET call incidence and patient outcomes.MethodsData was extracted for all MET calls from the hospital database. Association rule data mining techniques were used to identify the most common combinations of MET call causes, outcomes and therapies.ResultsThere were 13,656 MET calls during the 34-month study period in 7936 patients. The most common MET call was for hypotension [31%, (2459/7936)]. These MET calls were strongly associated with the immediate administration of intra-venous fluid (70% [1714/2459] v 13% [739/5477] p

Search
Clear search
Close search
Google apps
Main menu