https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global data mining tools market is projected to grow at a CAGR of 6.4% from 2025 to 2033, owing to the increasing adoption of data mining techniques across various industries. The market size is expected to reach $571.4 million by 2033, from $365.1 million in 2025. The growth is attributed to the increasing demand for data-driven insights to make informed decisions, the rising adoption of cloud-based data mining tools, and the increasing need for fraud detection and risk management. Key trends in the data mining tools market include the increasing adoption of artificial intelligence (AI) and machine learning (ML) techniques to enhance data mining capabilities, the growing popularity of open-source data mining tools, and the emergence of self-service data mining solutions. The market is fragmented, with several players offering a wide range of data mining tools. However, the top vendors, such as IBM, SAS Institute, Oracle, Microsoft, and Teradata, hold a significant market share. They offer comprehensive data mining solutions that cater to the needs of various industries.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global data mining tools market size was USD 932 Million in 2023 and is projected to reach USD 2,584.7 Million by 2032, expanding at a CAGR of 12% during 2024–2032. The market is fueled by the rising demand for big data analytics across various industries and the increasing need for AI-integrated data mining tools for insightful decision-making.
Increasing adoption of cloud-based platforms in data mining tools fuels the market. This enhances scalability, flexibility, and cost-efficiency in data handling processes. Major tech companies are launching cloud-based data mining solutions, enabling businesses to analyze vast datasets effectively. This trend reflects the shift toward agile and scalable data analysis methods, meeting the dynamic needs of modern enterprises.
In July 2023, Microsoft launched Power Automate Process Mining. This tool, powered by advanced AI, allows companies to gain deep insights into their operations, streamline processes, and foster ongoing improvement through automation and low-code applications, marking a new era in business efficiency and process optimization.
Rising focus on predictive analytics propels the development of advanced data mining tools capable of forecasting future trends and behaviors. Industries such as finance, healthcare, and retail invest significantly in predictive analytics to gain a competitive edge, driving demand for sophisticated data mining technologies. This trend underscores the strategic importance of foresight in decision-making processes.
Visual data mining tools are gaining traction in the market, offering intuitive data exploration and interpretation capabilities. These tools enable users to uncover patterns and insights through graphical representations, making data analysis accessible to a broader audience. The launch of user-friendly visual data mining applications marks a significant step toward democratizing data analytics.
Ensemble Data Mining Methods, also known as Committee Methods or Model Combiners, are machine learning methods that leverage the power of multiple models to achieve better prediction accuracy than any of the individual models could on their own. The basic goal when designing an ensemble is the same as when establishing a committee of people: each member of the committee should be as competent as possible, but the members should be complementary to one another. If the members are not complementary, i.e., if they always agree, then the committee is unnecessary---any one member is sufficient. If the members are complementary, then when one or a few members make an error, the probability is high that the remaining members can correct this error. Research in ensemble methods has largely revolved around designing ensembles consisting of competent yet complementary models.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The global Data Mining Tools market, valued at $612.4 million in 2025, is projected to experience robust growth, driven by the increasing volume and variety of data generated across industries and the rising need for extracting actionable insights. The Compound Annual Growth Rate (CAGR) of 6.7% from 2025 to 2033 signifies a substantial expansion, propelled by several key factors. The burgeoning adoption of cloud-based data mining tools offers scalability and cost-effectiveness, attracting businesses of all sizes. Furthermore, advancements in artificial intelligence (AI) and machine learning (ML) are enhancing the capabilities of these tools, enabling more sophisticated analytics and predictive modeling. Specific application areas like BFSI (Banking, Financial Services, and Insurance), Healthcare and Life Sciences, and Telecom and IT are significant contributors to market growth, fueled by the need for risk management, personalized medicine, and customer relationship management respectively. While data security and privacy concerns represent a potential restraint, the overall market outlook remains positive, driven by continuous technological innovations and increasing digitalization across industries. The market segmentation reveals a preference for cloud-based solutions over on-premises deployments, reflecting the growing demand for flexible and scalable analytics infrastructure. Leading players like IBM, SAS Institute, and Oracle are consolidating their market share through strategic partnerships and continuous product development. However, the emergence of agile and specialized data mining startups is also intensifying competition. Geographic distribution shows strong growth in North America and Europe, driven by early adoption of advanced analytics techniques. However, the Asia-Pacific region is expected to emerge as a significant growth driver in the coming years due to increasing digitalization and government initiatives promoting data-driven decision-making. The historical period (2019-2024) likely saw a similar growth trajectory, setting the stage for the forecasted expansion during 2025-2033. The continued integration of data mining tools with other business intelligence platforms is expected to further fuel market expansion.
According to our latest research, the global Privacy?Preserving Data Mining Tools market size reached USD 1.42 billion in 2024, reflecting robust adoption across diverse industries. The market is expected to exhibit a CAGR of 22.8% during the forecast period, propelling the market to USD 10.98 billion by 2033. This remarkable growth is driven by the increasing need for secure data analytics, stringent data protection regulations, and the rising frequency of data breaches, all of which are pushing organizations to adopt advanced privacy solutions.
One of the primary growth factors for the Privacy?Preserving Data Mining Tools market is the exponential rise in data generation and the parallel escalation of privacy concerns. As organizations collect vast amounts of sensitive information, especially in sectors like healthcare and BFSI, the risk of data exposure and misuse grows. Governments worldwide are enacting stricter data protection laws, such as the GDPR in Europe and CCPA in California, compelling enterprises to integrate privacy?preserving technologies into their analytics workflows. These regulations not only mandate compliance but also foster consumer trust, making privacy?preserving data mining tools a strategic investment for businesses aiming to maintain a competitive edge while safeguarding user data.
Another significant driver is the rapid digital transformation across industries, which necessitates the extraction of actionable insights from large, distributed data sets without compromising privacy. Privacy?preserving techniques, such as federated learning, homomorphic encryption, and differential privacy, are gaining traction as they allow organizations to collaborate and analyze data securely. The advent of cloud computing and the proliferation of connected devices further amplify the demand for scalable and secure data mining solutions. As enterprises embrace cloud-based analytics, the need for robust privacy-preserving mechanisms becomes paramount, fueling the adoption of advanced tools that can operate seamlessly in both on-premises and cloud environments.
Moreover, the increasing sophistication of cyber threats and the growing awareness of the potential reputational and financial damage caused by data breaches are prompting organizations to prioritize data privacy. High-profile security incidents have underscored the vulnerabilities inherent in traditional data mining approaches, accelerating the shift towards privacy-preserving alternatives. The integration of artificial intelligence and machine learning with privacy-preserving technologies is also opening new avenues for innovation, enabling more granular and context-aware data analytics. This technological convergence is expected to further catalyze market growth, as organizations seek to harness the full potential of their data assets while maintaining stringent privacy standards.
Privacy-Preserving Analytics is becoming a cornerstone in the modern data-driven landscape, offering organizations a way to extract valuable insights while maintaining stringent data privacy standards. This approach ensures that sensitive information remains protected even as it is analyzed, allowing businesses to comply with increasing regulatory demands without sacrificing the depth and breadth of their data analysis. By leveraging Privacy-Preserving Analytics, companies can foster greater trust among their customers and stakeholders, knowing that their data is being handled with the utmost care and security. This paradigm shift is not just about compliance; it’s about redefining how organizations approach data analytics in a world where privacy concerns are paramount.
From a regional perspective, North America currently commands the largest share of the Privacy?Preserving Data Mining Tools market, driven by the presence of leading technology vendors, high awareness levels, and a robust regulatory framework. Europe follows closely, propelled by stringent data privacy laws and increasing investments in secure analytics infrastructure. The Asia Pacific region is witnessing the fastest growth, fueled by rapid digitalization, expanding IT ecosystems, and rising cybersecurity concerns in emerging economies such as China and India. Latin America and the Middle East & Africa are also experiencing steady growth, albeit from
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global data mining and modeling market size was valued at approximately $28.5 billion in 2023 and is projected to reach $70.8 billion by 2032, growing at a compound annual growth rate (CAGR) of 10.5% during the forecast period. This remarkable growth can be attributed to the increasing complexity and volume of data generated across various industries, necessitating robust tools and techniques for effective data analysis and decision-making processes.
One of the primary growth factors driving the data mining and modeling market is the exponential increase in data generation owing to advancements in digital technology. Modern enterprises generate extensive data from numerous sources such as social media platforms, IoT devices, and transactional databases. The need to make sense of this vast information trove has led to a surge in the adoption of data mining and modeling tools. These tools help organizations uncover hidden patterns, correlations, and insights, thereby enabling more informed decision-making and strategic planning.
Another significant growth driver is the increasing adoption of artificial intelligence (AI) and machine learning (ML) technologies. Data mining and modeling are critical components of AI and ML algorithms, which rely on large datasets to learn and make predictions. As businesses strive to stay competitive, they are increasingly investing in AI-driven analytics solutions. This trend is particularly prevalent in sectors such as healthcare, finance, and retail, where predictive analytics can provide a substantial competitive edge. Moreover, advancements in big data technologies are further bolstering the capabilities of data mining and modeling solutions, making them more effective and efficient.
The burgeoning demand for business intelligence (BI) and analytics solutions is also a major factor propelling the market. Organizations are increasingly recognizing the value of data-driven insights in identifying market trends, customer preferences, and operational inefficiencies. Data mining and modeling tools form the backbone of sophisticated BI platforms, enabling companies to transform raw data into actionable intelligence. This demand is further amplified by the growing importance of regulatory compliance and risk management, particularly in highly regulated industries such as banking, financial services, and healthcare.
From a regional perspective, North America currently dominates the data mining and modeling market, owing to the early adoption of advanced technologies and the presence of major market players. However, Asia Pacific is expected to witness the highest growth rate during the forecast period, driven by rapid digital transformation initiatives and increasing investments in AI and big data technologies. Europe also holds a significant market share, supported by stringent data protection regulations and a strong focus on innovation.
The data mining and modeling market by component is broadly segmented into software and services. The software segment encompasses various tools and platforms that facilitate data mining and modeling processes. These software solutions range from basic data analysis tools to advanced platforms integrated with AI and ML capabilities. The increasing complexity of data and the need for real-time analytics are driving the demand for sophisticated software solutions. Companies are investing in custom and off-the-shelf software to enhance their data handling and analytical capabilities, thereby gaining a competitive edge.
The services segment includes consulting, implementation, training, and support services. As organizations strive to leverage data mining and modeling tools effectively, the demand for professional services is on the rise. Consulting services help businesses identify the right tools and strategies for their specific needs, while implementation services ensure the seamless integration of these tools into existing systems. Training services are crucial for building in-house expertise, enabling teams to maximize the benefits of data mining and modeling solutions. Support services ensure the ongoing maintenance and optimization of these tools, addressing any technical issues that may arise.
The software segment is expected to dominate the market throughout the forecast period, driven by continuous advancements in te
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global market size for Lifesciences Data Mining and Visualization was valued at approximately USD 1.5 billion in 2023 and is projected to reach around USD 4.3 billion by 2032, growing at a compound annual growth rate (CAGR) of 12.5% during the forecast period. The growth of this market is driven by the increasing demand for sophisticated data analysis tools in the life sciences sector, advancements in analytical technologies, and the rising volume of complex biological data generated from research and clinical trials.
One of the primary growth factors for the Lifesciences Data Mining and Visualization market is the burgeoning amount of data generated from various life sciences applications, such as genomics, proteomics, and clinical trials. With the advent of high-throughput technologies, researchers and healthcare professionals are now capable of generating vast amounts of data, which necessitates the use of advanced data mining and visualization tools to derive actionable insights. These tools not only help in managing and interpreting large datasets but also in uncovering hidden patterns and relationships, thereby accelerating research and development processes.
Another significant driver is the increasing adoption of artificial intelligence (AI) and machine learning (ML) algorithms in the life sciences domain. These technologies have proven to be invaluable in enhancing data analysis capabilities, enabling more precise and predictive modeling of biological systems. By integrating AI and ML with data mining and visualization platforms, researchers can achieve higher accuracy in identifying potential drug targets, understanding disease mechanisms, and personalizing treatment plans. This trend is expected to continue, further propelling the market's growth.
Moreover, the rising emphasis on personalized medicine and the need for precision in healthcare is fueling the demand for data mining and visualization tools. Personalized medicine relies heavily on the analysis of individual genetic, proteomic, and metabolomic profiles to tailor treatments specifically to patients' unique characteristics. The ability to visualize these complex datasets in an understandable and actionable manner is critical for the successful implementation of personalized medicine strategies, thereby boosting the demand for advanced data analysis tools.
From a regional perspective, North America is anticipated to dominate the Lifesciences Data Mining and Visualization market, owing to the presence of a robust healthcare infrastructure, significant investments in research and development, and a high adoption rate of advanced technologies. The European market is also expected to witness substantial growth, driven by increasing government initiatives to support life sciences research and the presence of leading biopharmaceutical companies. The Asia Pacific region is projected to experience the fastest growth, attributed to the expanding healthcare sector, rising investments in biotechnology research, and the increasing adoption of data analytics solutions.
The Lifesciences Data Mining and Visualization market is segmented by component into software and services. The software segment is expected to hold a significant share of the market, driven by the continuous advancements in data mining algorithms and visualization techniques. Software solutions are critical in processing large volumes of complex biological data, facilitating real-time analysis, and providing intuitive visual representations that aid in decision-making. The increasing integration of AI and ML into these software solutions is further enhancing their capabilities, making them indispensable tools in life sciences research.
The services segment, on the other hand, is projected to grow at a considerable rate, as organizations seek specialized expertise to manage and interpret their data. Services include consulting, implementation, and maintenance, as well as training and support. The demand for these services is driven by the need to ensure optimal utilization of data mining software and to keep up with the rapid pace of technological advancements. Moreover, many life sciences organizations lack the in-house expertise required to handle large-scale data analytics projects, thereby turning to external service providers for assistance.
Within the software segment, there is a growing trend towards the development of integrated platforms that combine multiple functionalities, such as data collection, pre
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Missing data is an inevitable aspect of every empirical research. Researchers developed several techniques to handle missing data to avoid information loss and biases. Over the past 50 years, these methods have become more and more efficient and also more complex. Building on previous review studies, this paper aims to analyze what kind of missing data handling methods are used among various scientific disciplines. For the analysis, we used nearly 50.000 scientific articles that were published between 1999 and 2016. JSTOR provided the data in text format. Furthermore, we utilized a text-mining approach to extract the necessary information from our corpus. Our results show that the usage of advanced missing data handling methods such as Multiple Imputation or Full Information Maximum Likelihood estimation is steadily growing in the examination period. Additionally, simpler methods, like listwise and pairwise deletion, are still in widespread use.
We discuss a statistical framework that underlies envelope detection schemes as well as dynamical models based on Hidden Markov Models (HMM) that can encompass both discrete and continuous sensor measurements for use in Integrated System Health Management (ISHM) applications. The HMM allows for the rapid assimilation, analysis, and discovery of system anomalies. We motivate our work with a discussion of an aviation problem where the identification of anomalous sequences is essential for safety reasons. The data in this application are discrete and continuous sensor measurements and can be dealt with seamlessly using the methods described here to discover anomalous flights. We specifically treat the problem of discovering anomalous features in the time series that may be hidden from the sensor suite and compare those methods to standard envelope detection methods on test data designed to accentuate the differences between the two methods. Identification of these hidden anomalies is crucial to building stable, reusable, and cost-efficient systems. We also discuss a data mining framework for the analysis and discovery of anomalies in high-dimensional time series of sensor measurements that would be found in an ISHM system. We conclude with recommendations that describe the tradeoffs in building an integrated scalable platform for robust anomaly detection in ISHM applications.
Ensemble Data Mining Methods, also known as Committee Methods or Model Combiners, are machine learning methods that leverage the power of multiple models to achieve better prediction accuracy than any of the individual models could on their own. The basic goal when designing an ensemble is the same as when establishing a committee of people: each member of the committee should be as competent as possible, but the members should be complementary to one another. If the members are not complementary, i.e., if they always agree, then the committee is unnecessary---any one member is sufficient. If the members are complementary, then when one or a few members make an error, the probability is high that the remaining members can correct this error. Research in ensemble methods has largely revolved around designing ensembles consisting of competent yet complementary models.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Improving the accuracy of prediction on future values based on the past and current observations has been pursued by enhancing the prediction's methods, combining those methods or performing data pre-processing. In this paper, another approach is taken, namely by increasing the number of input in the dataset. This approach would be useful especially for a shorter time series data. By filling the in-between values in the time series, the number of training set can be increased, thus increasing the generalization capability of the predictor. The algorithm used to make prediction is Neural Network as it is widely used in literature for time series tasks. For comparison, Support Vector Regression is also employed. The dataset used in the experiment is the frequency of USPTO's patents and PubMed's scientific publications on the field of health, namely on Apnea, Arrhythmia, and Sleep Stages. Another time series data designated for NN3 Competition in the field of transportation is also used for benchmarking. The experimental result shows that the prediction performance can be significantly increased by filling in-between data in the time series. Furthermore, the use of detrend and deseasonalization which separates the data into trend, seasonal and stationary time series also improve the prediction performance both on original and filled dataset. The optimal number of increase on the dataset in this experiment is about five times of the length of original dataset.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Big Data Tools market size is anticipated to grow from USD 31.5 billion in 2023 to USD 103.5 billion by 2032, at a compound annual growth rate (CAGR) of 14.5%. This robust growth can be attributed to several key factors, including the increasing volume of data generated across various industries, advancements in data analytics technologies, and the growing demand for data-driven decision-making. The proliferation of IoT devices, the rise of artificial intelligence, and the emphasis on enhancing customer experience further drive the expansion of the Big Data Tools market worldwide.
The exponential increase in data generation is one of the foremost drivers of the Big Data Tools market. With the rise of digital transformation initiatives, industries are generating massive amounts of data every second. From social media interactions to transactional data and from IoT sensors to operational data, the volume, variety, and velocity of data have escalated to unprecedented levels. Organizations are increasingly recognizing the potential of leveraging this data to gain actionable insights, optimize operations, and drive business growth, thus fueling the demand for advanced Big Data tools and technologies.
Another significant growth factor is the technological advancements in data analytics and machine learning. Big Data tools have evolved from traditional data warehousing and analytics platforms to sophisticated solutions incorporating artificial intelligence and machine learning. These advancements enable organizations to perform predictive and prescriptive analytics, uncover hidden patterns, and make data-driven decisions with greater accuracy and speed. The continuous innovation and integration of advanced technologies into Big Data tools are propelling their adoption across various sectors.
The increasing emphasis on enhancing customer experience is also driving the Big Data Tools market. Businesses are leveraging Big Data analytics to gain deeper insights into customer behavior, preferences, and sentiment. By analyzing this data, organizations can personalize their offerings, improve customer engagement, and deliver superior experiences. In sectors such as retail, banking, and healthcare, the ability to understand and predict customer needs has become a competitive differentiator, leading to significant investments in Big Data tools to achieve these objectives.
Data Mining Tools play a pivotal role in the Big Data landscape by enabling organizations to extract valuable insights from vast datasets. These tools are designed to sift through large volumes of data, identify patterns, and uncover relationships that might not be immediately apparent. By leveraging advanced algorithms and statistical techniques, Data Mining Tools help businesses make informed decisions, optimize processes, and enhance strategic planning. As the volume of data continues to grow exponentially, the demand for robust and efficient Data Mining Tools is on the rise, driving innovation and competition in the market. Companies are increasingly investing in these tools to gain a competitive edge and unlock the full potential of their data assets.
From a regional perspective, North America is expected to dominate the Big Data Tools market, primarily due to the presence of leading technology companies, early adoption of advanced analytics solutions, and significant investments in data-driven initiatives. However, the Asia Pacific region is anticipated to witness the highest growth rate during the forecast period. The rapid digitalization of economies, increasing internet penetration, and the burgeoning e-commerce sector are driving the demand for Big Data tools in this region. Additionally, governments in countries like China and India are promoting data analytics and AI, further boosting the market's growth prospects.
The Big Data Tools market is segmented by component into software and services. The software segment includes various types of Big Data platforms and analytics tools. These software solutions are designed to handle, process, and analyze large volumes of structured and unstructured data. Key offerings within this segment include data storage solutions, data processing frameworks, data visualization tools, and advanced analytics software. The continuous innovation in software capabilities, such as real-time data analytics and AI integration, is driving the growth of this segment.
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the global Data Mining Software market size will be USD XX million in 2025. It will expand at a compound annual growth rate (CAGR) of XX% from 2025 to 2031.
North America held the major market share for more than XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Europe accounted for a market share of over XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Asia Pacific held a market share of around XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Latin America had a market share of more than XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Middle East and Africa had a market share of around XX% of the global revenue and was estimated at a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. KEY DRIVERS
Increasing Focus on Customer Satisfaction to Drive Data Mining Software Market Growth
In today’s hyper-competitive and digitally connected marketplace, customer satisfaction has emerged as a critical factor for business sustainability and growth. The growing focus on enhancing customer satisfaction is proving to be a significant driver in the expansion of the data mining software market. Organizations are increasingly leveraging data mining tools to sift through vast volumes of customer data—ranging from transactional records and website activity to social media engagement and call center logs—to uncover insights that directly influence customer experience strategies. Data mining software empowers companies to analyze customer behavior patterns, identify dissatisfaction triggers, and predict future preferences. Through techniques such as classification, clustering, and association rule mining, businesses can break down large datasets to understand what customers want, what they are likely to purchase next, and how they feel about the brand. These insights not only help in refining customer service but also in shaping product development, pricing strategies, and promotional campaigns. For instance, Netflix uses data mining to recommend personalized content by analyzing a user's viewing history, ratings, and preferences. This has led to increased user engagement and retention, highlighting how a deep understanding of customer preferences—made possible through data mining—can translate into competitive advantage. Moreover, companies are increasingly using these tools to create highly targeted and customer-specific marketing campaigns. By mining data from e-commerce transactions, browsing behavior, and demographic profiles, brands can tailor their offerings and communications to suit individual customer segments. For Instance Amazon continuously mines customer purchasing and browsing data to deliver personalized product recommendations, tailored promotions, and timely follow-ups. This not only enhances customer satisfaction but also significantly boosts conversion rates and average order value. According to a report by McKinsey, personalization can deliver five to eight times the ROI on marketing spend and lift sales by 10% or more—a powerful incentive for companies to adopt data mining software as part of their customer experience toolkit. (Source: https://www.mckinsey.com/capabilities/growth-marketing-and-sales/our-insights/personalizing-at-scale#/) The utility of data mining tools extends beyond e-commerce and streaming platforms. In the banking and financial services industry, for example, institutions use data mining to analyze customer feedback, call center transcripts, and usage data to detect pain points and improve service delivery. Bank of America, for instance, utilizes data mining and predictive analytics to monitor customer interactions and provide proactive service suggestions or fraud alerts, significantly improving user satisfaction and trust. (Source: https://futuredigitalfinance.wbresearch.com/blog/bank-of-americas-erica-client-interactions-future-ai-in-banking) Similarly, telecom companies like Vodafone use data mining to understand customer churn behavior and implement retention strategies based on insights drawn from service usage patterns and complaint histories. In addition to p...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data Analysis is the process that supports decision-making and informs arguments in empirical studies. Descriptive statistics, Exploratory Data Analysis (EDA), and Confirmatory Data Analysis (CDA) are the approaches that compose Data Analysis (Xia & Gong; 2014). An Exploratory Data Analysis (EDA) comprises a set of statistical and data mining procedures to describe data. We ran EDA to provide statistical facts and inform conclusions. The mined facts allow attaining arguments that would influence the Systematic Literature Review of DL4SE.
The Systematic Literature Review of DL4SE requires formal statistical modeling to refine the answers for the proposed research questions and formulate new hypotheses to be addressed in the future. Hence, we introduce DL4SE-DA, a set of statistical processes and data mining pipelines that uncover hidden relationships among Deep Learning reported literature in Software Engineering. Such hidden relationships are collected and analyzed to illustrate the state-of-the-art of DL techniques employed in the software engineering context.
Our DL4SE-DA is a simplified version of the classical Knowledge Discovery in Databases, or KDD (Fayyad, et al; 1996). The KDD process extracts knowledge from a DL4SE structured database. This structured database was the product of multiple iterations of data gathering and collection from the inspected literature. The KDD involves five stages:
Selection. This stage was led by the taxonomy process explained in section xx of the paper. After collecting all the papers and creating the taxonomies, we organize the data into 35 features or attributes that you find in the repository. In fact, we manually engineered features from the DL4SE papers. Some of the features are venue, year published, type of paper, metrics, data-scale, type of tuning, learning algorithm, SE data, and so on.
Preprocessing. The preprocessing applied was transforming the features into the correct type (nominal), removing outliers (papers that do not belong to the DL4SE), and re-inspecting the papers to extract missing information produced by the normalization process. For instance, we normalize the feature “metrics” into “MRR”, “ROC or AUC”, “BLEU Score”, “Accuracy”, “Precision”, “Recall”, “F1 Measure”, and “Other Metrics”. “Other Metrics” refers to unconventional metrics found during the extraction. Similarly, the same normalization was applied to other features like “SE Data” and “Reproducibility Types”. This separation into more detailed classes contributes to a better understanding and classification of the paper by the data mining tasks or methods.
Transformation. In this stage, we omitted to use any data transformation method except for the clustering analysis. We performed a Principal Component Analysis to reduce 35 features into 2 components for visualization purposes. Furthermore, PCA also allowed us to identify the number of clusters that exhibit the maximum reduction in variance. In other words, it helped us to identify the number of clusters to be used when tuning the explainable models.
Data Mining. In this stage, we used three distinct data mining tasks: Correlation Analysis, Association Rule Learning, and Clustering. We decided that the goal of the KDD process should be oriented to uncover hidden relationships on the extracted features (Correlations and Association Rules) and to categorize the DL4SE papers for a better segmentation of the state-of-the-art (Clustering). A clear explanation is provided in the subsection “Data Mining Tasks for the SLR od DL4SE”. 5.Interpretation/Evaluation. We used the Knowledge Discover to automatically find patterns in our papers that resemble “actionable knowledge”. This actionable knowledge was generated by conducting a reasoning process on the data mining outcomes. This reasoning process produces an argument support analysis (see this link).
We used RapidMiner as our software tool to conduct the data analysis. The procedures and pipelines were published in our repository.
Overview of the most meaningful Association Rules. Rectangles are both Premises and Conclusions. An arrow connecting a Premise with a Conclusion implies that given some premise, the conclusion is associated. E.g., Given that an author used Supervised Learning, we can conclude that their approach is irreproducible with a certain Support and Confidence.
Support = Number of occurrences this statement is true divided by the amount of statements Confidence = The support of the statement divided by the number of occurrences of the premise
Journal of Big Data Impact Factor 2024-2025 - ResearchHelpDesk - The Journal of Big Data publishes high-quality, scholarly research papers, methodologies and case studies covering a broad range of topics, from big data analytics to data-intensive computing and all applications of big data research. The journal examines the challenges facing big data today and going forward including, but not limited to: data capture and storage; search, sharing, and analytics; big data technologies; data visualization; architectures for massively parallel processing; data mining tools and techniques; machine learning algorithms for big data; cloud computing platforms; distributed file systems and databases; and scalable storage systems. Academic researchers and practitioners will find the Journal of Big Data to be a seminal source of innovative material. All articles published by the Journal of Big Data are made freely and permanently accessible online immediately upon publication, without subscription charges or registration barriers. As authors of articles published in the Journal of Big Data you are the copyright holders of your article and have granted to any third party, in advance and in perpetuity, the right to use, reproduce or disseminate your article, according to the SpringerOpen copyright and license agreement. For those of you who are US government employees or are prevented from being copyright holders for similar reasons, SpringerOpen can accommodate non-standard copyright lines.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data set belongs to the paper "Video-to-Model: Unsupervised Trace Extraction from Videos for Process Discovery and Conformance Checking in Manual Assembly", submitted on March 24, 2020, to the 18th International Conference on Business Process Management (BPM).Abstract: Manual activities are often hidden deep down in discrete manufacturing processes. For the elicitation and optimization of process behavior, complete information about the execution of Manual activities are required. Thus, an approach is presented on how execution level information can be extracted from videos in manual assembly. The goal is the generation of a log that can be used in state-of-the-art process mining tools. The test bed for the system was lightweight and scalable consisting of an assembly workstation equipped with a single RGB camera recording only the hand movements of the worker from top. A neural network based real-time object classifier was trained to detect the worker’s hands. The hand detector delivers the input for an algorithm, which generates trajectories reflecting the movement paths of the hands. Those trajectories are automatically assigned to work steps using the position of material boxes on the assembly shelf as reference points and hierarchical clustering of similar behaviors with dynamic time warping. The system has been evaluated in a task-based study with ten participants in a laboratory, but under realistic conditions. The generated logs have been loaded into the process mining toolkit ProM to discover the underlying process model and to detect deviations from both, instructions and ground truth, using conformance checking. The results show that process mining delivers insights about the assembly process and the system’s precision.The data set contains the generated and the annotated logs based on the video material gathered during the user study. In addition, the petri nets from the process discovery and conformance checking conducted with ProM (http://www.promtools.org) and the reference nets modeled with Yasper (http://www.yasper.org/) are provided.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Analytical methods for food control are mainly focused on restricted lists of well-known contaminants. This paper shows that liquid chromatography–high-resolution mass spectrometry (LC/ESI-HRMS) associated with the data mining tools developed for metabolomics can address this issue by enabling (i) targeted analyses of pollutants, (ii) detection of untargeted and unknown xenobiotics, and (iii) detection of metabolites useful for the characterization of food matrices. A proof-of-concept study was performed on 76 honey samples. Targeted analysis indicated that 35 of 83 targeted molecules were detected in the 76 honey samples at concentrations below regulatory limits. Furthermore, untargeted metabolomic-like analyses highlighted 12 chlorinated xenobiotics, 1 of which was detected in lavender honey samples and identified as 2,6-dichlorobenzamide, a metabolite of dichlobenil, a pesticide banned in France since 2010. Lastly, multivariate statistical analyses discriminated honey samples according to their floral origin, and six discriminating metabolites were characterized thanks to the MS/MS experiments.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global mining tools market size was valued at USD 190.31 billion in 2023 and is projected to grow from USD 191.07 billion in 2025 to USD 239.84 billion by 2033, exhibiting a CAGR of 3.0% during the forecast period (2023-2033). The growth of the market can be attributed to the rising demand for minerals and metals, increasing mining activities, and technological advancements in mining equipment. The underground mining segment held the largest market share in 2023, and it is expected to continue its dominance over the forecast period. The growth of this segment can be attributed to the increasing adoption of underground mining methods due to safety concerns and environmental regulations. The tool kit segment is anticipated to register the highest CAGR during the forecast period due to the rising preference for complete tool kits over single tools. The Asia Pacific region is expected to be the fastest-growing region in the mining tools market during the forecast period, primarily driven by the increasing mining activities in countries like China, India, and Australia.
https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Data Science Platform Market Size 2025-2029
The data science platform market size is valued to increase USD 763.9 million, at a CAGR of 40.2% from 2024 to 2029. Integration of AI and ML technologies with data science platforms will drive the data science platform market.
Major Market Trends & Insights
North America dominated the market and accounted for a 48% growth during the forecast period.
By Deployment - On-premises segment was valued at USD 38.70 million in 2023
By Component - Platform segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 1.00 million
Market Future Opportunities: USD 763.90 million
CAGR : 40.2%
North America: Largest market in 2023
Market Summary
The market represents a dynamic and continually evolving landscape, underpinned by advancements in core technologies and applications. Key technologies, such as machine learning and artificial intelligence, are increasingly integrated into data science platforms to enhance predictive analytics and automate data processing. Additionally, the emergence of containerization and microservices in data science platforms enables greater flexibility and scalability. However, the market also faces challenges, including data privacy and security risks, which necessitate robust compliance with regulations.
According to recent estimates, the market is expected to account for over 30% of the overall big data analytics market by 2025, underscoring its growing importance in the data-driven business landscape.
What will be the Size of the Data Science Platform Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the Data Science Platform Market Segmented and what are the key trends of market segmentation?
The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Deployment
On-premises
Cloud
Component
Platform
Services
End-user
BFSI
Retail and e-commerce
Manufacturing
Media and entertainment
Others
Sector
Large enterprises
SMEs
Application
Data Preparation
Data Visualization
Machine Learning
Predictive Analytics
Data Governance
Others
Geography
North America
US
Canada
Europe
France
Germany
UK
Middle East and Africa
UAE
APAC
China
India
Japan
South America
Brazil
Rest of World (ROW)
By Deployment Insights
The on-premises segment is estimated to witness significant growth during the forecast period.
In the dynamic and evolving the market, big data processing is a key focus, enabling advanced model accuracy metrics through various data mining methods. Distributed computing and algorithm optimization are integral components, ensuring efficient handling of large datasets. Data governance policies are crucial for managing data security protocols and ensuring data lineage tracking. Software development kits, model versioning, and anomaly detection systems facilitate seamless development, deployment, and monitoring of predictive modeling techniques, including machine learning algorithms, regression analysis, and statistical modeling. Real-time data streaming and parallelized algorithms enable real-time insights, while predictive modeling techniques and machine learning algorithms drive business intelligence and decision-making.
Cloud computing infrastructure, data visualization tools, high-performance computing, and database management systems support scalable data solutions and efficient data warehousing. ETL processes and data integration pipelines ensure data quality assessment and feature engineering techniques. Clustering techniques and natural language processing are essential for advanced data analysis. The market is witnessing significant growth, with adoption increasing by 18.7% in the past year, and industry experts anticipate a further expansion of 21.6% in the upcoming period. Companies across various sectors are recognizing the potential of data science platforms, leading to a surge in demand for scalable, secure, and efficient solutions.
API integration services and deep learning frameworks are gaining traction, offering advanced capabilities and seamless integration with existing systems. Data security protocols and model explainability methods are becoming increasingly important, ensuring transparency and trust in data-driven decision-making. The market is expected to continue unfolding, with ongoing advancements in technology and evolving business needs shaping its future trajectory.
Request Free Sample
The On-premises segment was valued at USD 38.70 million in 2019 and showed
International Journal of Engineering and Advanced Technology Publication fee - ResearchHelpDesk - International Journal of Engineering and Advanced Technology (IJEAT) is having Online-ISSN 2249-8958, bi-monthly international journal, being published in the months of February, April, June, August, October, and December by Blue Eyes Intelligence Engineering & Sciences Publication (BEIESP) Bhopal (M.P.), India since the year 2011. It is academic, online, open access, double-blind, peer-reviewed international journal. It aims to publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. All submitted papers will be reviewed by the board of committee of IJEAT. Aim of IJEAT Journal disseminate original, scientific, theoretical or applied research in the field of Engineering and allied fields. dispense a platform for publishing results and research with a strong empirical component. aqueduct the significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. seek original and unpublished research papers based on theoretical or experimental works for the publication globally. publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. impart a platform for publishing results and research with a strong empirical component. create a bridge for a significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. solicit original and unpublished research papers, based on theoretical or experimental works. Scope of IJEAT International Journal of Engineering and Advanced Technology (IJEAT) covers all topics of all engineering branches. Some of them are Computer Science & Engineering, Information Technology, Electronics & Communication, Electrical and Electronics, Electronics and Telecommunication, Civil Engineering, Mechanical Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. The main topic includes but not limited to: 1. Smart Computing and Information Processing Signal and Speech Processing Image Processing and Pattern Recognition WSN Artificial Intelligence and machine learning Data mining and warehousing Data Analytics Deep learning Bioinformatics High Performance computing Advanced Computer networking Cloud Computing IoT Parallel Computing on GPU Human Computer Interactions 2. Recent Trends in Microelectronics and VLSI Design Process & Device Technologies Low-power design Nanometer-scale integrated circuits Application specific ICs (ASICs) FPGAs Nanotechnology Nano electronics and Quantum Computing 3. Challenges of Industry and their Solutions, Communications Advanced Manufacturing Technologies Artificial Intelligence Autonomous Robots Augmented Reality Big Data Analytics and Business Intelligence Cyber Physical Systems (CPS) Digital Clone or Simulation Industrial Internet of Things (IIoT) Manufacturing IOT Plant Cyber security Smart Solutions – Wearable Sensors and Smart Glasses System Integration Small Batch Manufacturing Visual Analytics Virtual Reality 3D Printing 4. Internet of Things (IoT) Internet of Things (IoT) & IoE & Edge Computing Distributed Mobile Applications Utilizing IoT Security, Privacy and Trust in IoT & IoE Standards for IoT Applications Ubiquitous Computing Block Chain-enabled IoT Device and Data Security and Privacy Application of WSN in IoT Cloud Resources Utilization in IoT Wireless Access Technologies for IoT Mobile Applications and Services for IoT Machine/ Deep Learning with IoT & IoE Smart Sensors and Internet of Things for Smart City Logic, Functional programming and Microcontrollers for IoT Sensor Networks, Actuators for Internet of Things Data Visualization using IoT IoT Application and Communication Protocol Big Data Analytics for Social Networking using IoT IoT Applications for Smart Cities Emulation and Simulation Methodologies for IoT IoT Applied for Digital Contents 5. Microwaves and Photonics Microwave filter Micro Strip antenna Microwave Link design Microwave oscillator Frequency selective surface Microwave Antenna Microwave Photonics Radio over fiber Optical communication Optical oscillator Optical Link design Optical phase lock loop Optical devices 6. Computation Intelligence and Analytics Soft Computing Advance Ubiquitous Computing Parallel Computing Distributed Computing Machine Learning Information Retrieval Expert Systems Data Mining Text Mining Data Warehousing Predictive Analysis Data Management Big Data Analytics Big Data Security 7. Energy Harvesting and Wireless Power Transmission Energy harvesting and transfer for wireless sensor networks Economics of energy harvesting communications Waveform optimization for wireless power transfer RF Energy Harvesting Wireless Power Transmission Microstrip Antenna design and application Wearable Textile Antenna Luminescence Rectenna 8. Advance Concept of Networking and Database Computer Network Mobile Adhoc Network Image Security Application Artificial Intelligence and machine learning in the Field of Network and Database Data Analytic High performance computing Pattern Recognition 9. Machine Learning (ML) and Knowledge Mining (KM) Regression and prediction Problem solving and planning Clustering Classification Neural information processing Vision and speech perception Heterogeneous and streaming data Natural language processing Probabilistic Models and Methods Reasoning and inference Marketing and social sciences Data mining Knowledge Discovery Web mining Information retrieval Design and diagnosis Game playing Streaming data Music Modelling and Analysis Robotics and control Multi-agent systems Bioinformatics Social sciences Industrial, financial and scientific applications of all kind 10. Advanced Computer networking Computational Intelligence Data Management, Exploration, and Mining Robotics Artificial Intelligence and Machine Learning Computer Architecture and VLSI Computer Graphics, Simulation, and Modelling Digital System and Logic Design Natural Language Processing and Machine Translation Parallel and Distributed Algorithms Pattern Recognition and Analysis Systems and Software Engineering Nature Inspired Computing Signal and Image Processing Reconfigurable Computing Cloud, Cluster, Grid and P2P Computing Biomedical Computing Advanced Bioinformatics Green Computing Mobile Computing Nano Ubiquitous Computing Context Awareness and Personalization, Autonomic and Trusted Computing Cryptography and Applied Mathematics Security, Trust and Privacy Digital Rights Management Networked-Driven Multicourse Chips Internet Computing Agricultural Informatics and Communication Community Information Systems Computational Economics, Digital Photogrammetric Remote Sensing, GIS and GPS Disaster Management e-governance, e-Commerce, e-business, e-Learning Forest Genomics and Informatics Healthcare Informatics Information Ecology and Knowledge Management Irrigation Informatics Neuro-Informatics Open Source: Challenges and opportunities Web-Based Learning: Innovation and Challenges Soft computing Signal and Speech Processing Natural Language Processing 11. Communications Microstrip Antenna Microwave Radar and Satellite Smart Antenna MIMO Antenna Wireless Communication RFID Network and Applications 5G Communication 6G Communication 12. Algorithms and Complexity Sequential, Parallel And Distributed Algorithms And Data Structures Approximation And Randomized Algorithms Graph Algorithms And Graph Drawing On-Line And Streaming Algorithms Analysis Of Algorithms And Computational Complexity Algorithm Engineering Web Algorithms Exact And Parameterized Computation Algorithmic Game Theory Computational Biology Foundations Of Communication Networks Computational Geometry Discrete Optimization 13. Software Engineering and Knowledge Engineering Software Engineering Methodologies Agent-based software engineering Artificial intelligence approaches to software engineering Component-based software engineering Embedded and ubiquitous software engineering Aspect-based software engineering Empirical software engineering Search-Based Software engineering Automated software design and synthesis Computer-supported cooperative work Automated software specification Reverse engineering Software Engineering Techniques and Production Perspectives Requirements engineering Software analysis, design and modelling Software maintenance and evolution Software engineering tools and environments Software engineering decision support Software design patterns Software product lines Process and workflow management Reflection and metadata approaches Program understanding and system maintenance Software domain modelling and analysis Software economics Multimedia and hypermedia software engineering Software engineering case study and experience reports Enterprise software, middleware, and tools Artificial intelligent methods, models, techniques Artificial life and societies Swarm intelligence Smart Spaces Autonomic computing and agent-based systems Autonomic computing Adaptive Systems Agent architectures, ontologies, languages and protocols Multi-agent systems Agent-based learning and knowledge discovery Interface agents Agent-based auctions and marketplaces Secure mobile and multi-agent systems Mobile agents SOA and Service-Oriented Systems Service-centric software engineering Service oriented requirements engineering Service oriented architectures Middleware for service based systems Service discovery and composition Service level
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global data mining tools market is projected to grow at a CAGR of 6.4% from 2025 to 2033, owing to the increasing adoption of data mining techniques across various industries. The market size is expected to reach $571.4 million by 2033, from $365.1 million in 2025. The growth is attributed to the increasing demand for data-driven insights to make informed decisions, the rising adoption of cloud-based data mining tools, and the increasing need for fraud detection and risk management. Key trends in the data mining tools market include the increasing adoption of artificial intelligence (AI) and machine learning (ML) techniques to enhance data mining capabilities, the growing popularity of open-source data mining tools, and the emergence of self-service data mining solutions. The market is fragmented, with several players offering a wide range of data mining tools. However, the top vendors, such as IBM, SAS Institute, Oracle, Microsoft, and Teradata, hold a significant market share. They offer comprehensive data mining solutions that cater to the needs of various industries.