Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: This LCMS CONUS Cause of Change image service has been deprecated. It has been replaced by the LCMS CONUS Annual Change image service, which provides updated and consolidated change data.Please refer to the new service here: https://usfs.maps.arcgis.com/home/item.html?id=085626ec50324e5e9ad6323c050ac84dThis product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS change attribution classes for each year. See additional information about change in the Entity_and_Attribute_Information or Fields section below.LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades.Predictor layers for the LCMS model include outputs from the LandTrendr and CCDC change detection algorithms and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock, 2012), cloudScore, and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). LandTrendr, CCDC and terrain predictors can be used as independent predictor variables in a Random Forest (Breiman, 2001) model. LandTrendr predictor variables include fitted values, pair-wise differences, segment duration, change magnitude, and slope. CCDC predictor variables include CCDC sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences from the Julian Day of each pixel used in the annual composites and LandTrendr. Terrain predictor variables include elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the USGS 3D Elevation Program (3DEP) (U.S. Geological Survey, 2019). Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss (not included for PRUSVI), fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the time series and serve as the foundational products for LCMS. References: Breiman, L. (2001). Random Forests. In Machine Learning (Vol. 45, pp. 5-32). https://doi.org/10.1023/A:1010933404324Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379-390. https://doi.org/10.1016/j.rse.2017.03.026Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. In Remote Sensing of Environment (Vol. 148, pp. 42-57). https://doi.org/10.1016/j.rse.2014.02.015Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research (Vol. 12, pp. 2825-2830).Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T. A., Yang, Z., Cohen, W. B., Healey, S. P., and Loveland, T. R. (2020). Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program. In Remote Sensing of Environment (Vol. 238, p. 111261). https://doi.org/10.1016/j.rse.2019.111261U.S. Geological Survey. (2019). USGS 3D Elevation Program Digital Elevation Model, accessed August 2022 at https://developers.google.com/earth-engine/datasets/catalog/USGS_3DEP_10mWeiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CAZhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.
Facebook
TwitterSemantic technology plays a key role in various domains, from conversation understanding to algorithm analysis. As the most efficient semantic tool, ontology can represent, process and manage the widespread knowledge. Nowadays, many researchers use ontology to collect and organize data's semantic information in order to maximize research productivity. In this paper, we firstly describe our work on the development of a remote sensing data ontology, with a primary focus on semantic fusion-driven research for big data. Our ontology is made up of 1,264 concepts and 2,030 semantic relationships. However, the growth of big data is straining the capacities of current semantic fusion and reasoning practices. Considering the massive parallelism of DNA strands, we propose a novel DNA-based semantic fusion model. In this model, a parallel strategy is developed to encode the semantic information in DNA for a large volume of remote sensing data. The semantic information is read in a parallel and bit-wise manner and an individual bit is converted to a base. By doing so, a considerable amount of conversion time can be saved, i.e., the cluster-based multi-processes program can reduce the conversion time from 81,536 seconds to 4,937 seconds for 4.34 GB source data files. Moreover, the size of result file recording DNA sequences is 54.51 GB for parallel C program compared with 57.89 GB for sequential Perl. This shows that our parallel method can also reduce the DNA synthesis cost. In addition, data types are encoded in our model, which is a basis for building type system in our future DNA computer. Finally, we describe theoretically an algorithm for DNA-based semantic fusion. This algorithm enables the process of integration of the knowledge from disparate remote sensing data sources into a consistent, accurate, and complete representation. This process depends solely on ligation reaction and screening operations instead of the ontology.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Welcome to the CloudNet repository. This project provides a cloud detection dataset and a pre-trained model designed to enhance object detection accuracy in remote sensing aerial images, particularly in challenging cloud-covered scenarios. The dataset comprises two classes: cloud and non-cloud images, sourced from the publicly available Maxar "Hurricane Ian" repository.
The CloudNet dataset consists of cloud and non-cloud images, facilitating research in cloud detection for object detection in remote sensing imagery.
The CloudNet model is a pre-trained model specifically designed for cloud detection in remote sensing imagery. It is trained on the CloudNet dataset and serves as a valuable tool for enhancing object detection accuracy in the presence of clouds.
You can download the pre-trained CloudNet model weights from the following link: CloudNet Model Weights
If you find the CloudNet dataset or model useful in your research, please cite our work using the following BibTeX entry:
@INPROCEEDINGS{10747011,
author={Haque, Mohd Ariful and Rifat, Rakib Hossain and Kamal, Marufa and George, Roy and Gupta, Kishor Datta and Shujaee, Khalil},
booktitle={2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)},
title={CDD & CloudNet: A Benchmark Dataset & Model for Object Detection Performance},
year={2024},
volume={},
number={},
pages={118-122},
abstract={Aerial imagery obtained through remote sensing is extensively utilized across diverse industries, particularly for object detection applications where it has demonstrated considerable efficacy. However, clouds in these images can obstruct evaluation and detection tasks. This study therefore involved the compilation of a cloud dataset, which categorized images into two classes: those containing clouds and those without. These images were sourced from the publicly available Maxar ‘Hurricane Ian’ repository, which contains images from various natural events. We demonstrated the impact of cloud removal during pre-processing on object detection using this dataset and employed six CNN models, including a custom model, for cloud detection benchmarking. These models were used to detect objects in aerial images from two other events in the Maxar dataset. Our results show significant improvements in precision, recall, and F1-score for CNN models, along with optimized training times for object detection in the CloudNet+YOLO combination. The findings demonstrate the effectiveness of our approach in improving object detection accuracy and efficiency in remote sensing imagery, particularly in challenging cloud-covered scenarios.},
keywords={Training;Industries;Accuracy;Object detection;Benchmark testing;Data science;Data models;Remote sensing;Cloud Detection;Dataset;Deep Learning;CNN;ResNet;Vgg16;DenseNet169;EfficientNet;MobileNet},
doi={10.1109/IDSTA62194.2024.10747011},
ISSN={},
month={Sep.},}
The CloudNet dataset and model are released under the License.
Facebook
Twitterhttp://www.gnu.org/licenses/gpl-3.0.en.htmlhttp://www.gnu.org/licenses/gpl-3.0.en.html
In order to improve the capacity of storage, exploration and processing of sensor data, a spatial DBMS was used and the Aquopts system was implemented.
In field surveys using different sensors on the aquatic environment, the existence of spatial attributes in the dataset is common, motivating the adoption of PostgreSQL and its spatial extension PostGIS. To enable the insertion of new data sets as well as new devices and sensing equipment, the database was modeled to support updates and provide structures for storing all the data collected in the field campaigns in conjunction with other possible future data sources. The database model provides resources to manage spatial and temporal data and allows flexibility to select and filter the dataset.
The data model ensures the storage integrity of the information related to the samplings performed during the field survey in an architecture that benefits the organization and management of the data. However, in addition to the storage specified on the data model, there are several procedures that need to be applied to the data to prepare it for analysis. Some validations are important to identify spurious data that may represent important sources of information about data quality. Other corrections are essential to tweak the data and eliminate undesirable effects. Some equations can be used to produce other factors that can be obtained from the combination of attributes. In general, the processing steps comprise a cycle of important operations that are directly related to the characteristics of the data set. Considering the data of the sensors stored in the database, an interactive prototype system, named Aquopts, was developed to perform the necessary standardization and basic corrections and produce useful data for analysis, according to the correction methods known in the literature.
The system provides resources for the analyst to automate the process of reading, inserting, integrating, interpolating, correcting, and other calculations that are always repeated after exporting field campaign data and producing new data sets. All operations and processing required for data integration and correction have been implemented from the PHP and Python language and are available from a Web interface, which can be accessed from any computer connected to the internet. The data access cab be access online (http://sertie.fct.unesp.br/aquopts), but the resources are restricted by registration and permissions for each user. After their identification, the system evaluates the access permissions and makes available the options of insertion of new datasets.
The source-code of the entire Aquopts system are available at: https://github.com/carmoafc/aquopts
The system and additional results were described on the official paper (under review)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Soil moisture is an important factor affecting the change of land surface hydrological processes and the distribution of material and energy exchanges between the land and atmosphere and vegetation’s temporal and spatial distributions, especially in arid and semi-arid regions. This paper focuses on soil moisture features across Northwest China, the core region of the Silk Road Economic Belt. Six soil moisture datasets from the period 1981–2020 were employed, which included ERA5 (the European Centre for Medium-Range Weather Forecasts Atmospheric Reanalysis 5), ESA-CCI (European Space Agency Climate Change Initiative), GLDAS (Global Land Data Assimilation System), MERRA-2 (The Modern-Era Retrospective Analysis for Research and Applications, Version 2), RSSSM (A Remote Sensing-based global 10-day resolution Surface Soil Moisture dataset), and SSM-Feng (Regional multimodal fusion of surface soil moisture data in China). The temporal and spatial variation of the linear trend and abrupt change characteristics at seasonal and annual scale were explored. The results are as follows: 1) ESA-CCI, GLDAS, and MERRA-2 showed a slow increase in annual soil moisture tendency at a rate of less than 0.001 m3/m3/year, while ERA5 and SSM-Feng showed a significant decreasing linear trend at a rate of 1.31 × 10−4 m3/m3/year and 1.01 × 10−4 m3/m3/year (p < 0.05), respectively. 2) In autumn and winter, only GLDAS and MERRA-2 showed significant increasing trends. In the growing season (i.e., from April to October), the soil moisture of ESA-CCI, GLDAS, and MERRA-2 significantly increased at the rates of 3.29 × 10−4 m3/m3/year, 3.30 × 10−4 m3/m3/year, and 6.64 × 10−4 m3/m3/year (p < 0.05), respectively. 3) ERA5 and ESA-CCI have frequent abrupt changes in 1984, 1987, and 2006 for ERA5, 2010–2012 and 2019–2020 for ESA-CCI. 4) In terms of spatial variations, most datasets show that soil moisture has increased across most regions. The ERA5, ESA-CCI, GLDAS, MERRA-2, and SSM-Feng datasets show decreased soil moisture in the Tarim Basin. The conclusions of this study deepen the understanding of temporal and spatial variation in soil moisture in arid areas of Northwest China. Through these conclusions, a certain theoretical basis can be provided for the complex water cycle process in the arid region.
Facebook
TwitterThis is accompanying data produced for the study "Implications of Model Selection: Inter-Comparison of Publicly-Available, CONUS-Extent Hydrologic Component Estimates". These datasets were converted from their primary structures (rasters and shapefiles) to EPA Ecoregions Level I. Conversion was performed by averaging timestep layers via mean area weight to produce a single vector of monthly values for each ecoregion, for each of the following hydrologic cycle components: precipitation (P), actual evapotranspiration (AET), runoff (R), snow water equivalent (SWE), rootzone soil moisture in equivalent water depth (RZSME), and rootzone soil moisture in volumetric water content (RZSMV).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
With the gradual maturity of UAV technology
Facebook
TwitterThis dataset is a dedicated inversion result dataset for forest aboveground biomass (AGB) in Daxing District, Beijing. Its core data source is high-resolution satellite imagery from Gaofen-7, aiming to provide accurate spatial distribution data of forest AGB for regional forest carbon stock monitoring, carbon dynamics research, and carbon storage capacity assessment. Meanwhile, it can serve as basic data support for forest ecosystem management, remote sensing inversion model validation, and related work.The dataset covers the entire forest ecosystem of Daxing District, Beijing. The AGB inversion results are presented as raster data in TIFF format, with a spatial resolution consistent with the precision of Gaofen-7 satellite imagery, which can clearly reflect the spatial heterogeneity of forest AGB in the region. These inversion results are generated based on multi-dimensional remote sensing features modeling. In the early stage, key features were extracted from the preprocessed Gaofen-7 satellite data, including texture features (calculated based on the Gray-Level Co-occurrence Matrix) that reflect forest structure, visible spectral vegetation indices that characterize vegetation growth status, and original three-band RGB spectral information, laying a solid feature foundation for accurate inversion.During the modeling process, three single machine learning algorithms—Random Forest (RF), Gradient Boosting Tree (GBT), and XGBoost—were compared, and the Stacking ensemble learning method was adopted to optimize model performance. Finally, the inversion results of the Stacking ensemble model were selected as the core content of the dataset. Verified by five-fold cross-validation, the coefficient of determination (R²) of this core result reaches 0.6229, the root mean square error (RMSE) is 57.34 Mg/ha, and the mean absolute error (MAE) is 39.99 Mg/ha. Compared with the best-performing single algorithm (XGBoost, R²=0.5852), its accuracy is improved by 6.44%, and it effectively solves the common overestimation or underestimation problems of AGB in traditional modeling. The reliability and accuracy of the data have been strictly verified, which can meet the needs of regional-scale forest AGB-related research and applications.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
THIS IS A DRAFT VERSION! All layers are visible in this linked webgis app. The layers available in this dataset are in a WGS84 geographic coordinate reference system (EPSG:4326) where latitude and longitude coordinates at 0.0009 degrees ground sampling distance per cell, which corresponds to about 1 ha, i.e. ~100 m x ~100 m at the equator, but decreases in area with increasing latitude as the coordinate system is not equal-area, e.g. ~70 m at 45° latitude and ~50 m at 60° latitude. Aspect, slope and elevation represent Earth surface morphology Biomass - Biomass values at year 2020 Mg/ha Canopy Base Height - Height of canopy from the ground (m) Canopy Bulk Density - amount of canopy biomass per volume of canopy (kg/m3) Fuel Model FuelModelClasses - the category of Fuel Model according to Aragonese et al. 2023 DOI: 10.5194/essd-15-1287-2023 - values are from 1 to 24, with a Look Up Table for correspondence (values are ordered matching the order in table 1 of the article) . FuelModelClasses CLR/QML - style file for QGIS FuelModelPercent - the percent of fuel model category belonging to that pixel, between 0 and 100 FuelModelAllPerc - multi-band raster with percent of each fuel model category to belong to each pixel.
Facebook
Twitterhttps://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.11588/DATA/UYSAA5https://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.11588/DATA/UYSAA5
Public urban green spaces are important for the urban quality of life. Still, comprehensive open data sets on urban green spaces are not available for most cities. As open and globally available data sets the potential of Sentinel-2 satellite imagery and OpenStreetMap (OSM) data for urban green space mapping is high but limited due to their respective uncertainties. Sentinel-2 imagery cannot distinguish public from private green spaces and its spatial resolution of 10 meters fails to capture fine-grained urban structures, while in OSM green spaces are not mapped consistently and with the same level of completeness everywhere. To address these limitations we propose to fuse these data sets under explicit consideration of their uncertainties. The Sentinel-2 derived Normalized Difference Vegetation Index was fused with OSM data using the Dempster-Shafer theory to enhance the detection of small vegetated areas. The distinction between public and private green spaces was achieved using a Bayesian hierarchical model and OSM data. The analysis was performed based on land use parcels derived from OSM data and tested for the city of Dresden, Germany. The overall accuracy of the final map of public urban green spaces was 95\%, which was mainly influenced by the uncertainty of the public accessibility model.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset includes multimodal annotated data for remote sensing of Maya archaeology and is suitable for deep learning. The dataset covers the area around Chactún, one of the largest ancient Maya urban centres in the central Yucatán peninsula.It includes five types of data:high-resolution airborne laser scanning (ALS, lidar) data visualisations (sky view factor, positive openness, slope),high-resolution airborne laser scanning derived canopy height model,Sentinel-1 Short Aperture Radar (SAR) satellite data (yearly average Sigma0),Sentine-2 optical satellite data (12 bands + cloud mask, 17 dates), andmanual data annotations.The manual annotations (used as binary masks) represent three different types of ancient Maya structures (class labels: buildings, platforms, and aguadas – artificial reservoirs) within the study area, their exact locations, and boundaries.The dataset is ready for use with convolutional neural networks (CNNs) for object recognition, object localization (detection), and semantic segmentation. The dataset has already been used for the Discover the Mysteries of the Maya computer vision competition.We would like to provide this dataset to help more research teams develop their own computer vision models for investigations of Maya archaeology or improve existing ones.A detailed description of the datasets has been published by Kokalj, Ž., Džeroski, S., Šprajc, I. et al. Machine learning-ready remote sensing data for Maya archaeology. Scientific Data 10, 558 (2023). https://doi.org/10.1038/s41597-023-02455-xThe authors and institutions they are affiliated with exclude all liability for any reliance on the data.
Facebook
TwitterThis dataset provides annual estimates of active layer thickness (ALT) at 1 km resolution across Alaska from 2001-2015. The ALT was estimated using a remote sensing-based soil process model incorporating global satellite data from Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) and snow cover extent (SCE), and Soil Moisture Active and Passive (SMAP) satellite soil moisture records. The study area covers the majority land area of Alaska except for areas of perennial ice/snow cover or open water. The ALT was defined as the maximum soil thawing depth throughout the year. The mean ALT and mean uncertainty from 2001 to 2015 are also provided.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Remote sensing derived variables and descriptions.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Lake bed elevation model of Lake Urmia. In the course of model generation, a time series of the extent of the lake surface was derived from 129 satellite images with different acquisition dates based on the Landsat sensors Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI). Due to the rapid shrinking of the lake during the last two decades, lake surface areas ranging from 890 km² to 6125 km² could be covered. The water edge of the various lake extents was then linked to the observed water level on the day of the satellite image acquisition. The resulting contour lines, covering water levels between 1270.04 m and 1278.42 m a.s.l. and thus representing the lakebed morphology in its shallow parts, were merged with existing data (deeper parts) and interpolated to generate a lake bed elevation model with a resolution of 30 × 30 m.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Overview:
The Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure and vegetation. The original GLO-30 provides worldwide coverage at 30 meters (refers to 10 arc seconds). Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs. Note that the vertical unit for measurement of elevation height is meters.
The Copernicus DEM for Europe at 3 arcsec (0:00:03 = 0.00083333333 ~ 90 meter) in COG format has been derived from the Copernicus DEM GLO-30, mirrored on Open Data on AWS, dataset managed by Sinergise (https://registry.opendata.aws/copernicus-dem/).
Processing steps:
The original Copernicus GLO-30 DEM contains a relevant percentage of tiles with non-square pixels. We created a mosaic map in VRT format and defined within the VRT file the rule to apply cubic resampling while reading the data, i.e. importing them into GRASS GIS for further processing. We chose cubic instead of bilinear resampling since the height-width ratio of non-square pixels is up to 1:5. Hence, artefacts between adjacent tiles in rugged terrain could be minimized:
gdalbuildvrt -input_file_list list_geotiffs_MOOD.csv -r cubic -tr 0.000277777777777778 0.000277777777777778 Copernicus_DSM_30m_MOOD.vrt
In order to reduce the spatial resolution to 3 arc seconds, weighted resampling was performed in GRASS GIS (using r.resamp.stats -w and the pixel values were scaled with 1000 (storing the pixels as integer values) for data volume reduction. In addition, a hillshade raster map was derived from the resampled elevation map (using r.relief, GRASS GIS). Eventually, we exported the elevation and hillshade raster maps in Cloud Optimized GeoTIFF (COG) format, along with SLD and QML style files.
Projection + EPSG code:
Latitude-Longitude/WGS84 (EPSG: 4326)
Spatial extent:
north: 82:00:30N
south: 18N
west: 32:00:30W
east: 70E
Spatial resolution:
3 arc seconds (approx. 90 m)
Pixel values:
meters * 1000 (scaled to Integer; example: value 23220 = 23.220 m a.s.l.)
Software used:
GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief)
Original dataset license:
https://spacedata.copernicus.eu/documents/20126/0/CSCDA_ESA_Mission-specific+Annex.pdf
Processed by:
mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)
Facebook
TwitterThis product set contains high-resolution Interferometric Synthetic Aperture Radar (IFSAR) imagery and geospatial data for the Barrow Peninsula (155.39 - 157.48 deg W, 70.86 - 71.47 deg N) and Barrow Triangle (156.13 - 157.08 deg W, 71.14 - 71.42 deg N), for use in Geographic Information Systems (GIS) and remote sensing software. The primary IFSAR data sets were acquired by Intermap Technologies from 27 to 29 July 2002, and consist of Orthorectified Radar Imagery (ORRI), a Digital Surface Model (DSM), and a Digital Terrain Model (DTM). Derived data layers include aspect, shaded relief, and slope-angle grids (floating-point binary and ArcInfo grid format), as well as a vector layer of contour lines (ESRI Shapefile format). Also available are accessory layers compiled from other sources: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); a quarter-quadrangle index map for the 26 IFSAR tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow Peninsula (ESRI Shapefile format). Unmodified IFSAR data comprise 26 data tiles across UTM zones 4 and 5. The DSM and DTM tiles (5 m resolution) are provided in floating-point binary format with header and projection files. The ORRI tiles (1.25 m resolution) are available in GeoTIFF format. FGDC-compliant metadata for all data sets are provided in text, HTML, and XML formats, along with the Intermap License Agreement and product handbook. The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are provided on five DVDs, available through licensing only to National Science Foundation (NSF)-funded investigators. An NSF award number must be provided when ordering data.
Facebook
Twitter7.5 Minute Digital Elevation Model for the state of Arizona. Digital Elevation Model (DEM) is the terminology adopted by the USGS to describe terrain elevation data sets in a digital raster form. The standard DEM consists of a regular array of elevations cast on a designated coordinate projection system. The DEM data are stored as a series of profiles in which the spacing of the elevations along and between each profile is in regular whole number intervals. The normal orientation of data is by columns and rows. Each column contains a series of elevations ordered from south to north with the order of the columns from west to east. The DEM is formatted as one ASCII header record (A-record), followed by a series of profile records (B-records) each of which include a short B-record header followed by a series of ASCII integer elevations per each profile. The last physical record of the DEM is an accuracy record (C-record). The DEM for 7.5-minute units correspond to the USGS 1:24000 scale topographic quadrangle map series for all of the United States and its territories. Each 7.5 minute DEM is based on 30- by 30-meter data spacing with Universal Transverse Mercator(UTM) projection. Each 7.5- by 7.5-minute block provides the same coverage as the standard USGS 7.5-minute map series.
Facebook
TwitterRemote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our objective was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). To meet this objective we developed the first national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. We tested how plant community composition and vegetation structure differences across estuaries influence model development, and whether data from multiple sensors, in particular Sentinel-1 C-band synthetic aperture radar and Landsat, can improve model performance. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n=409, RMSE=464 g/m2, 12.2% normalized RMSE), successfully predicted biomass and carbon for a range of marsh plant functional types defined by height, leaf angle and growth form. Model error was reduced by scaling field measured biomass by Landsat fraction green vegetation derived from object-based classification of National Agriculture Imagery Program imagery. We generated 30m resolution biomass maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map for each region. With a mean plant %C of 44.1% (n=1384, 95% C.I.=43.99% - 44.37%) we estimated mean aboveground carbon densities (Mg/ha) and total carbon stocks for each wetland type for each region. We applied a multivariate delta method to calculate uncertainties in regional carbon estimates that considered standard error in map area, mean biomass and mean %C. The original version 1.0 of the dataset can be obtained by contacting kbyrd@usgs.gov.
Facebook
TwitterThis is a Digital Elevation Model (DEM) of the Barrow Biocomplexity study area. Light Detection and Ranging (LIDAR) data were acquired by AeroMetric at an altitude of approximately 600 meters above mean terrain using an Optech 70 kHz Airborne Laser Terrain Mapper (ALTM 30/70) on board a twin engine Cesna 310 aircraft. The system was configured with a differential global positioning system (DGPS) and a 200 Hz inertial measurements system (IMU) that were used to improve the accuracy of ground data.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Ecological modeling requires sufficient spatial resolution and a careful selection of environmental variables to achieve good predictive performance. Although national and international administrations offer fine-scale environmental data, they usually have limited spatial coverage (country or continent). Alternatively, optical and radar satellite imagery is available with high resolutions, global coverage and frequent revisit intervals. Here, we compared the performance of ecological models trained with free satellite data with models fitted using regionally restricted spatial datasets. We developed brown bear habitat suitability and connectivity models from three datasets with different spatial coverage and accessibility. These datasets comprised (1) a Sentinel-1 and 2 land cover map (global coverage); (2) pan-European vegetation and land cover layers (continental coverage); and (3) LiDAR data and the Forest Map of Spain (national coverage). Results show that Sentinel imagery and pan-European datasets are powerful sources to estimate vegetation variables for habitat and connectivity modeling. However, Sentinel data could be limited for understanding precise habitat–species associations if the derived discrete variables do not distinguish a wide range of vegetation types. Therefore, more effort should be taken to improving the thematic resolution of satellite-derived vegetation variables. Our findings support the application of ecological modeling worldwide and can help select spatial datasets according to their coverage and resolution for habitat suitability and connectivity modeling.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: This LCMS CONUS Cause of Change image service has been deprecated. It has been replaced by the LCMS CONUS Annual Change image service, which provides updated and consolidated change data.Please refer to the new service here: https://usfs.maps.arcgis.com/home/item.html?id=085626ec50324e5e9ad6323c050ac84dThis product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS change attribution classes for each year. See additional information about change in the Entity_and_Attribute_Information or Fields section below.LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades.Predictor layers for the LCMS model include outputs from the LandTrendr and CCDC change detection algorithms and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock, 2012), cloudScore, and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). LandTrendr, CCDC and terrain predictors can be used as independent predictor variables in a Random Forest (Breiman, 2001) model. LandTrendr predictor variables include fitted values, pair-wise differences, segment duration, change magnitude, and slope. CCDC predictor variables include CCDC sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences from the Julian Day of each pixel used in the annual composites and LandTrendr. Terrain predictor variables include elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the USGS 3D Elevation Program (3DEP) (U.S. Geological Survey, 2019). Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss (not included for PRUSVI), fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the time series and serve as the foundational products for LCMS. References: Breiman, L. (2001). Random Forests. In Machine Learning (Vol. 45, pp. 5-32). https://doi.org/10.1023/A:1010933404324Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379-390. https://doi.org/10.1016/j.rse.2017.03.026Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. In Remote Sensing of Environment (Vol. 148, pp. 42-57). https://doi.org/10.1016/j.rse.2014.02.015Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research (Vol. 12, pp. 2825-2830).Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T. A., Yang, Z., Cohen, W. B., Healey, S. P., and Loveland, T. R. (2020). Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program. In Remote Sensing of Environment (Vol. 238, p. 111261). https://doi.org/10.1016/j.rse.2019.111261U.S. Geological Survey. (2019). USGS 3D Elevation Program Digital Elevation Model, accessed August 2022 at https://developers.google.com/earth-engine/datasets/catalog/USGS_3DEP_10mWeiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CAZhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.