Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Dana population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Dana. The dataset can be utilized to understand the population distribution of Dana by age. For example, using this dataset, we can identify the largest age group in Dana.
Key observations
The largest age group in Dana, IN was for the group of age 25 to 29 years years with a population of 88 (13.54%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Dana, IN was the 70 to 74 years years with a population of 5 (0.77%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Dana Population by Age. You can refer the same here
https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/RCHDXXhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/RCHDXX
This dataset contains replication files for "A Practical Method to Reduce Privacy Loss when Disclosing Statistics Based on Small Samples" by Raj Chetty and John Friedman. For more information, see https://opportunityinsights.org/paper/differential-privacy/. A summary of the related publication follows. Releasing statistics based on small samples – such as estimates of social mobility by Census tract, as in the Opportunity Atlas – is very valuable for policy but can potentially create privacy risks by unintentionally disclosing information about specific individuals. To mitigate such risks, we worked with researchers at the Harvard Privacy Tools Project and Census Bureau staff to develop practical methods of reducing the risks of privacy loss when releasing such data. This paper describes the methods that we developed, which can be applied to disclose any statistic of interest that is estimated using a sample with a small number of observations. We focus on the case where the dataset can be broken into many groups (“cells”) and one is interested in releasing statistics for one or more of these cells. Building on ideas from the differential privacy literature, we add noise to the statistic of interest in proportion to the statistic’s maximum observed sensitivity, defined as the maximum change in the statistic from adding or removing a single observation across all the cells in the data. Intuitively, our approach permits the release of statistics in arbitrarily small samples by adding sufficient noise to the estimates to protect privacy. Although our method does not offer a formal privacy guarantee, it generally outperforms widely used methods of disclosure limitation such as count-based cell suppression both in terms of privacy loss and statistical bias. We illustrate how the method can be implemented by discussing how it was used to release estimates of social mobility by Census tract in the Opportunity Atlas. We also provide a step-by-step guide and illustrative Stata code to implement our approach.
Terms of UseData Limitations and DisclaimerThe user’s use of and/or reliance on the information contained in the Document shall be at the user’s own risk and expense. MassDEP disclaims any responsibility for any loss or harm that may result to the user of this data or to any other person due to the user’s use of the Document.This is an ongoing data development project. Attempts have been made to contact all PWS systems, but not all have responded with information on their service area. MassDEP will continue to collect and verify this information. Some PWS service areas included in this datalayer have not been verified by the PWS or the municipality involved, but since many of those areas are based on information published online by the municipality, the PWS, or in a publicly available report, they are included in the estimated PWS service area datalayer.Please note: All PWS service area delineations are estimates for broad planning purposes and should only be used as a guide. The data is not appropriate for site-specific or parcel-specific analysis. Not all properties within a PWS service area are necessarily served by the system, and some properties outside the mapped service areas could be served by the PWS – please contact the relevant PWS. Not all service areas have been confirmed by the systems.Please use the following citation to reference these data:MassDEP, Water Utility Resilience Program. 2025. Community and Non-Transient Non-Community Public Water System Service Area (PubV2025_3).IMPORTANT NOTICE: This MassDEP Estimated Water Service datalayer may not be complete, may contain errors, omissions, and other inaccuracies and the data are subject to change. This version is published through MassGIS. We want to learn about the data uses. If you use this dataset, please notify staff in the Water Utility Resilience Program (WURP@mass.gov).This GIS datalayer represents approximate service areas for Public Water Systems (PWS) in Massachusetts. In 2017, as part of its “Enhancing Resilience and Emergency Preparedness of Water Utilities through Improved Mapping” (Critical Infrastructure Mapping Project ), the MassDEP Water Utility Resilience Program (WURP) began to uniformly map drinking water service areas throughout Massachusetts using information collected from various sources. Along with confirming existing public water system (PWS) service area information, the project collected and verified estimated service area delineations for PWSs not previously delineated and will continue to update the information contained in the datalayers. As of the date of publication, WURP has delineated Community (COM) and Non-Transient Non-Community (NTNC) service areas. Transient non-community (TNCs) are not part of this mapping project.Layers and Tables:The MassDEP Estimated Public Water System Service Area data comprises two polygon feature classes and a supporting table. Some data fields are populated from the MassDEP Drinking Water Program’s Water Quality Testing System (WQTS) and Annual Statistical Reports (ASR).The Community Water Service Areas feature class (PWS_WATER_SERVICE_AREA_COMM_POLY) includes polygon features that represent the approximate service areas for PWS classified as Community systems.The NTNC Water Service Areas feature class (PWS_WATER_SERVICE_AREA_NTNC_POLY) includes polygon features that represent the approximate service areas for PWS classified as Non-Transient Non-Community systems.The Unlocated Sites List table (PWS_WATER_SERVICE_AREA_USL) contains a list of known, unmapped active Community and NTNC PWS services areas at the time of publication.ProductionData UniversePublic Water Systems in Massachusetts are permitted and regulated through the MassDEP Drinking Water Program. The WURP has mapped service areas for all active and inactive municipal and non-municipal Community PWSs in MassDEP’s Water Quality Testing Database (WQTS). Community PWS refers to a public water system that serves at least 15 service connections used by year-round residents or regularly serves at least 25 year-round residents.All active and inactive NTNC PWS were also mapped using information contained in WQTS. An NTNC or Non-transient Non-community Water System refers to a public water system that is not a community water system and that has at least 15 service connections or regularly serves at least 25 of the same persons or more approximately four or more hours per day, four or more days per week, more than six months or 180 days per year, such as a workplace providing water to its employees.These data may include declassified PWSs. Staff will work to rectify the status/water services to properties previously served by declassified PWSs and remove or incorporate these service areas as needed.Maps of service areas for these systems were collected from various online and MassDEP sources to create service areas digitally in GIS. Every PWS is assigned a unique PWSID by MassDEP that incorporates the municipal ID of the municipality it serves (or the largest municipality it serves if it serves multiple municipalities). Some municipalities contain more than one PWS, but each PWS has a unique PWSID. The Estimated PWS Service Area datalayer, therefore, contains polygons with a unique PWSID for each PWS service area.A service area for a community PWS may serve all of one municipality (e.g. Watertown Water Department), multiple municipalities (e.g. Abington-Rockland Joint Water Works), all or portions of two or more municipalities (e.g. Provincetown Water Dept which serves all of Provincetown and a portion of Truro), or a portion of a municipality (e.g. Hyannis Water System, which is one of four PWSs in the town of Barnstable).Some service areas have not been mapped but their general location is represented by a small circle which serves as a placeholder. The location of these circles are estimates based on the general location of the source wells or the general estimated location of the service area - these do not represent the actual service area.Service areas were mapped initially from 2017 to 2022 and reflect varying years for which service is implemented for that service area boundary. WURP maintains the dataset quarterly with annual data updates; however, the dataset may not include all current active PWSs. A list of unmapped PWS systems is included in the USL table PWS_WATER_SERVICE_AREA_USL available for download with the dataset. Some PWSs that are not mapped may have come online after this iteration of the mapping project; these will be reconciled and mapped during the next phase of the WURP project. PWS IDs that represent regional or joint boards with (e.g. Tri Town Water Board, Randolph/Holbrook Water Board, Upper Cape Regional Water Cooperative) will not be mapped because their individual municipal service areas are included in this datalayer.PWSs that do not have corresponding sources, may be part of consecutive systems, may have been incorporated into another PWSs, reclassified as a different type of PWS, or otherwise taken offline. PWSs that have been incorporated, reclassified, or taken offline will be reconciled during the next data update.Methodologies and Data SourcesSeveral methodologies were used to create service area boundaries using various sources, including data received from the systems in response to requests for information from the MassDEP WURP project, information on file at MassDEP, and service area maps found online at municipal and PWS websites. When provided with water line data rather than generalized areas, 300-foot buffers were created around the water lines to denote service areas and then edited to incorporate generalizations. Some municipalities submitted parcel data or address information to be used in delineating service areas.Verification ProcessSmall-scale PDF file maps with roads and other infrastructure were sent to every PWS for corrections or verifications. For small systems, such as a condominium complex or residential school, the relevant parcels were often used as the basis for the delineated service area. In towns where 97% or more of their population is served by the PWS and no other service area delineation was available, the town boundary was used as the service area boundary. Some towns responded to the request for information or verification of service areas by stating that the town boundary should be used since all or nearly all of the municipality is served by the PWS.Sources of information for estimated drinking water service areasThe following information was used to develop estimated drinking water service areas:EOEEA Water Assets Project (2005) water lines (these were buffered to create service areas)Horsely Witten Report 2008Municipal Master Plans, Open Space Plans, Facilities Plans, Water Supply System Webpages, reports and online interactive mapsGIS data received from PWSDetailed infrastructure mapping completed through the MassDEP WURP Critical Infrastructure InitiativeIn the absence of other service area information, for municipalities served by a town-wide water system serving at least 97% of the population, the municipality’s boundary was used. Determinations of which municipalities are 97% or more served by the PWS were made based on the Percent Water Service Map created in 2018 by MassDEP based on various sources of information including but not limited to:The Winter population served submitted by the PWS in the ASR submittalThe number of services from WQTS as a percent of developed parcelsTaken directly from a Master Plan, Water Department Website, Open Space Plan, etc. found onlineCalculated using information from the town on the population servedMassDEP staff estimateHorsely Witten Report 2008Calculation based on Water System Areas Mapped through MassDEP WURP Critical Infrastructure Initiative, 2017-2022Information found in publicly available PWS planning documents submitted to MassDEP or as part of infrastructure planningMaintenanceThe
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Coups d'Ètat are important events in the life of a country. They constitute an important subset of irregular transfers of political power that can have significant and enduring consequences for national well-being. There are only a limited number of datasets available to study these events (Powell and Thyne 2011, Marshall and Marshall 2019). Seeking to facilitate research on post-WWII coups by compiling a more comprehensive list and categorization of these events, the Cline Center for Advanced Social Research (previously the Cline Center for Democracy) initiated the Coup d’État Project as part of its Societal Infrastructures and Development (SID) project. More specifically, this dataset identifies the outcomes of coup events (i.e., realized, unrealized, or conspiracy) the type of actor(s) who initiated the coup (i.e., military, rebels, etc.), as well as the fate of the deposed leader. Version 2.1.3 adds 19 additional coup events to the data set, corrects the date of a coup in Tunisia, and reclassifies an attempted coup in Brazil in December 2022 to a conspiracy. Version 2.1.2 added 6 additional coup events that occurred in 2022 and updated the coding of an attempted coup event in Kazakhstan in January 2022. Version 2.1.1 corrected a mistake in version 2.1.0, where the designation of “dissident coup” had been dropped in error for coup_id: 00201062021. Version 2.1.1 fixed this omission by marking the case as both a dissident coup and an auto-coup. Version 2.1.0 added 36 cases to the data set and removed two cases from the v2.0.0 data. This update also added actor coding for 46 coup events and added executive outcomes to 18 events from version 2.0.0. A few other changes were made to correct inconsistencies in the coup ID variable and the date of the event. Version 2.0.0 improved several aspects of the previous version (v1.0.0) and incorporated additional source material to include: • Reconciling missing event data • Removing events with irreconcilable event dates • Removing events with insufficient sourcing (each event needs at least two sources) • Removing events that were inaccurately coded as coup events • Removing variables that fell below the threshold of inter-coder reliability required by the project • Removing the spreadsheet ‘CoupInventory.xls’ because of inadequate attribution and citations in the event summaries • Extending the period covered from 1945-2005 to 1945-2019 • Adding events from Powell and Thyne’s Coup Data (Powell and Thyne, 2011)
Items in this Dataset 1. Cline Center Coup d'État Codebook v.2.1.3 Codebook.pdf - This 15-page document describes the Cline Center Coup d’État Project dataset. The first section of this codebook provides a summary of the different versions of the data. The second section provides a succinct definition of a coup d’état used by the Coup d'État Project and an overview of the categories used to differentiate the wide array of events that meet the project's definition. It also defines coup outcomes. The third section describes the methodology used to produce the data. Revised February 2024 2. Coup Data v2.1.3.csv - This CSV (Comma Separated Values) file contains all of the coup event data from the Cline Center Coup d’État Project. It contains 29 variables and 1000 observations. Revised February 2024 3. Source Document v2.1.3.pdf - This 325-page document provides the sources used for each of the coup events identified in this dataset. Please use the value in the coup_id variable to identify the sources used to identify that particular event. Revised February 2024 4. README.md - This file contains useful information for the user about the dataset. It is a text file written in markdown language. Revised February 2024
Citation Guidelines 1. To cite the codebook (or any other documentation associated with the Cline Center Coup d’État Project Dataset) please use the following citation: Peyton, Buddy, Joseph Bajjalieh, Dan Shalmon, Michael Martin, Jonathan Bonaguro, and Scott Althaus. 2024. “Cline Center Coup d’État Project Dataset Codebook”. Cline Center Coup d’État Project Dataset. Cline Center for Advanced Social Research. V.2.1.3. February 27. University of Illinois Urbana-Champaign. doi: 10.13012/B2IDB-9651987_V7 2. To cite data from the Cline Center Coup d’État Project Dataset please use the following citation (filling in the correct date of access): Peyton, Buddy, Joseph Bajjalieh, Dan Shalmon, Michael Martin, Jonathan Bonaguro, and Emilio Soto. 2024. Cline Center Coup d’État Project Dataset. Cline Center for Advanced Social Research. V.2.1.3. February 27. University of Illinois Urbana-Champaign. doi: 10.13012/B2IDB-9651987_V7
This dataset contains daily and sub-daily hydrometeorological and soil moisture observations from COSMOS-UK (cosmic-ray soil moisture) monitoring network from October 2013 to the end of 2022. These data are from 51 sites across the UK recording a range of hydrometeorological and soil variables. Each site in the network records the following hydrometeorological and soil data at 30-minute resolution: Radiation (short wave, long wave, and net), precipitation, atmospheric pressure, air temperature, wind speed and direction, humidity, soil heat flux, and soil temperature and volumetric water content (VWC), measured by point sensors at various depths. Each site hosts a cosmic-ray sensing probe; a novel sensor technology which counts fast neutrons in the surrounding atmosphere. In combination with the recorded hydrometeorological data, neutron counts are used to derive VWC over a field scale (COSMOS VWC), at two temporal resolutions (hourly and daily). The presence of snow leads to erroneously high measurements of COSMOS VWC due to all the extra water in the surrounding area. Included in the daily data are indications of snow days, on which, the COSMOS VWC are adjusted, and the snow water equivalent (SWE) is given. The potential evapotranspiration (PE), derived from recorded hydrometeorological and soil are also included at daily resolution. Two levels of quality control are carried out, firstly data is run through a series of automated checks, such as range tests and spike tests, and then all data is manually inspected each week where any other faults are picked up, including sensor faults or connection issues. Quality control flags are provided for all recorded (30 minute) data, indicating the reason for any missing data. This work was supported by the Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCAPE programme delivering National Capability.
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Italian Extraction Type Prompt-Response Dataset, a meticulously curated collection of 1500 prompt and response pairs. This dataset is a valuable resource for enhancing the data extraction abilities of Language Models (LMs), a critical aspect in advancing generative AI.
Dataset Content:This extraction dataset comprises a diverse set of prompts and responses where the prompt contains input text, extraction instruction, constraints, and restrictions while completion contains the most accurate extraction data for the given prompt. Both these prompts and completions are available in Italian language.
These prompt and completion pairs cover a broad range of topics, including science, history, technology, geography, literature, current affairs, and more. Each prompt is accompanied by a response, providing valuable information and insights to enhance the language model training process. Both the prompt and response were manually curated by native Italian people, and references were taken from diverse sources like books, news articles, websites, and other reliable references.
This dataset encompasses various prompt types, including instruction type, continuation type, and in-context learning (zero-shot, few-shot) type. Additionally, you'll find prompts and responses containing rich text elements, such as tables, code, JSON, etc., all in proper markdown format.
Prompt Diversity:To ensure diversity, this extraction dataset includes prompts with varying complexity levels, ranging from easy to medium and hard. Additionally, prompts are diverse in terms of length from short to medium and long, creating a comprehensive variety. The extraction dataset also contains prompts with constraints and persona restrictions, which makes it even more useful for LLM training.
Response Formats:To accommodate diverse learning experiences, our dataset incorporates different types of responses depending on the prompt. These formats include single-word, short phrase, single sentence, and paragraph type of response. These responses encompass text strings, numerical values, and date and time, enhancing the language model's ability to generate reliable, coherent, and contextually appropriate answers.
Data Format and Annotation Details:This fully labeled Italian Extraction Prompt Completion Dataset is available in JSON and CSV formats. It includes annotation details such as a unique ID, prompt, prompt type, prompt length, prompt complexity, domain, response, response type, and rich text presence.
Quality and Accuracy:Our dataset upholds the highest standards of quality and accuracy. Each prompt undergoes meticulous validation, and the corresponding responses are thoroughly verified. We prioritize inclusivity, ensuring that the dataset incorporates prompts and completions representing diverse perspectives and writing styles, maintaining an unbiased and discrimination-free stance.
The Italian version is grammatically accurate without any spelling or grammatical errors. No copyrighted, toxic, or harmful content is used during the construction of this dataset.
Continuous Updates and Customization:The entire dataset was prepared with the assistance of human curators from the FutureBeeAI crowd community. Ongoing efforts are made to add more assets to this dataset, ensuring its growth and relevance. Additionally, FutureBeeAI offers the ability to gather custom extraction prompt and completion data tailored to specific needs, providing flexibility and customization options.
License:The dataset, created by FutureBeeAI, is now available for commercial use. Researchers, data scientists, and developers can leverage this fully labeled and ready-to-deploy Italian Extraction Prompt-Completion Dataset to enhance the data extraction abilities and accurate response generation capabilities of their generative AI models and explore new approaches to NLP tasks.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Union town population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Union town across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Union town was 597, a 0.34% increase year-by-year from 2021. Previously, in 2021, Union town population was 595, an increase of 0.51% compared to a population of 592 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Union town decreased by 16. In this period, the peak population was 637 in the year 2019. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Union town Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Nowata County population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Nowata County across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Nowata County was 9,483, a 1.02% increase year-by-year from 2021. Previously, in 2021, Nowata County population was 9,387, an increase of 0.70% compared to a population of 9,322 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Nowata County decreased by 1,101. In this period, the peak population was 10,807 in the year 2003. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Nowata County Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the New Haven population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for New Haven. The dataset can be utilized to understand the population distribution of New Haven by age. For example, using this dataset, we can identify the largest age group in New Haven.
Key observations
The largest age group in New Haven, IL was for the group of age 20-24 years with a population of 105 (25.86%), according to the 2021 American Community Survey. At the same time, the smallest age group in New Haven, IL was the 30-34 years with a population of 0 (0.00%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for New Haven Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Alexandria population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Alexandria across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Alexandria was 14,861, a 1.96% increase year-by-year from 2021. Previously, in 2021, Alexandria population was 14,576, an increase of 1.38% compared to a population of 14,377 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Alexandria increased by 4,479. In this period, the peak population was 14,861 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Alexandria Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Bluford population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Bluford across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Bluford was 610, a 1.45% decrease year-by-year from 2021. Previously, in 2021, Bluford population was 619, a decline of 0.48% compared to a population of 622 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Bluford decreased by 184. In this period, the peak population was 794 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Bluford Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Wallace population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Wallace across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Wallace was 80, a 0.00% decrease year-by-year from 2021. Previously, in 2021, Wallace population was 80, a decline of 1.23% compared to a population of 81 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Wallace decreased by 39. In this period, the peak population was 119 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Wallace Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Forest Hills population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Forest Hills. The dataset can be utilized to understand the population distribution of Forest Hills by age. For example, using this dataset, we can identify the largest age group in Forest Hills.
Key observations
The largest age group in Forest Hills, NC was for the group of age 20 to 24 years years with a population of 75 (20.49%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Forest Hills, NC was the Under 5 years years with a population of 4 (1.09%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Forest Hills Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Woodinville population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Woodinville across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Woodinville was 13,261, a 1.39% decrease year-by-year from 2021. Previously, in 2021, Woodinville population was 13,448, a decline of 0.22% compared to a population of 13,478 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Woodinville increased by 3,456. In this period, the peak population was 13,478 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Woodinville Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Broadalbin population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Broadalbin across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Broadalbin was 1,352, a 0.52% decrease year-by-year from 2021. Previously, in 2021, Broadalbin population was 1,359, a decline of 0.22% compared to a population of 1,362 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Broadalbin decreased by 63. In this period, the peak population was 1,415 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Broadalbin Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Garden City township population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Garden City township across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Garden City township was 842, a 0.36% decrease year-by-year from 2021. Previously, in 2021, Garden City township population was 845, a decline of 0.12% compared to a population of 846 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Garden City township increased by 151. In this period, the peak population was 846 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Garden City township Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Lexington population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Lexington. The dataset can be utilized to understand the population distribution of Lexington by age. For example, using this dataset, we can identify the largest age group in Lexington.
Key observations
The largest age group in Lexington, OK was for the group of age 65 to 69 years years with a population of 202 (10.09%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Lexington, OK was the 80 to 84 years years with a population of 34 (1.70%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lexington Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Sweetwater population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Sweetwater. The dataset can be utilized to understand the population distribution of Sweetwater by age. For example, using this dataset, we can identify the largest age group in Sweetwater.
Key observations
The largest age group in Sweetwater, FL was for the group of age 50-54 years with a population of 2,057 (10.59%), according to the 2021 American Community Survey. At the same time, the smallest age group in Sweetwater, FL was the 80-84 years with a population of 352 (1.81%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Sweetwater Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Aiken County population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Aiken County. The dataset can be utilized to understand the population distribution of Aiken County by age. For example, using this dataset, we can identify the largest age group in Aiken County.
Key observations
The largest age group in Aiken County, SC was for the group of age 60 to 64 years years with a population of 12,505 (7.27%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Aiken County, SC was the 80 to 84 years years with a population of 3,628 (2.11%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Aiken County Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Triadelphia population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Triadelphia across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Triadelphia was 654, a 1.36% decrease year-by-year from 2021. Previously, in 2021, Triadelphia population was 663, a decline of 1.04% compared to a population of 670 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Triadelphia decreased by 240. In this period, the peak population was 897 in the year 2006. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Triadelphia Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Dana population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Dana. The dataset can be utilized to understand the population distribution of Dana by age. For example, using this dataset, we can identify the largest age group in Dana.
Key observations
The largest age group in Dana, IN was for the group of age 25 to 29 years years with a population of 88 (13.54%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Dana, IN was the 70 to 74 years years with a population of 5 (0.77%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Dana Population by Age. You can refer the same here