Facebook
TwitterDescription: This dataset is created solely for the purpose of practice and learning. It contains entirely fake and fabricated information, including names, phone numbers, emails, cities, ages, and other attributes. None of the information in this dataset corresponds to real individuals or entities. It serves as a resource for those who are learning data manipulation, analysis, and machine learning techniques. Please note that the data is completely fictional and should not be treated as representing any real-world scenarios or individuals.
Attributes: - phone_number: Fake phone numbers in various formats. - name: Fictitious names generated for practice purposes. - email: Imaginary email addresses created for the dataset. - city: Made-up city names to simulate geographical diversity. - age: Randomly generated ages for practice analysis. - sex: Simulated gender values (Male, Female). - married_status: Synthetic marital status information. - job: Fictional job titles for practicing data analysis. - income: Fake income values for learning data manipulation. - religion: Pretend religious affiliations for practice. - nationality: Simulated nationalities for practice purposes.
Please be aware that this dataset is not based on real data and should be used exclusively for educational purposes.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sample data for exercises in Further Adventures in Data Cleaning.
Facebook
TwitterThis dataset was created by Martin Kanju
Released under Other (specified in description)
Facebook
Twitterhttps://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Sample Sales Data is a retail sales dataset of 2,823 orders and 25 columns that includes a variety of sales-related data, including order numbers, product information, quantity, unit price, sales, order date, order status, customer and delivery information.
2) Data Utilization (1) Sample Sales Data has characteristics that: • This dataset consists of numerical (sales, quantity, unit price, etc.), categorical (product, country, city, customer name, transaction size, etc.), and date (order date) variables, with missing values in some columns (STATE, ADDRESSLINE2, POSTALCODE, etc.). (2) Sample Sales Data can be used to: • Analysis of sales trends and performance by product: Key variables such as order date, product line, and country can be used to visualize and analyze monthly and yearly sales trends, the proportion of sales by product line, and top sales by country and region. • Segmentation and marketing strategies: Segmentation of customer groups based on customer information, transaction size, and regional data, and use them to design targeted marketing and customized promotion strategies.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Each R script replicates all of the example code from one chapter from the book. All required data for each script are also uploaded, as are all data used in the practice problems at the end of each chapter. The data are drawn from a wide array of sources, so please cite the original work if you ever use any of these data sets for research purposes.
Facebook
TwitterThis is a dataset downloaded off excelbianalytics.com created off of random VBA logic. I recently performed an extensive exploratory data analysis on it and I included new columns to it, namely: Unit margin, Order year, Order month, Order weekday and Order_Ship_Days which I think can help with analysis on the data. I shared it because I thought it was a great dataset to practice analytical processes on for newbies like myself.
Facebook
TwitterExcel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
N.B. This is not real data. Only here for an example for project templates.
Project Title: Add title here
Project Team: Add contact information for research project team members
Summary: Provide a descriptive summary of the nature of your research project and its aims/focal research questions.
Relevant publications/outputs: When available, add links to the related publications/outputs from this data.
Data availability statement: If your data is not linked on figshare directly, provide links to where it is being hosted here (i.e., Open Science Framework, Github, etc.). If your data is not going to be made publicly available, please provide details here as to the conditions under which interested individuals could gain access to the data and how to go about doing so.
Data collection details: 1. When was your data collected? 2. How were your participants sampled/recruited?
Sample information: How many and who are your participants? Demographic summaries are helpful additions to this section.
Research Project Materials: What materials are necessary to fully reproduce your the contents of your dataset? Include a list of all relevant materials (e.g., surveys, interview questions) with a brief description of what is included in each file that should be uploaded alongside your datasets.
List of relevant datafile(s): If your project produces data that cannot be contained in a single file, list the names of each of the files here with a brief description of what parts of your research project each file is related to.
Data codebook: What is in each column of your dataset? Provide variable names as they are encoded in your data files, verbatim question associated with each response, response options, details of any post-collection coding that has been done on the raw-response (and whether that's encoded in a separate column).
Examples available at: https://www.thearda.com/data-archive?fid=PEWMU17 https://www.thearda.com/data-archive?fid=RELLAND14
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Unlocking Data to Inform Public Health Policy and Practice: WP1 Mapping Review Supplementary Excel S1
The data extracted into Excel Tab "S1 Case studies (extracted)" represents information from 31 case studies as part of the "Unlocking Data to Inform Public Health Policy and Practice" project, Workpackage (WP) 1 Mapping Review.
Details about the WP1 mapping review can be found in the "Unlocking Data to Inform Public Health Policy and Practice" project report, which can be found via this DOI link: https://doi.org/10.15131/shef.data.21221606
Facebook
TwitterThe dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.
The full-population dataset (with about 10 million individuals) is also distributed as open data.
The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.
Household, Individual
The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.
ssd
The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.
other
The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.
The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.
This is a synthetic dataset; the "response rate" is 100%.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Dataset Card for "amazon-product-data-filter"
Dataset Summary
The Amazon Product Dataset contains product listing data from the Amazon US website. It can be used for various NLP and classification tasks, such as text generation, product type classification, attribute extraction, image recognition and more. NOTICE: This is a sample of the full Amazon Product Dataset, which contains 1K examples. Follow the link to gain access to the full dataset.
Languages… See the full description on the dataset page: https://huggingface.co/datasets/iarbel/amazon-product-data-sample.
Facebook
TwitterAccess and clean an open source herbarium dataset using Excel or RStudio.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This respository contains the CLUE-LDS (CLoud-based User Entity behavior analytics Log Data Set). The data set contains log events from real users utilizing a cloud storage suitable for User Entity Behavior Analytics (UEBA). Events include logins, file accesses, link shares, config changes, etc. The data set contains around 50 million events generated by more than 5000 distinct users in more than five years (2017-07-07 to 2022-09-29 or 1910 days). The data set is complete except for 109 events missing on 2021-04-22, 2021-08-20, and 2021-09-05 due to database failure. The unpacked file size is around 14.5 GB. A detailed analysis of the data set is provided in [1]. The logs are provided in JSON format with the following attributes in the first level:
id: Unique log line identifier that starts at 1 and increases incrementally, e.g., 1. time: Time stamp of the event in ISO format, e.g., 2021-01-01T00:00:02Z. uid: Unique anonymized identifier for the user generating the event, e.g., old-pink-crane-sharedealer. uidType: Specifier for uid, which is either the user name or IP address for logged out users. type: The action carried out by the user, e.g., file_accessed. params: Additional event parameters (e.g., paths, groups) stored in a nested dictionary. isLocalIP: Optional flag for event origin, which is either internal (true) or external (false). role: Optional user role: consulting, administration, management, sales, technical, or external. location: Optional IP-based geolocation of event origin, including city, country, longitude, latitude, etc. In the following data sample, the first object depicts a successful user login (see type: login_successful) and the second object depicts a file access (see type: file_accessed) from a remote location:
{"params": {"user": "intact-gray-marlin-trademarkagent"}, "type": "login_successful", "time": "2019-11-14T11:26:43Z", "uid": "intact-gray-marlin-trademarkagent", "id": 21567530, "uidType": "name"}
{"isLocalIP": false, "params": {"path": "/proud-copper-orangutan-artexer/doubtful-plum-ptarmigan-merchant/insufficient-amaranth-earthworm-qualitycontroller/curious-silver-galliform-tradingstandards/incredible-indigo-octopus-printfinisher/wicked-bronze-sloth-claimsmanager/frantic-aquamarine-horse-cleric"}, "type": "file_accessed", "time": "2019-11-14T11:26:51Z", "uid": "graceful-olive-spoonbill-careersofficer", "id": 21567531, "location": {"countryCode": "AT", "countryName": "Austria", "region": "4", "city": "Gmunden", "latitude": 47.915, "longitude": 13.7959, "timezone": "Europe/Vienna", "postalCode": "4810", "metroCode": null, "regionName": "Upper Austria", "isInEuropeanUnion": true, "continent": "Europe", "accuracyRadius": 50}, "uidType": "ipaddress"} The data set was generated at the premises of Huemer Group, a midsize IT service provider located in Vienna, Austria. Huemer Group offers a range of Infrastructure-as-a-Service solutions for enterprises, including cloud computing and storage. In particular, their cloud storage solution called hBOX enables customers to upload their data, synchronize them with multiple devices, share files with others, create versions and backups of their documents, collaborate with team members in shared data spaces, and query the stored documents using search terms. The hBOX extends the open-source project Nextcloud with interfaces and functionalities tailored to the requirements of customers. The data set comprises only normal user behavior, but can be used to evaluate anomaly detection approaches by simulating account hijacking. We provide an implementation for identifying similar users, switching pairs of users to simulate changes of behavior patterns, and a sample detection approach in our github repo. Acknowledgements: Partially funded by the FFG project DECEPT (873980). The authors thank Walter Huemer, Oskar Kruschitz, Kevin Truckenthanner, and Christian Aigner from Huemer Group for supporting the collection of the data set. If you use the dataset, please cite the following publication: [1] M. Landauer, F. Skopik, G. Höld, and M. Wurzenberger. "A User and Entity Behavior Analytics Log Data Set for Anomaly Detection in Cloud Computing". 2022 IEEE International Conference on Big Data - 6th International Workshop on Big Data Analytics for Cyber Intelligence and Defense (BDA4CID 2022), December 17-20, 2022, Osaka, Japan. IEEE. [PDF]
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
With a step-by-step approach, learn to prepare Excel files, data worksheets, and individual data columns for data analysis; practice conditional formatting and creating pivot tables/charts; go over basic principles of Research Data Management as they might apply to an Excel project. Avec une approche étape par étape, apprenez à préparer pour l’analyse des données des fichiers Excel, des feuilles de calcul de données et des colonnes de données individuelles; pratiquez la mise en forme conditionnelle et la création de tableaux croisés dynamiques ou de graphiques; passez en revue les principes de base de la gestion des données de recherche tels qu’ils pourraient s’appliquer à un projet Excel.
Facebook
TwitterExample of modeled customer behavioral data showing user sessions, engagement metrics, and conversion data across multiple platforms and devices
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset represents a data assessment of select researchers across multiple communities of practice at the University of Florida as part of an IRB 201602303 study to investigate the data management practices, storage, and training needs of researchers. The study was conducted from January 3, 2017 - April 30, 2017. One hundred fifty-nine starts, one hundred fifty-six informed consent, and one hundred thirty-three completes for a 83% completion. However, Question 26 which contained PID was deleted from this raw dataset.
Facebook
TwitterThis blog post was posted on January 28, 2013.
Facebook
TwitterPractice Dataset From LinkedIn Course >>> Learning Data Analytics: 1 Foundations By: Robin Hunt
Facebook
TwitterThis data set comes as a supplementary resource for my book on Biostatistics and SPSS. Readers are free to download this file and practice using SPSS as they go along reading the book.
Facebook
TwitterA list of complaints received and associated data. Prior monthly reports are archived at DOB and are not available on NYC Open Data.
Facebook
TwitterDescription: This dataset is created solely for the purpose of practice and learning. It contains entirely fake and fabricated information, including names, phone numbers, emails, cities, ages, and other attributes. None of the information in this dataset corresponds to real individuals or entities. It serves as a resource for those who are learning data manipulation, analysis, and machine learning techniques. Please note that the data is completely fictional and should not be treated as representing any real-world scenarios or individuals.
Attributes: - phone_number: Fake phone numbers in various formats. - name: Fictitious names generated for practice purposes. - email: Imaginary email addresses created for the dataset. - city: Made-up city names to simulate geographical diversity. - age: Randomly generated ages for practice analysis. - sex: Simulated gender values (Male, Female). - married_status: Synthetic marital status information. - job: Fictional job titles for practicing data analysis. - income: Fake income values for learning data manipulation. - religion: Pretend religious affiliations for practice. - nationality: Simulated nationalities for practice purposes.
Please be aware that this dataset is not based on real data and should be used exclusively for educational purposes.