100+ datasets found
  1. f

    Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm

    • plos.figshare.com
    docx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tracey L. Weissgerber; Natasa M. Milic; Stacey J. Winham; Vesna D. Garovic (2023). Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm [Dataset]. http://doi.org/10.1371/journal.pbio.1002128
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS Biology
    Authors
    Tracey L. Weissgerber; Natasa M. Milic; Stacey J. Winham; Vesna D. Garovic
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Figures in scientific publications are critically important because they often show the data supporting key findings. Our systematic review of research articles published in top physiology journals (n = 703) suggests that, as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies. Papers rarely included scatterplots, box plots, and histograms that allow readers to critically evaluate continuous data. Most papers presented continuous data in bar and line graphs. This is problematic, as many different data distributions can lead to the same bar or line graph. The full data may suggest different conclusions from the summary statistics. We recommend training investigators in data presentation, encouraging a more complete presentation of data, and changing journal editorial policies. Investigators can quickly make univariate scatterplots for small sample size studies using our Excel templates.

  2. f

    Ten quick tips for getting the most scientific value out of numerical data

    • plos.figshare.com
    pdf
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lars Ole Schwen; Sabrina Rueschenbaum (2023). Ten quick tips for getting the most scientific value out of numerical data [Dataset]. http://doi.org/10.1371/journal.pcbi.1006141
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOS Computational Biology
    Authors
    Lars Ole Schwen; Sabrina Rueschenbaum
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Most studies in the life sciences and other disciplines involve generating and analyzing numerical data of some type as the foundation for scientific findings. Working with numerical data involves multiple challenges. These include reproducible data acquisition, appropriate data storage, computationally correct data analysis, appropriate reporting and presentation of the results, and suitable data interpretation.Finding and correcting mistakes when analyzing and interpreting data can be frustrating and time-consuming. Presenting or publishing incorrect results is embarrassing but not uncommon. Particular sources of errors are inappropriate use of statistical methods and incorrect interpretation of data by software. To detect mistakes as early as possible, one should frequently check intermediate and final results for plausibility. Clearly documenting how quantities and results were obtained facilitates correcting mistakes. Properly understanding data is indispensable for reaching well-founded conclusions from experimental results. Units are needed to make sense of numbers, and uncertainty should be estimated to know how meaningful results are. Descriptive statistics and significance testing are useful tools for interpreting numerical results if applied correctly. However, blindly trusting in computed numbers can also be misleading, so it is worth thinking about how data should be summarized quantitatively to properly answer the question at hand. Finally, a suitable form of presentation is needed so that the data can properly support the interpretation and findings. By additionally sharing the relevant data, others can access, understand, and ultimately make use of the results.These quick tips are intended to provide guidelines for correctly interpreting, efficiently analyzing, and presenting numerical data in a useful way.

  3. Leading data compilation and analytics presentation/reporting tools in U.S....

    • statista.com
    Updated Apr 30, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2016). Leading data compilation and analytics presentation/reporting tools in U.S. 2015 [Dataset]. https://www.statista.com/statistics/562654/united-states-data-analytics-data-compilation-and-presentation-tools/
    Explore at:
    Dataset updated
    Apr 30, 2016
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    This statistic depicts the distribution of tools used to compile data and present analytics and/or reports to management, according to a marketing survey of C-level executives, conducted in ************* by Black Ink. As of *************, * percent of respondents used statistical modeling tools, such as IBM's SPSS or the SAS Institute's Statistical Analysis System package, to compile and present their reports.

  4. Global Sales Presentation Tool Market Historical Impact Review 2025-2032

    • statsndata.org
    excel, pdf
    Updated May 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats N Data (2025). Global Sales Presentation Tool Market Historical Impact Review 2025-2032 [Dataset]. https://www.statsndata.org/report/sales-presentation-tool-market-103539
    Explore at:
    pdf, excelAvailable download formats
    Dataset updated
    May 2025
    Dataset authored and provided by
    Stats N Data
    License

    https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order

    Area covered
    Global
    Description

    The Sales Presentation Tool market has evolved into a crucial component of the sales process, enabling businesses to convey their value propositions effectively and engage potential customers. These tools facilitate seamless presentations by providing dynamic features such as slides, templates, and interactive eleme

  5. Data from: Design of tables for the presentation and communication of data...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Aug 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Miriam Remshard; Simon Queenborough (2024). Design of tables for the presentation and communication of data in ecological and evolutionary biology [Dataset]. http://doi.org/10.5061/dryad.jq2bvq8f3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 10, 2024
    Dataset provided by
    Yale University
    Authors
    Miriam Remshard; Simon Queenborough
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Tables and charts have long been seen as effective ways to convey data. Much attention has been focused on improving charts, following ideas of human perception and brain function. Tables can also be viewed as two-dimensional representations of data, yet it is only fairly recently that we have begun to apply principles of design that aid the communication of information between the author and reader. In this study, we collated guidelines for the design of data and statistical tables. These guidelines fall under three principles: aiding comparisons, reducing visual clutter, and increasing readability. We surveyed tables published in recent issues of 43 journals in the fields of ecology and evolutionary biology for their adherence to these three principles, as well as author guidelines on journal publisher websites. We found that most of the over 1,000 tables we sampled had no heavy grid lines and little visual clutter. They were also easy to read, with clear headers and horizontal orientation. However, most tables did not aid the vertical comparison of numeric data. We suggest that authors could improve their tables by the right-flush alignment of numeric columns typeset with a tabular font, clearly identify statistical significance, and use clear titles and captions. Journal publishers could easily implement these formatting guidelines when typesetting manuscripts. Methods Once we had established the above principles of table design, we assessed their use in issues of 43 widely read ecology and evolution journals (SI 2). Between January and July 2022, we reviewed the tables in the most recent issue published by these journals. For journals without issues (such as Annual Review of Ecology, Evolution, and Systematics, or Biological Conservation), we examined the tables in issues published in a single month or in the entire most recent volume if few papers were published in that journal on a monthly basis. We reviewed only articles in a traditionally typeset format and published as a PDF or in print. We did not examine the tables in online versions of articles. Having identified all tables for review, we assessed whether these tables followed the above-described best practice principles for table design and, if not, we noted the way in which these tables failed to meet the outlined guidelines. We initially both reviewed the same 10 tables to ensure that we agreed in our assessment of whether these tables followed each of the principles. Having ensured agreement on how to classify tables, we proceeded to review all subsequent journals individually, while resolving any uncertainties collaboratively. These preliminary table evaluations also showed that assessing whether tables used long format or a tabular font was hard to evaluate objectively without knowing the data or the font used. Therefore, we did not systematically review the extent to which these two guidelines were adhered to.

  6. Guide to Presenting Statistics - General Principles (January 2021)

    • geoportal.statistics.gov.uk
    Updated Dec 3, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2021). Guide to Presenting Statistics - General Principles (January 2021) [Dataset]. https://geoportal.statistics.gov.uk/datasets/424dfacb33594856a29c4e64f546a219
    Explore at:
    Dataset updated
    Dec 3, 2021
    Dataset authored and provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences

    Area covered
    Description

    This document sets out the general principles for the standard presentation of statistics in the UK and is now available in accessible format. (File Size - 79 KB)

  7. Guide to Presenting Statistics for Health Geographies (April 2021)

    • open-geography-portalx-ons.hub.arcgis.com
    • geoportal.statistics.gov.uk
    • +2more
    Updated Mar 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2022). Guide to Presenting Statistics for Health Geographies (April 2021) [Dataset]. https://open-geography-portalx-ons.hub.arcgis.com/datasets/ons::guide-to-presenting-statistics-for-health-geographies-april-2021-1
    Explore at:
    Dataset updated
    Mar 17, 2022
    Dataset authored and provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences

    Area covered
    Description

    This guidance note sets out the recommended standard presentation of statistics for health areas within the countries and regions of the UK. (File Size 125 KB)

  8. H

    Supplementary Materials for A Linked Data Representation for Summary...

    • dataverse.harvard.edu
    Updated Aug 28, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    James McCusker (2019). Supplementary Materials for A Linked Data Representation for Summary Statistics and Grouping Criteria [Dataset]. http://doi.org/10.7910/DVN/OK0BUG
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 28, 2019
    Dataset provided by
    Harvard Dataverse
    Authors
    James McCusker
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Summary statistics are fundamental to data science, and are the buidling blocks of statistical reasoning. Most of the data and statistics made available on government web sites are aggregate, however, until now, we have not had a suitable linked data representation available. We propose a way to express summary statistics across aggregate groups as linked data using Web Ontology Language (OWL) Class based sets, where members of the set contribute to the overall aggregate value. Additionally, many clinical studies in the biomedical field rely on demographic summaries of their study cohorts and the patients assigned to each arm. While most data query languages, including SPARQL, allow for computation of summary statistics, they do not provide a way to integrate those values back into the RDF graphs they were computed from. We represent this knowledge, that would otherwise be lost, through the use of OWL 2 punning semantics, the expression of aggregate grouping criteria as OWL classes with variables, and constructs from the Semanticscience Integrated Ontology (SIO), and the World Wide Web Consortium's provenance ontology, PROV-O, providing interoperable representations that are well supported across the web of Linked Data. We evaluate these semantics using a Resource Description Framework (RDF) representation of patient case information from the Genomic Data Commons, a data portal from the National Cancer Institute.

  9. Guide to Presenting Statistics for Super Output Areas (2011) (June 2018)

    • hub.arcgis.com
    • data.europa.eu
    Updated Jul 20, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2022). Guide to Presenting Statistics for Super Output Areas (2011) (June 2018) [Dataset]. https://hub.arcgis.com/datasets/8f219a51932f44b8809d275a4ab5293f
    Explore at:
    Dataset updated
    Jul 20, 2022
    Dataset authored and provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences

    Area covered
    Description

    This guidance note sets out the recommended standard presentation of statistics for Middle Layer and Lower Layer Super Output Areas nested within relevant local authority districts in the UK and is now available in accessible format (File Size - 2.6 MB).

  10. m

    The banksia plot: a method for visually comparing point estimates and...

    • bridges.monash.edu
    • researchdata.edu.au
    txt
    Updated Oct 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Simon Turner; Amalia Karahalios; Elizabeth Korevaar; Joanne E. McKenzie (2024). The banksia plot: a method for visually comparing point estimates and confidence intervals across datasets [Dataset]. http://doi.org/10.26180/25286407.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    Oct 15, 2024
    Dataset provided by
    Monash University
    Authors
    Simon Turner; Amalia Karahalios; Elizabeth Korevaar; Joanne E. McKenzie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Companion data for the creation of a banksia plot:Background:In research evaluating statistical analysis methods, a common aim is to compare point estimates and confidence intervals (CIs) calculated from different analyses. This can be challenging when the outcomes (and their scale ranges) differ across datasets. We therefore developed a plot to facilitate pairwise comparisons of point estimates and confidence intervals from different statistical analyses both within and across datasets.Methods:The plot was developed and refined over the course of an empirical study. To compare results from a variety of different studies, a system of centring and scaling is used. Firstly, the point estimates from reference analyses are centred to zero, followed by scaling confidence intervals to span a range of one. The point estimates and confidence intervals from matching comparator analyses are then adjusted by the same amounts. This enables the relative positions of the point estimates and CI widths to be quickly assessed while maintaining the relative magnitudes of the difference in point estimates and confidence interval widths between the two analyses. Banksia plots can be graphed in a matrix, showing all pairwise comparisons of multiple analyses. In this paper, we show how to create a banksia plot and present two examples: the first relates to an empirical evaluation assessing the difference between various statistical methods across 190 interrupted time series (ITS) data sets with widely varying characteristics, while the second example assesses data extraction accuracy comparing results obtained from analysing original study data (43 ITS studies) with those obtained by four researchers from datasets digitally extracted from graphs from the accompanying manuscripts.Results:In the banksia plot of statistical method comparison, it was clear that there was no difference, on average, in point estimates and it was straightforward to ascertain which methods resulted in smaller, similar or larger confidence intervals than others. In the banksia plot comparing analyses from digitally extracted data to those from the original data it was clear that both the point estimates and confidence intervals were all very similar among data extractors and original data.Conclusions:The banksia plot, a graphical representation of centred and scaled confidence intervals, provides a concise summary of comparisons between multiple point estimates and associated CIs in a single graph. Through this visualisation, patterns and trends in the point estimates and confidence intervals can be easily identified.This collection of files allows the user to create the images used in the companion paper and amend this code to create their own banksia plots using either Stata version 17 or R version 4.3.1

  11. m

    Data from: Data for:Review on Current Research Directions in Energy...

    • data.mendeley.com
    Updated Jun 17, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    roskhatijah radzuan (2019). Data for:Review on Current Research Directions in Energy Harvesting Power Conversion (EHPC) System [Dataset]. http://doi.org/10.17632/x4nfg7p7p4.1
    Explore at:
    Dataset updated
    Jun 17, 2019
    Authors
    roskhatijah radzuan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data set has been used to generate the visual presentation using graphs and charts of the techniques for the current research trends within 6 years (from years 2013 to 2018).

  12. f

    UC_vs_US Statistic Analysis.xlsx

    • figshare.com
    xlsx
    Updated Jul 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    F. (Fabiano) Dalpiaz (2020). UC_vs_US Statistic Analysis.xlsx [Dataset]. http://doi.org/10.23644/uu.12631628.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 9, 2020
    Dataset provided by
    Utrecht University
    Authors
    F. (Fabiano) Dalpiaz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.

    Tagging scheme:
    Aligned (AL) - A concept is represented as a class in both models, either
    

    with the same name or using synonyms or clearly linkable names; Wrongly represented (WR) - A class in the domain expert model is incorrectly represented in the student model, either (i) via an attribute, method, or relationship rather than class, or (ii) using a generic term (e.g., user'' instead ofurban planner''); System-oriented (SO) - A class in CM-Stud that denotes a technical implementation aspect, e.g., access control. Classes that represent legacy system or the system under design (portal, simulator) are legitimate; Omitted (OM) - A class in CM-Expert that does not appear in any way in CM-Stud; Missing (MI) - A class in CM-Stud that does not appear in any way in CM-Expert.

    All the calculations and information provided in the following sheets
    

    originate from that raw data.

    Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
    

    including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.

    Sheet 3 (Size-Ratio):
    

    The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.

    Sheet 4 (Overall):
    

    Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.

    For sheet 4 as well as for the following four sheets, diverging stacked bar
    

    charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:

    Sheet 5 (By-Notation):
    

    Model correctness and model completeness is compared by notation - UC, US.

    Sheet 6 (By-Case):
    

    Model correctness and model completeness is compared by case - SIM, HOS, IFA.

    Sheet 7 (By-Process):
    

    Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.

    Sheet 8 (By-Grade):
    

    Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.

  13. d

    Replication data for: Making the Most of Statistical Analyses: Improving...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    King, Gary; Tomz, Michael; and Wittenberg, Jason (2023). Replication data for: Making the Most of Statistical Analyses: Improving Interpretation and Presentation [Dataset]. http://doi.org/10.7910/DVN/BDWIC3
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    King, Gary; Tomz, Michael; and Wittenberg, Jason
    Description

    Social Scientists rarely take full advantage of the information available in their statistical results. As a consequence, they miss opportunities to present quantities that are of greatest substantive interest for their research and express the appropriate degree of certainty about these quantities. In this article, we offer an approach, built on the technique of statistical simulation, to extract the currently overlooked information from any statistical method and to interpret and present it in a reader-friendly manner. Using this technique requires some expertise, which we try to provide herein, but its application should make the results of quantitative articles more informative and transparent. To illustrate our recommendations, we replicate the results of several published works, showing in each case how the authors' own concl usions can be expressed more sharply and informatively, and, without changing any data or statistical assumptions, how our approach reveals important new information about the research questions at hand. We also offer very easy-to-use Clarify software that implements our suggestions. See also: Unifying Statistical Analysis

  14. Guide to Presenting Statistics for Built-up Areas (November 2015)

    • cloud.csiss.gmu.edu
    • data.europa.eu
    html
    Updated Dec 19, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2019). Guide to Presenting Statistics for Built-up Areas (November 2015) [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/guide-to-presenting-statistics-for-built-up-areas-november-20154
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Dec 19, 2019
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence

    Description

    This guidance note sets out the recommended standard presentation of statistics for built-up areas at regional, built-up area and built-up area sub-division levels in England and Wales. (File Size - 727 KB)

  15. U

    REPORT ON THE INDONESIAN INDUSTRIAL STATISTICS DATA COLLECTION AND...

    • unido.org
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    UNIDO
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1983
    Area covered
    Indonesia, Asia and the Pacific
    Description

    UNIDO pub. Expert report on industrial statistics and data collecting in Indonesia with special reference to small scale industry - covers (1) summaries and survey of statistical data for small scale, large and medium scale industrys and cottage industrys (2) suggested creation of a central industrial register and carrying out a census of small scale industries (3) a flow chart for the programming of the industrial inquiry and relevant questionnaire; survey method; training of enumerators. Recommendations, statistics.

  16. e

    Guide to Presenting Statistics for Administrative Geographies (May 2023)

    • data.europa.eu
    • hub.arcgis.com
    html
    Updated May 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Guide to Presenting Statistics for Administrative Geographies (May 2023) [Dataset]. https://data.europa.eu/data/datasets/guide-to-presenting-statistics-for-administrative-geographies-may-2023
    Explore at:
    htmlAvailable download formats
    Dataset updated
    May 15, 2023
    Dataset authored and provided by
    Office for National Statistics
    Description

    This document sets out the recommended standard presentation of statistics for administrative areas at regional and sub-regional levels in the UK. This version of the guidance is now available in accessible format. (File Size - 142 KB)

  17. e

    Diagrammatic and Graphical representation of Numerical Data

    • paper.erudition.co.in
    html
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Einetic (2025). Diagrammatic and Graphical representation of Numerical Data [Dataset]. https://paper.erudition.co.in/makaut/bachelor-of-computer-application-2020-2021/5/numerical-and-statistical-methods
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Einetic
    License

    https://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms

    Description

    Question Paper Solutions of chapter Diagrammatic and Graphical representation of Numerical Data of Numerical and statistical Methods, 5th Semester , Bachelor of Computer Application 2020-2021

  18. Emergency presentations of cancer: data up to March 2020

    • gov.uk
    • s3.amazonaws.com
    Updated Nov 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public Health England (2020). Emergency presentations of cancer: data up to March 2020 [Dataset]. https://www.gov.uk/government/statistics/emergency-presentations-of-cancer-data-up-to-march-2020
    Explore at:
    Dataset updated
    Nov 24, 2020
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Public Health England
    Description

    The quarterly emergency presentations of cancer data has been updated by PHE’s National Cancer Registration and Analysis Service (NCRAS).

    Data estimates are for all malignant cancers (excluding non-melanoma skin cancer) and are at CCG level, with England as a whole for comparison.

    This latest publication includes quarterly data for January 2020 to March 2020 (quarter 4 of financial year 2019 to 2020) and an update of the one year rolling average.

    The proportion of emergency presentations for cancer is an indicator of patient outcomes.

  19. e

    Collection, Editing and Presentation of Data

    • paper.erudition.co.in
    html
    Updated Jul 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Einetic (2025). Collection, Editing and Presentation of Data [Dataset]. https://paper.erudition.co.in/makaut/bachelor-of-business-administration/1/fundamentals-of-statistics
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jul 13, 2025
    Dataset authored and provided by
    Einetic
    License

    https://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms

    Description

    Question Paper Solutions of chapter Collection, Editing and Presentation of Data of Fundamentals of Statistics, 1st Semester , Bachelor of Business Administration

  20. d

    Presentation on Data Developments and Emerging Projects in the Economics...

    • search.dataone.org
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Presentation on Data Developments and Emerging Projects in the Economics Statistics Field [Dataset]. http://doi.org/10.5683/SP3/QBONAK
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Statistics Canada
    Description

    Presentation on data developments and emerging projects regarding macroeconomic accounts, environment, business surveys, prices, cost-recovery projects, and statistical frameworks.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Tracey L. Weissgerber; Natasa M. Milic; Stacey J. Winham; Vesna D. Garovic (2023). Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm [Dataset]. http://doi.org/10.1371/journal.pbio.1002128

Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm

Explore at:
327 scholarly articles cite this dataset (View in Google Scholar)
docxAvailable download formats
Dataset updated
May 31, 2023
Dataset provided by
PLOS Biology
Authors
Tracey L. Weissgerber; Natasa M. Milic; Stacey J. Winham; Vesna D. Garovic
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Figures in scientific publications are critically important because they often show the data supporting key findings. Our systematic review of research articles published in top physiology journals (n = 703) suggests that, as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies. Papers rarely included scatterplots, box plots, and histograms that allow readers to critically evaluate continuous data. Most papers presented continuous data in bar and line graphs. This is problematic, as many different data distributions can lead to the same bar or line graph. The full data may suggest different conclusions from the summary statistics. We recommend training investigators in data presentation, encouraging a more complete presentation of data, and changing journal editorial policies. Investigators can quickly make univariate scatterplots for small sample size studies using our Excel templates.

Search
Clear search
Close search
Google apps
Main menu