100+ datasets found
  1. Collection of example datasets used for the book - R Programming -...

    • figshare.com
    txt
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kingsley Okoye; Samira Hosseini (2023). Collection of example datasets used for the book - R Programming - Statistical Data Analysis in Research [Dataset]. http://doi.org/10.6084/m9.figshare.24728073.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Dec 4, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Kingsley Okoye; Samira Hosseini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This book is written for statisticians, data analysts, programmers, researchers, teachers, students, professionals, and general consumers on how to perform different types of statistical data analysis for research purposes using the R programming language. R is an open-source software and object-oriented programming language with a development environment (IDE) called RStudio for computing statistics and graphical displays through data manipulation, modelling, and calculation. R packages and supported libraries provides a wide range of functions for programming and analyzing of data. Unlike many of the existing statistical softwares, R has the added benefit of allowing the users to write more efficient codes by using command-line scripting and vectors. It has several built-in functions and libraries that are extensible and allows the users to define their own (customized) functions on how they expect the program to behave while handling the data, which can also be stored in the simple object system.For all intents and purposes, this book serves as both textbook and manual for R statistics particularly in academic research, data analytics, and computer programming targeted to help inform and guide the work of the R users or statisticians. It provides information about different types of statistical data analysis and methods, and the best scenarios for use of each case in R. It gives a hands-on step-by-step practical guide on how to identify and conduct the different parametric and non-parametric procedures. This includes a description of the different conditions or assumptions that are necessary for performing the various statistical methods or tests, and how to understand the results of the methods. The book also covers the different data formats and sources, and how to test for reliability and validity of the available datasets. Different research experiments, case scenarios and examples are explained in this book. It is the first book to provide a comprehensive description and step-by-step practical hands-on guide to carrying out the different types of statistical analysis in R particularly for research purposes with examples. Ranging from how to import and store datasets in R as Objects, how to code and call the methods or functions for manipulating the datasets or objects, factorization, and vectorization, to better reasoning, interpretation, and storage of the results for future use, and graphical visualizations and representations. Thus, congruence of Statistics and Computer programming for Research.

  2. i

    Data from: Data after collection

    • ieee-dataport.org
    Updated Sep 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rojen Surek (2025). Data after collection [Dataset]. https://ieee-dataport.org/documents/data-after-collection-prior-pre-processing-r-code
    Explore at:
    Dataset updated
    Sep 4, 2025
    Authors
    Rojen Surek
    Description

    ARSENAL

  3. Data Analysis Project In R

    • kaggle.com
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jerraldo1705 (2023). Data Analysis Project In R [Dataset]. https://www.kaggle.com/datasets/jerraldo1705/data-analysis-project-in-r
    Explore at:
    zip(863273 bytes)Available download formats
    Dataset updated
    May 30, 2023
    Authors
    Jerraldo1705
    Description

    Dataset

    This dataset was created by Jerraldo1705

    Contents

  4. Data Analysis in R

    • kaggle.com
    zip
    Updated May 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rajdeep Kaur Bajwa (2022). Data Analysis in R [Dataset]. https://www.kaggle.com/datasets/rajdeepkaurbajwa/data-analysis-r
    Explore at:
    zip(5321 bytes)Available download formats
    Dataset updated
    May 16, 2022
    Authors
    Rajdeep Kaur Bajwa
    Description

    Dataset

    This dataset was created by Rajdeep Kaur Bajwa

    Contents

  5. w

    Dataset of books called An introduction to data analysis in R : hands-on...

    • workwithdata.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books called An introduction to data analysis in R : hands-on coding, data mining, visualization and statistics from scratch [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=book&fop0=%3D&fval0=An+introduction+to+data+analysis+in+R+%3A+hands-on+coding%2C+data+mining%2C+visualization+and+statistics+from+scratch
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about books. It has 1 row and is filtered where the book is An introduction to data analysis in R : hands-on coding, data mining, visualization and statistics from scratch. It features 7 columns including author, publication date, language, and book publisher.

  6. H

    Political Analysis Using R: Example Code and Data, Plus Data for Practice...

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Apr 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jamie Monogan (2020). Political Analysis Using R: Example Code and Data, Plus Data for Practice Problems [Dataset]. http://doi.org/10.7910/DVN/ARKOTI
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 28, 2020
    Dataset provided by
    Harvard Dataverse
    Authors
    Jamie Monogan
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Each R script replicates all of the example code from one chapter from the book. All required data for each script are also uploaded, as are all data used in the practice problems at the end of each chapter. The data are drawn from a wide array of sources, so please cite the original work if you ever use any of these data sets for research purposes.

  7. f

    Data_Sheet_4_“R” U ready?: a case study using R to analyze changes in gene...

    • frontiersin.figshare.com
    docx
    Updated Mar 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amy E. Pomeroy; Andrea Bixler; Stefanie H. Chen; Jennifer E. Kerr; Todd D. Levine; Elizabeth F. Ryder (2024). Data_Sheet_4_“R” U ready?: a case study using R to analyze changes in gene expression during evolution.docx [Dataset]. http://doi.org/10.3389/feduc.2024.1379910.s004
    Explore at:
    docxAvailable download formats
    Dataset updated
    Mar 22, 2024
    Dataset provided by
    Frontiers
    Authors
    Amy E. Pomeroy; Andrea Bixler; Stefanie H. Chen; Jennifer E. Kerr; Todd D. Levine; Elizabeth F. Ryder
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    As high-throughput methods become more common, training undergraduates to analyze data must include having them generate informative summaries of large datasets. This flexible case study provides an opportunity for undergraduate students to become familiar with the capabilities of R programming in the context of high-throughput evolutionary data collected using macroarrays. The story line introduces a recent graduate hired at a biotech firm and tasked with analysis and visualization of changes in gene expression from 20,000 generations of the Lenski Lab’s Long-Term Evolution Experiment (LTEE). Our main character is not familiar with R and is guided by a coworker to learn about this platform. Initially this involves a step-by-step analysis of the small Iris dataset built into R which includes sepal and petal length of three species of irises. Practice calculating summary statistics and correlations, and making histograms and scatter plots, prepares the protagonist to perform similar analyses with the LTEE dataset. In the LTEE module, students analyze gene expression data from the long-term evolutionary experiments, developing their skills in manipulating and interpreting large scientific datasets through visualizations and statistical analysis. Prerequisite knowledge is basic statistics, the Central Dogma, and basic evolutionary principles. The Iris module provides hands-on experience using R programming to explore and visualize a simple dataset; it can be used independently as an introduction to R for biological data or skipped if students already have some experience with R. Both modules emphasize understanding the utility of R, rather than creation of original code. Pilot testing showed the case study was well-received by students and faculty, who described it as a clear introduction to R and appreciated the value of R for visualizing and analyzing large datasets.

  8. Fitness Tracker Data Analysis with R

    • kaggle.com
    zip
    Updated Jun 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nargis Karimova (2022). Fitness Tracker Data Analysis with R [Dataset]. https://www.kaggle.com/datasets/nargiskarimova/fitness-tracker-data-analysis-with-r
    Explore at:
    zip(31712 bytes)Available download formats
    Dataset updated
    Jun 3, 2022
    Authors
    Nargis Karimova
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset

    This dataset was created by Nargis Karimova

    Released under CC0: Public Domain

    Contents

  9. Statistical Data Analysis using R

    • figshare.com
    txt
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samuel Barsanelli Costa (2023). Statistical Data Analysis using R [Dataset]. http://doi.org/10.6084/m9.figshare.5501035.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Samuel Barsanelli Costa
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    R Scripts contain statistical data analisys for streamflow and sediment data, including Flow Duration Curves, Double Mass Analysis, Nonlinear Regression Analysis for Suspended Sediment Rating Curves, Stationarity Tests and include several plots.

  10. f

    Data analysis: R code

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    Updated Oct 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kullin, Brian; Hilton, Caroline; du Toit, Elloise; Bellairs, Gregory; Welp, Kirsten; Gardner-Lubbe, Sugnet; Chicken, Anika; Claassen-Weitz, Shantelle; Brink, Adrian; Livingstone, Hannah (2023). Data analysis: R code [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001471800
    Explore at:
    Dataset updated
    Oct 9, 2023
    Authors
    Kullin, Brian; Hilton, Caroline; du Toit, Elloise; Bellairs, Gregory; Welp, Kirsten; Gardner-Lubbe, Sugnet; Chicken, Anika; Claassen-Weitz, Shantelle; Brink, Adrian; Livingstone, Hannah
    Description

    The complexity of contexts and varied purposes for which biome donation are requested is unknown in South Africa. The aim of this study was to provide strategic data towards actualisation of whether a gastrointestinal (GIT) stool donor bank may be established as a collaborative between Western Cape Blood Services (WCBS) and the University of Cape Town (UCT).We designed a cross-sectional, questionnaire-based survey to determine willingness of WCBS blood donors to donate stool specimens for microbiome biobanking. The prospective observational pilot study was conducted between 1 June 2022 and 1 July 2022 at three WCBS donation centres in Cape Town, South Africa. Anonymous blood donors who met the inclusion criteria were provided with infographics on stool donation and a stool collection kit. Anonymised demographic and interview data was aggregated for descriptive purposes, and for statistical analysis.Analysis of responses from 209/231 blood donors demonstrated in a logistic regression model that compensation (p = 3.139e-05) and ' societal benefit outweighs inconvenience’ beliefs (p = 7.751e-05) were covariates significantly associated with willingness to donate stool. Age was borderline significant at a 5% level (p = 0.0556). Most willing stool donors indicated that donating stool samples would not affect blood donations (140/157, 90%). Factors decreasing willingness to donate were stool collection being unpleasant or embarrassing.The survey provides strategic data for the WCBS and UCT towards establishment of a stool bank and provided an understanding of the underlying determinants governing participants decision process with regards to becoming potential donors.

  11. D

    R code for data analysis

    • researchdata.ntu.edu.sg
    txt
    Updated May 2, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ser Huay Janice Teresa Lee; Ser Huay Janice Teresa Lee (2019). R code for data analysis [Dataset]. http://doi.org/10.21979/N9/A0LK3I
    Explore at:
    txt(11667), txt(4812)Available download formats
    Dataset updated
    May 2, 2019
    Dataset provided by
    DR-NTU (Data)
    Authors
    Ser Huay Janice Teresa Lee; Ser Huay Janice Teresa Lee
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Dataset funded by
    Ministry of Education (MOE)
    Description

    R code for running GLMM and BRT analysis

  12. Friends - R Package Dataset

    • kaggle.com
    zip
    Updated Nov 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lucas Yukio Imafuko (2024). Friends - R Package Dataset [Dataset]. https://www.kaggle.com/datasets/lucasyukioimafuko/friends-r-package-dataset
    Explore at:
    zip(2018791 bytes)Available download formats
    Dataset updated
    Nov 11, 2024
    Authors
    Lucas Yukio Imafuko
    Description

    The whole data and source can be found at https://emilhvitfeldt.github.io/friends/

    "The goal of friends to provide the complete script transcription of the Friends sitcom. The data originates from the Character Mining repository which includes references to scientific explorations using this data. This package simply provides the data in tibble format instead of json files."

    Content

    • friends.csv - Contains the scenes and lines for each character, including season and episodes.
    • friends_emotions.csv - Contains sentiments for each scene - for the first four seasons only.
    • friends_info.csv - Contains information regarding each episode, such as imdb_rating, views, episode title and directors.

    Uses

    • Text mining, sentiment analysis and word statistics.
    • Data visualizations.
  13. d

    Data from: R Manual for QCA

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mello, Patrick A. (2023). R Manual for QCA [Dataset]. http://doi.org/10.7910/DVN/KYF7VJ
    Explore at:
    Dataset updated
    Nov 17, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Mello, Patrick A.
    Description

    The R Manual for QCA entails a PDF file that describes all the steps and code needed to prepare and conduct a Qualitative Comparative Analysis (QCA) study in R. This is complemented by an R Script that can be customized as needed. The dataset further includes two files with sample data, for the set-theoretic analysis and the visualization of QCA results. The R Manual for QCA is the online appendix to "Qualitative Comparative Analysis: An Introduction to Research Design and Application", Georgetown University Press, 2021.

  14. Basic R for Data Analysis

    • kaggle.com
    zip
    Updated Dec 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kebba Ndure (2024). Basic R for Data Analysis [Dataset]. https://www.kaggle.com/datasets/kebbandure/basic-r-for-data-analysis/code
    Explore at:
    zip(279031 bytes)Available download formats
    Dataset updated
    Dec 8, 2024
    Authors
    Kebba Ndure
    Description

    ABOUT DATASET

    This is the R markdown notebook. It contains step by step guide for working on Data Analysis with R. It helps you with installing the relevant packages and how to load them. it also provides a detailed summary of the "dplyr" commands that you can use to manipulate your data in the R environment.

    Anyone new to R and wish to carry out some data analysis on R can check it out!

  15. Data_Sheet_1_NeuroDecodeR: a package for neural decoding in R.docx

    • frontiersin.figshare.com
    docx
    Updated Jan 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ethan M. Meyers (2024). Data_Sheet_1_NeuroDecodeR: a package for neural decoding in R.docx [Dataset]. http://doi.org/10.3389/fninf.2023.1275903.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jan 3, 2024
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Ethan M. Meyers
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Neural decoding is a powerful method to analyze neural activity. However, the code needed to run a decoding analysis can be complex, which can present a barrier to using the method. In this paper we introduce a package that makes it easy to perform decoding analyses in the R programing language. We describe how the package is designed in a modular fashion which allows researchers to easily implement a range of different analyses. We also discuss how to format data to be able to use the package, and we give two examples of how to use the package to analyze real data. We believe that this package, combined with the rich data analysis ecosystem in R, will make it significantly easier for researchers to create reproducible decoding analyses, which should help increase the pace of neuroscience discoveries.

  16. f

    Data analysis and plotting code in R Markdown.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Feb 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Domberg, Andreas; Köymen, Bahar; Tomasello, Michael (2021). Data analysis and plotting code in R Markdown. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000772989
    Explore at:
    Dataset updated
    Feb 5, 2021
    Authors
    Domberg, Andreas; Köymen, Bahar; Tomasello, Michael
    Description

    Reproduces all analyses and plots using the dataset in S3 File. (RMD)

  17. p

    Climate Time Series Analysis using R

    • purr.purdue.edu
    Updated Jan 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sushant Mehan; Margaret Gitau (2019). Climate Time Series Analysis using R [Dataset]. http://doi.org/10.4231/R77H1GTX
    Explore at:
    Dataset updated
    Jan 1, 2019
    Dataset provided by
    PURR
    Authors
    Sushant Mehan; Margaret Gitau
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Time series analysis of climate data using R

  18. Crime Data Analysis

    • kaggle.com
    Updated Aug 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Candace Gostinski (2024). Crime Data Analysis [Dataset]. https://www.kaggle.com/datasets/candacegostinski/crime-data-analysis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 9, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Candace Gostinski
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    In a world of increasing crime, many organizations are interested in examining incident details to learn from and prevent future crime. Our client, based in Los Angeles County, was interested in this exact thing. They asked us to examine the data to answer several questions; among them, what was the rate of increase or decrease in crime from 2020 to 2023, and which ethnicity or group of people were targeted the most.

    Our data was collected from Kaggle.com at the following link:

    https://www.kaggle.com/datasets/nathaniellybrand/los-angeles-crime-dataset-2020-present

    It was cleaned, examined for further errors, and the analysis performed using RStudio. The results of this analysis are in the attached PDF entitled: "crime_data_analysis_report." Please feel free to review the results as well as follow along with the dataset on your own machine.

  19. t

    How to Make Pretty Charts - Data Analysis

    • tomtunguz.com
    Updated Apr 30, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tomasz Tunguz (2015). How to Make Pretty Charts - Data Analysis [Dataset]. https://tomtunguz.com/how-to-make-pretty-charts/
    Explore at:
    Dataset updated
    Apr 30, 2015
    Dataset provided by
    Theory Ventures
    Authors
    Tomasz Tunguz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Learn how to create professional data visualizations using R and ggplot2. A step-by-step guide for startup founders and analysts to build publication-quality charts.

  20. m

    Reddit r/AskScience Flair Dataset

    • data.mendeley.com
    Updated May 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sumit Mishra (2022). Reddit r/AskScience Flair Dataset [Dataset]. http://doi.org/10.17632/k9r2d9z999.3
    Explore at:
    Dataset updated
    May 23, 2022
    Authors
    Sumit Mishra
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Reddit is a social news, content rating and discussion website. It's one of the most popular sites on the internet. Reddit has 52 million daily active users and approximately 430 million users who use it once a month. Reddit has different subreddits and here We'll use the r/AskScience Subreddit.

    The dataset is extracted from the subreddit /r/AskScience from Reddit. The data was collected between 01-01-2016 and 20-05-2022. It contains 612,668 Datapoints and 25 Columns. The database contains a number of information about the questions asked on the subreddit, the description of the submission, the flair of the question, NSFW or SFW status, the year of the submission, and more. The data is extracted using python and Pushshift's API. A little bit of cleaning is done using NumPy and pandas as well. (see the descriptions of individual columns below).

    The dataset contains the following columns and descriptions: author - Redditor Name author_fullname - Redditor Full name contest_mode - Contest mode [implement obscured scores and randomized sorting]. created_utc - Time the submission was created, represented in Unix Time. domain - Domain of submission. edited - If the post is edited or not. full_link - Link of the post on the subreddit. id - ID of the submission. is_self - Whether or not the submission is a self post (text-only). link_flair_css_class - CSS Class used to identify the flair. link_flair_text - Flair on the post or The link flair’s text content. locked - Whether or not the submission has been locked. num_comments - The number of comments on the submission. over_18 - Whether or not the submission has been marked as NSFW. permalink - A permalink for the submission. retrieved_on - time ingested. score - The number of upvotes for the submission. description - Description of the Submission. spoiler - Whether or not the submission has been marked as a spoiler. stickied - Whether or not the submission is stickied. thumbnail - Thumbnail of Submission. question - Question Asked in the Submission. url - The URL the submission links to, or the permalink if a self post. year - Year of the Submission. banned - Banned by the moderator or not.

    This dataset can be used for Flair Prediction, NSFW Classification, and different Text Mining/NLP tasks. Exploratory Data Analysis can also be done to get the insights and see the trend and patterns over the years.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Kingsley Okoye; Samira Hosseini (2023). Collection of example datasets used for the book - R Programming - Statistical Data Analysis in Research [Dataset]. http://doi.org/10.6084/m9.figshare.24728073.v1
Organization logo

Collection of example datasets used for the book - R Programming - Statistical Data Analysis in Research

Explore at:
txtAvailable download formats
Dataset updated
Dec 4, 2023
Dataset provided by
Figsharehttp://figshare.com/
Authors
Kingsley Okoye; Samira Hosseini
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This book is written for statisticians, data analysts, programmers, researchers, teachers, students, professionals, and general consumers on how to perform different types of statistical data analysis for research purposes using the R programming language. R is an open-source software and object-oriented programming language with a development environment (IDE) called RStudio for computing statistics and graphical displays through data manipulation, modelling, and calculation. R packages and supported libraries provides a wide range of functions for programming and analyzing of data. Unlike many of the existing statistical softwares, R has the added benefit of allowing the users to write more efficient codes by using command-line scripting and vectors. It has several built-in functions and libraries that are extensible and allows the users to define their own (customized) functions on how they expect the program to behave while handling the data, which can also be stored in the simple object system.For all intents and purposes, this book serves as both textbook and manual for R statistics particularly in academic research, data analytics, and computer programming targeted to help inform and guide the work of the R users or statisticians. It provides information about different types of statistical data analysis and methods, and the best scenarios for use of each case in R. It gives a hands-on step-by-step practical guide on how to identify and conduct the different parametric and non-parametric procedures. This includes a description of the different conditions or assumptions that are necessary for performing the various statistical methods or tests, and how to understand the results of the methods. The book also covers the different data formats and sources, and how to test for reliability and validity of the available datasets. Different research experiments, case scenarios and examples are explained in this book. It is the first book to provide a comprehensive description and step-by-step practical hands-on guide to carrying out the different types of statistical analysis in R particularly for research purposes with examples. Ranging from how to import and store datasets in R as Objects, how to code and call the methods or functions for manipulating the datasets or objects, factorization, and vectorization, to better reasoning, interpretation, and storage of the results for future use, and graphical visualizations and representations. Thus, congruence of Statistics and Computer programming for Research.

Search
Clear search
Close search
Google apps
Main menu