The State Contract and Procurement Registration System (SCPRS) was established in 2003, as a centralized database of information on State contracts and purchases over $5000. eSCPRS represents the data captured in the State's eProcurement (eP) system, Bidsync, as of March 16, 2009. The data provided is an extract from that system for fiscal years 2012-2013, 2013-2014, and 2014-2015
Data Limitations:
Some purchase orders have multiple UNSPSC numbers, however only first was used to identify the purchase order. Multiple UNSPSC numbers were included to provide additional data for a DGS special event however this affects the formatting of the file. The source system Bidsync is being deprecated and these issues will be resolved in the future as state systems transition to Fi$cal.
Data Collection Methodology:
The data collection process starts with a data file from eSCPRS that is scrubbed and standardized prior to being uploaded into a SQL Server database. There are four primary tables. The Supplier, Department and United Nations Standard Products and Services Code (UNSPSC) tables are reference tables. The Supplier and Department tables are updated and mapped to the appropriate numbering schema and naming conventions. The UNSPSC table is used to categorize line item information and requires no further manipulation. The Purchase Order table contains raw data that requires conversion to the correct data format and mapping to the corresponding data fields. A stacking method is applied to the table to eliminate blanks where needed. Extraneous characters are removed from fields. The four tables are joined together and queries are executed to update the final Purchase Order Dataset table. Once the scrubbing and standardization process is complete the data is then uploaded into the SQL Server database.
Secondary/Related Resources:
Listing of all purchase orders and contracts issued to procure goods and/or services within City-Parish. In the City-Parish, a PO/Contract is made up of two components: a header and one or many detail items that comprise the overarching PO/Contract. The header contains information that pertains to the entire PO/Contract. This includes, but is not limited to, the total amount of the PO/Contract, the department requesting the purchase and the vendor providing the goods or services. The detail item(s) contain information that is specific to the individual item ordered or service procured through the PO/Contract. The item/service description, item/service quantity and the cost of the item is located within the PO/Contract details. There may be one or many detail items on an individual PO/Contract. For example, a Purchase Order for a computer equipment may include three items: the computer, the monitor and the base software package. Both header information and detail item information are included in this dataset in order to provide a comprehensive view of the PO/Contract data. The Record Type field indicates whether the record is a header record (H) or detail item record (D). In the computer purchase example from above, the system would display 4 records – one header record and 3 detail item records. It should be noted header information will be duplicated on all detail items. No detail item information will be displayed on the header record. ***In October of 2017, the City-Parish switched to a new system used to track PO/Contracts. This data contains all PO/Contracts entered in or after October 2017. For prior year data, please see the Legacy Purchase Order dataset https://data.brla.gov/Government/Legacy-Purchase-Orders/54bn-2sqf
Sample purchasing data containing information on suppliers, the products they provide, and the projects those products are used for. Data created or adapted from publicly available sources.
Envestnet®| Yodlee®'s Ecommerce Purchases Data (Aggregate/Row) Panels consist of de-identified, near-real time (T+1) USA credit/debit/ACH transaction level data – offering a wide view of the consumer activity ecosystem. The underlying data is sourced from end users leveraging the aggregation portion of the Envestnet®| Yodlee®'s financial technology platform.
Envestnet | Yodlee Consumer Panels (Aggregate/Row) include data relating to millions of transactions, including ticket size and merchant location. The dataset includes de-identified credit/debit card and bank transactions (such as a payroll deposit, account transfer, or mortgage payment). Our coverage offers insights into areas such as consumer, TMT, energy, REITs, internet, utilities, ecommerce, MBS, CMBS, equities, credit, commodities, FX, and corporate activity. We apply rigorous data science practices to deliver key KPIs daily that are focused, relevant, and ready to put into production.
We offer free trials. Our team is available to provide support for loading, validation, sample scripts, or other services you may need to generate insights from our data.
Investors, corporate researchers, and corporates can use our data to answer some key business questions such as: - How much are consumers spending with specific merchants/brands and how is that changing over time? - Is the share of consumer spend at a specific merchant increasing or decreasing? - How are consumers reacting to new products or services launched by merchants? - For loyal customers, how is the share of spend changing over time? - What is the company’s market share in a region for similar customers? - Is the company’s loyal user base increasing or decreasing? - Is the lifetime customer value increasing or decreasing?
Additional Use Cases: - Use spending data to analyze sales/revenue broadly (sector-wide) or granular (company-specific). Historically, our tracked consumer spend has correlated above 85% with company-reported data from thousands of firms. Users can sort and filter by many metrics and KPIs, such as sales and transaction growth rates and online or offline transactions, as well as view customer behavior within a geographic market at a state or city level. - Reveal cohort consumer behavior to decipher long-term behavioral consumer spending shifts. Measure market share, wallet share, loyalty, consumer lifetime value, retention, demographics, and more.) - Study the effects of inflation rates via such metrics as increased total spend, ticket size, and number of transactions. - Seek out alpha-generating signals or manage your business strategically with essential, aggregated transaction and spending data analytics.
Use Cases Categories (Our data provides an innumerable amount of use cases, and we look forward to working with new ones): 1. Market Research: Company Analysis, Company Valuation, Competitive Intelligence, Competitor Analysis, Competitor Analytics, Competitor Insights, Customer Data Enrichment, Customer Data Insights, Customer Data Intelligence, Demand Forecasting, Ecommerce Intelligence, Employee Pay Strategy, Employment Analytics, Job Income Analysis, Job Market Pricing, Marketing, Marketing Data Enrichment, Marketing Intelligence, Marketing Strategy, Payment History Analytics, Price Analysis, Pricing Analytics, Retail, Retail Analytics, Retail Intelligence, Retail POS Data Analysis, and Salary Benchmarking
Investment Research: Financial Services, Hedge Funds, Investing, Mergers & Acquisitions (M&A), Stock Picking, Venture Capital (VC)
Consumer Analysis: Consumer Data Enrichment, Consumer Intelligence
Market Data: AnalyticsB2C Data Enrichment, Bank Data Enrichment, Behavioral Analytics, Benchmarking, Customer Insights, Customer Intelligence, Data Enhancement, Data Enrichment, Data Intelligence, Data Modeling, Ecommerce Analysis, Ecommerce Data Enrichment, Economic Analysis, Financial Data Enrichment, Financial Intelligence, Local Economic Forecasting, Location-based Analytics, Market Analysis, Market Analytics, Market Intelligence, Market Potential Analysis, Market Research, Market Share Analysis, Sales, Sales Data Enrichment, Sales Enablement, Sales Insights, Sales Intelligence, Spending Analytics, Stock Market Predictions, and Trend Analysis
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created to simulate a market basket dataset, providing insights into customer purchasing behavior and store operations. The dataset facilitates market basket analysis, customer segmentation, and other retail analytics tasks. Here's more information about the context and inspiration behind this dataset:
Context:
Retail businesses, from supermarkets to convenience stores, are constantly seeking ways to better understand their customers and improve their operations. Market basket analysis, a technique used in retail analytics, explores customer purchase patterns to uncover associations between products, identify trends, and optimize pricing and promotions. Customer segmentation allows businesses to tailor their offerings to specific groups, enhancing the customer experience.
Inspiration:
The inspiration for this dataset comes from the need for accessible and customizable market basket datasets. While real-world retail data is sensitive and often restricted, synthetic datasets offer a safe and versatile alternative. Researchers, data scientists, and analysts can use this dataset to develop and test algorithms, models, and analytical tools.
Dataset Information:
The columns provide information about the transactions, customers, products, and purchasing behavior, making the dataset suitable for various analyses, including market basket analysis and customer segmentation. Here's a brief explanation of each column in the Dataset:
Use Cases:
Note: This dataset is entirely synthetic and was generated using the Python Faker library, which means it doesn't contain real customer data. It's designed for educational and research purposes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
we take a sample of 50
With Versium REACH Demographic Append you will have access to many different attributes for enriching your data.
Basic, Household and Financial, Lifestyle and Interests, Political and Donor.
Here is a list of what sorts of attributes are available for each output type listed above:
Basic:
- Senior in Household
- Young Adult in Household
- Small Office or Home Office
- Online Purchasing Indicator
- Language
- Marital Status
- Working Woman in Household
- Single Parent
- Online Education
- Occupation
- Gender
- DOB (MM/YY)
- Age Range
- Religion
- Ethnic Group
- Presence of Children
- Education Level
- Number of Children
Household, Financial and Auto: - Household Income - Dwelling Type - Credit Card Holder Bank - Upscale Card Holder - Estimated Net Worth - Length of Residence - Credit Rating - Home Own or Rent - Home Value - Home Year Built - Number of Credit Lines - Auto Year - Auto Make - Auto Model - Home Purchase Date - Refinance Date - Refinance Amount - Loan to Value - Refinance Loan Type - Home Purchase Price - Mortgage Purchase Amount - Mortgage Purchase Loan Type - Mortgage Purchase Date - 2nd Most Recent Mortgage Amount - 2nd Most Recent Mortgage Loan Type - 2nd Most Recent Mortgage Date - 2nd Most Recent Mortgage Interest Rate Type - Refinance Rate Type - Mortgage Purchase Interest Rate Type - Home Pool
Lifestyle and Interests:
- Mail Order Buyer
- Pets
- Magazines
- Reading
- Current Affairs and Politics
- Dieting and Weight Loss
- Travel
- Music
- Consumer Electronics
- Arts
- Antiques
- Home Improvement
- Gardening
- Cooking
- Exercise
- Sports
- Outdoors
- Womens Apparel
- Mens Apparel
- Investing
- Health and Beauty
- Decorating and Furnishing
Political and Donor: - Donor Environmental - Donor Animal Welfare - Donor Arts and Culture - Donor Childrens Causes - Donor Environmental or Wildlife - Donor Health - Donor International Aid - Donor Political - Donor Conservative Politics - Donor Liberal Politics - Donor Religious - Donor Veterans - Donor Unspecified - Donor Community - Party Affiliation
Stirista's event data, consumer behavior data, purchase intent data, interest data, identity linkage data:
The most important data for driving sales is purchase intent data. Purchase intent data is the set behavioral signals, or actions taken, that show the intention of your prospects to make a purchase. They may be searching for products, reviews, services, specific pricing, or simply consuming content adjacent to what they are interested in purchasing.
All of this activity leaves a digital “wake," and this can indicate that the prospect is close to making a final purchase decision. Stirista's event data, consumer behavior data, purchase intent data, interest data, identity linkage data, helps you reach potential buyers based on their social behavior so you can grow your business and get ahead of your competitors.
Stirista's Life Event Data:
Our life event data provides insights on consumers undergoing a variety of life-changing events, such as new movers, new moms, newly engaged, newlyweds, and new business owners. In addition to postal addresses, we can append email addresses and digital cookies to enable both B2B and B2C marketers to reach their audiences using postal, email, and display ads.
Our life event data, consumer behavior data, purchase intent data, interest data, identity linkage data provides you with the opportunity to advertise based on consumers’ immediate life situations.
• Movers - Utilities, deed registrations, pending sale contracts, change of address files • First Time Home Buyers - Public record data, deeds, new connect feeds • New Business - Government registrations, phone and utility records, tax records, professional licenses, service registrations • Newly Engaged and Newlyweds - Wedding purchases, registries and invitation lists, self-reported online surveys, public records • New Moms - Birth announcement orders, baby registries, maternity wear buyers
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains longitudinal purchases data from 5027 Amazon.com users in the US, spanning 2018 through 2022: amazon-purchases.csv It also includes demographic data and other consumer level variables for each user with data in the dataset. These consumer level variables were collected through an online survey and are included in survey.csv fields.csv describes the columns in the survey.csv file, where fields/survey columns correspond to survey questions. The dataset also contains the survey instrument used to collect the data. More details about the survey questions and possible responses, and the format in which they were presented can be found by viewing the survey instrument. A 'Survey ResponseID' column is present in both the amazon-purchases.csv and survey.csv files. It links a user's survey responses to their Amazon.com purchases. The 'Survey ResponseID' was randomly generated at the time of data collection. amazon-purchases.csv Each row in this file corresponds to an Amazon order. Each such row has the following columns: Survey ResponseID Order date Shipping address state Purchase price per unit Quantity ASIN/ISBN (Product Code) Title Category The data were exported by the Amazon users from Amazon.com and shared by users with their informed consent. PII and other information not listed above were stripped from the data. This processing occurred on users' machines before sharing with researchers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
for example
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The dataset contains the following columns:
Customer ID: A unique identifier for each customer. Customer Name: The name of the customer (generated by Faker). Customer Age: The age of the customer (generated by Faker). Gender: The gender of the customer (generated by Faker). Purchase Date: The date of each purchase made by the customer. Product Category: The category or type of the purchased product. Product Price: The price of the purchased product. Quantity: The quantity of the product purchased. Total Purchase Amount: The total amount spent by the customer in each transaction. Payment Method: The method of payment used by the customer (e.g., credit card, PayPal). Returns: Whether the customer returned any products from the order (binary: 0 for no return, 1 for return). Churn: A binary column indicating whether the customer has churned (0 for retained, 1 for churned).
Note:
Purchase Order commodity line level detail for City of Austin Commodities/Goods purchases dating back to October 1st, 2009. Each line includes the NIGP Commodity Code/COA Inventory Code, commodity description, quantity, unit of measure, unit price, total amount, referenced Master Agreement if applicable, the contract name, purchase order, award date, and vendor information. The data contained in this data set is for informational purposes only. Certain Austin Energy transactions have been excluded as competitive matters under Texas Government Code Section 552.133 and City Council Resolution 20051201-002.
This dataset was created by Satya Rohith
It contains the following files:
Observed linkages between consumer and B2B emails and website domains, categorized into IAB classification codes.
This data provides an unprecedented view into individuals' in-market intent, interests, lifestyle indicators, online behavior, and propensity to purchase. It is highly predictive when measuring buyer intent leading up to a purchase being made.
Hashed emails can be linked to plain-text emails to append all consumer and B2B data fields for a full view of the individual and their online intent and behavior.
Files are updated daily. These are highly comprehensive datasets from multiple live sources. The linkages include first and last-seen dates and an "intent intensity" score derived from the frequency of similar intent categories over a period of time.
BIGDBM Privacy Policy: https://bigdbm.com/privacy.html
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.
The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:
Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.
Fork this kernel to get started.
Banner Photo by Edho Pratama from Unsplash.
What is the total number of transactions generated per device browser in July 2017?
The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?
What was the average number of product pageviews for users who made a purchase in July 2017?
What was the average number of product pageviews for users who did not make a purchase in July 2017?
What was the average total transactions per user that made a purchase in July 2017?
What is the average amount of money spent per session in July 2017?
What is the sequence of pages viewed?
This comprehensive retail point-of-interest (POI) dataset provides a detailed map of retail establishments across the United States and Canada. Retail strategists, market researchers, and business developers can leverage precise store location data to analyze market distribution, identify emerging trends, and develop targeted expansion strategies.
Point of Interest (POI) data, also known as places data, provides the exact location of buildings, stores, or specific places. It has become essential for businesses to make smarter, geography-driven decisions in today's competitive retail landscape of location intelligence.
LocationsXYZ, the POI data product from Xtract.io, offers a comprehensive retail store data database of 6 million locations across the US, UK, and Canada, spanning 11 diverse industries, including: -Retail store locations -Restaurants -Healthcare -Automotive -Public utilities (e.g., ATMs, park-and-ride locations) -Shopping centers and malls, and more
Why Choose LocationsXYZ for Your Retail POI Data Needs? At LocationsXYZ, we: -Deliver POI data with 95% accuracy for reliable store location data -Refresh POIs every 30, 60, or 90 days to ensure the most recent retail location information -Create on-demand POI datasets tailored to your specific retail data requirements -Handcraft boundaries (geofences) for shopping center locations to enhance accuracy -Provide retail POI data and polygon data in multiple file formats
Unlock the Power of Retail Location Intelligence With our point-of-interest data for retail stores, you can: -Perform thorough market analyses using comprehensive store location data -Identify the best locations for new retail stores -Gain insights into consumer behavior and shopping patterns -Achieve an edge with competitive intelligence in retail markets
LocationsXYZ has empowered businesses with geospatial insights and retail location data, helping them scale and make informed decisions. Join our growing list of satisfied customers and unlock your business's potential with our cutting-edge retail POI data and shopping center location intelligence.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In an effort to promote transparency and accountability, DC is providing Purchase Card transaction data to let taxpayers know how their tax dollars are being spent. Purchase Card transaction information is updated monthly. The Purchase Card Program Management Office is part of the Office of Contracting and Procurement.
This dataset includes an item-by-item list of food items purchased by the City, whenever available, including whenever possible item description, weight, quantity, price, City agency making the purchase and other variables. The data is collected as part of the City's Good Food Purchasing program.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China PMI: CC: Purchases data was reported at 63.900 % in Dec 2009. This records an increase from the previous number of 57.100 % for Nov 2009. China PMI: CC: Purchases data is updated monthly, averaging 58.400 % from Jul 2005 (Median) to Dec 2009, with 54 observations. The data reached an all-time high of 69.500 % in Apr 2008 and a record low of 30.600 % in Dec 2008. China PMI: CC: Purchases data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Business and Economic Survey – Table CN.OP: Purchasing Managers' Index: Manufacturing: Communication, Computer & Other Electronic Equipment.
Our consumer data is gathered and aggregated via surveys, digital services, and public data sources. We use powerful profiling algorithms to collect and ingest only fresh and reliable data points.
Our comprehensive data enrichment solution includes a variety of data sets that can help you address gaps in your customer data, gain a deeper understanding of your customers, and power superior client experiences. 1. Geography - City, State, ZIP, County, CBSA, Census Tract, etc. 2. Demographics - Gender, Age Group, Marital Status, Language etc. 3. Financial - Income Range, Credit Rating Range, Credit Type, Net worth Range, etc 4. Persona - Consumer type, Communication preferences, Family type, etc 5. Interests - Content, Brands, Shopping, Hobbies, Lifestyle etc. 6. Household - Number of Children, Number of Adults, IP Address, etc. 7. Behaviours - Brand Affinity, App Usage, Web Browsing etc. 8. Firmographics - Industry, Company, Occupation, Revenue, etc 9. Retail Purchase - Store, Category, Brand, SKU, Quantity, Price etc. 10. Auto - Car Make, Model, Type, Year, etc. 11. Housing - Home type, Home value, Renter/Owner, Year Built etc.
Consumer Graph Schema & Reach: Our data reach represents the total number of counts available within various categories and comprises attributes such as country location, MAU, DAU & Monthly Location Pings:
Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method on a suitable interval (daily/weekly/monthly).
Consumer Graph Use Cases: 360-Degree Customer View: Get a comprehensive image of customers by the means of internal and external data aggregation. Data Enrichment: Leverage Online to offline consumer profiles to build holistic audience segments to improve campaign targeting using user data enrichment Fraud Detection: Use multiple digital (web and mobile) identities to verify real users and detect anomalies or fraudulent activity. Advertising & Marketing: Understand audience demographics, interests, lifestyle, hobbies, and behaviors to build targeted marketing campaigns.
Here's the schema of Consumer Data:
person_id
first_name
last_name
age
gender
linkedin_url
twitter_url
facebook_url
city
state
address
zip
zip4
country
delivery_point_bar_code
carrier_route
walk_seuqence_code
fips_state_code
fips_country_code
country_name
latitude
longtiude
address_type
metropolitan_statistical_area
core_based+statistical_area
census_tract
census_block_group
census_block
primary_address
pre_address
streer
post_address
address_suffix
address_secondline
address_abrev
census_median_home_value
home_market_value
property_build+year
property_with_ac
property_with_pool
property_with_water
property_with_sewer
general_home_value
property_fuel_type
year
month
household_id
Census_median_household_income
household_size
marital_status
length+of_residence
number_of_kids
pre_school_kids
single_parents
working_women_in_house_hold
homeowner
children
adults
generations
net_worth
education_level
occupation
education_history
credit_lines
credit_card_user
newly_issued_credit_card_user
credit_range_new
credit_cards
loan_to_value
mortgage_loan2_amount
mortgage_loan_type
mortgage_loan2_type
mortgage_lender_code
mortgage_loan2_render_code
mortgage_lender
mortgage_loan2_lender
mortgage_loan2_ratetype
mortgage_rate
mortgage_loan2_rate
donor
investor
interest
buyer
hobby
personal_email
work_email
devices
phone
employee_title
employee_department
employee_job_function
skills
recent_job_change
company_id
company_name
company_description
technologies_used
office_address
office_city
office_country
office_state
office_zip5
office_zip4
office_carrier_route
office_latitude
office_longitude
office_cbsa_code
office_census_block_group
office_census_tract
office_county_code
company_phone
company_credit_score
company_csa_code
company_dpbc
company_franchiseflag
company_facebookurl
company_linkedinurl
company_twitterurl
company_website
company_fortune_rank
company_government_type
company_headquarters_branch
company_home_business
company_industry
company_num_pcs_used
company_num_employees
company_firm_individual
company_msa
company_msa_name
company_naics_code
company_naics_description
company_naics_code2
company_naics_description2
company_sic_code2
company_sic_code2_description
company_sic_code4
company_sic_code4_description
company_sic_code6
company_sic_code6_description
company_sic_code8
company_sic_code8_description
company_parent_company
company_parent_company_location
company_public_private
company_subsidiary_company
company_residential_business_code
company_revenue_at_side_code
company_revenue_range
company_revenue
company_sales_volume
company_small_business
company_stock_ticker
company_year_founded
company_minorityowned
company_female_owned_or_operated
company_franchise_code
company_dma
company_dma_name
company_hq_address
company_hq_city
company_hq_duns
company_hq_state
company_hq_zip5
company_hq_zip4
co...
The State Contract and Procurement Registration System (SCPRS) was established in 2003, as a centralized database of information on State contracts and purchases over $5000. eSCPRS represents the data captured in the State's eProcurement (eP) system, Bidsync, as of March 16, 2009. The data provided is an extract from that system for fiscal years 2012-2013, 2013-2014, and 2014-2015
Data Limitations:
Some purchase orders have multiple UNSPSC numbers, however only first was used to identify the purchase order. Multiple UNSPSC numbers were included to provide additional data for a DGS special event however this affects the formatting of the file. The source system Bidsync is being deprecated and these issues will be resolved in the future as state systems transition to Fi$cal.
Data Collection Methodology:
The data collection process starts with a data file from eSCPRS that is scrubbed and standardized prior to being uploaded into a SQL Server database. There are four primary tables. The Supplier, Department and United Nations Standard Products and Services Code (UNSPSC) tables are reference tables. The Supplier and Department tables are updated and mapped to the appropriate numbering schema and naming conventions. The UNSPSC table is used to categorize line item information and requires no further manipulation. The Purchase Order table contains raw data that requires conversion to the correct data format and mapping to the corresponding data fields. A stacking method is applied to the table to eliminate blanks where needed. Extraneous characters are removed from fields. The four tables are joined together and queries are executed to update the final Purchase Order Dataset table. Once the scrubbing and standardization process is complete the data is then uploaded into the SQL Server database.
Secondary/Related Resources: